PHILIPS

Instruction Manual

AC-millivoltmeter PM 2554

$9447025 \quad 541.1$

CONTENTS

GENERAL/ ALLGEMEINES / GENERALITES

1. Introduction 4
Einleitung 11
Introduction 18
2. Technical data 4
Technische daten 11
Caracteristiques techniques 18
3. Accessories 6
Zubehör 13
Accessoires 20
4. Principle of operation 7
Wirkungsweise 14
Principe de fonctionnement 21
DIRECTIONS FOR USE / GEBRAUCHSANWEISUNG / MODE D'EMPLOI
5. Installation 8
Installation 15
Installation 24
6. Operation 9
Bedienung 16
Operation 26
SERVICE DATA
7. Circuit description 30
8. Access 36
9. Maintenance and servicing 36
10. Checking and adjusting 37
11. List of parts 40

NOTE:

The design of this instrument is subject to continuous development and improvement. Consequently, this instrument may incorporate minor changes in detail from the information contained in this manual.

LIST OF FIGURES

1. Measuring probe PM 9336 22
Messkopf PM 9336
Sonde de mesure PM 9336
2. Block diagram 22
Blockschaltbild
Schéma synoptique
3. Adaption of the mains transformer 26
Einstellung des Netztransformators
Adaptation du transformateur secteur
4. Front view 26
Vorderansicht
Vue avant
5. Rear view 26
Rückansicht
Vue arrière
6. Input circuit 31
7. Impedance transformation circuit 31
8. AC Amplifier 31
9. $\mathrm{AC} \cdot \mathrm{DC}$ Converter 32
10. Feedback circuit 32
11. DC Amplifier 35
12. Mains section 35
13. Reference voltage generator 35
14. Front view with item numbers 41
15. Rear view with item numbers 41
16. Top view 42
17. Bottom view 42
18. Printed circuit board U1 Component side 52
19. Printed circuit board U1 Conductor side 52
20. Printed circuit board U1 with S 101 51
21. Circuit diagram 55
22. Rack Mounting 27

The Philips AC millivoltmeter PM 2554 is a sensitive and accurate measuring instrument suitable for floating measurements from $50 \mu \mathrm{~V}$ up to 300 V in the frequency range from 2 Hz up to 12 MHz .
The instrument can be powered by mains.
By the very great bandwidth and sensitivity the instrument has a width range of applications, e.g. measurements on LF and HF amplifiers, carrier-wave telephony, electro-acoustical as well as for measurements on transducers and measuring-transformers, etc.

The d.c. or a.c. output choosen by an internal jumper, makes it possible to employ the instrument as an a.c./d.c. converter or as an a.c. amplifier.
The instrument has a great indicating speed, a high temperature stability and is quickly ready for use.
The 12 measuring ranges of 1 mV up to 300 V f.s.d. overlap so that a high reading accuracy is obtained. The moving-coil instrument is provided with a mirror scale with the ranges $0-30$ and $0-100$ as well as dB scale from $-20 \mathrm{~dB} \ldots+2 \mathrm{~dB}$ (total span $-80 \mathrm{~dB} \ldots+52 \mathrm{~dB}$).

By means of the measuring-probe PM 9336 the input impedance can be changed from $1 \mathrm{M} \Omega / / 30 \mathrm{pF}$ except capacity measuring cable (100 pF) into $10 \mathrm{M} \Omega / / 11 \mathrm{pF}$ to permit measurements on very high ohmic circuits.

2. TECHNICAL DATA

Properties expressed in numerical values with tolerances are guaranteed by the factory.
Numerical values without tolerances serve only for information and represent the properties of an average instrument.

2.1. Electrical

Note: By application of probe PM 9336 the accuracy will decrease 3\% of reading.

Pre-deflection	<3 scale divisions (terminating resistance $\leqslant 500 \Omega$) Influence on accuracy: 10\% pointer deflection $\leqslant 0.45 \%$ 30% pointer deflection $\leqslant 0.15 \%$
Temperature range	0... $+45^{\circ} \mathrm{C}$
Temperature coëfficient	$\leqslant 1^{\circ} / \mathrm{oo} /{ }^{\circ} \mathrm{C}$
Effect of mains voltage variations	Additional error of 1% oo
Rectifying circuit for the meter section	Average value rectifier
Meter scale	Mirror scale with knife-edge pointer Calibrated in rms values of sinusoidal input voltages Linear division from 0... 103 and $0 \ldots . .325$ dB scale from $-20 \mathrm{~dB} . . .+2 \mathrm{~dB}$
Overload protection	In the ranges 1 mV to 300 mV : 300 V for frequencies between 2 Hz and 10 kHz 10 V for frequencies above 10 kHz Other ranges: 300 V for frequencies between 2 Hz and 12 MHz
Max. permissible voltage (all ranges)	Between Hi and Lo $400 \mathrm{Vd.c}$. Between Lo and housing $500 \mathrm{Vd.c}$.or 500 V pp
Common mode rejection ratio (between Lo and housing)	In the 1 mV range: Frequency $\begin{array}{r} 10 \mathrm{~Hz} \ldots \quad 1 \mathrm{kHz}>140 \mathrm{~dB} \\ 1 \mathrm{kHz} . .10 \mathrm{kHz}>130 \mathrm{~dB} \\ 10 \mathrm{kHz} \ldots 100 \mathrm{kHz}>120 \mathrm{~dB} \end{array}$ Note: These values decrease with 10 dB /range in the higher ranges.
Impedance between Lo and housing	$1 \mathrm{G} \Omega$
Output	D.c. or a.c. output (choosen by internal jumper)
D.C. output	Output resistance $1 \mathrm{k} \Omega$ Output voltage 1 V short-circuit proof
A.C. output	Output impedance 600Ω in serial with $47 \mu \mathrm{~F}$ Output voltage 50 mV short-circuit proof
Accuracy d.c. output	Frequency 10 Hz -400 kHz $\pm 1 \%$ of reading, $\pm 1 \%$ f.s.d. 2 Hz -10 Hz $\pm 3 \%$ of reading, $\pm 1 \%$ f.s.d. 400 kHz -2 MHz $\pm 2 \%$ of reading, $\pm 1 \%$ f.s.d. 2 MHz -6 MHz $\pm 2 \%$ of reading, $\pm 3 \%$ f.s.d. 6 MHz -12 MHz $\pm 4 \%$ of reading, $\pm 4 \%$ f.s.d.
Supply	Mains voltage: $\begin{aligned} & 90 \mathrm{~V} \ldots 132 \mathrm{~V} \text { or } \\ & 180 \mathrm{~V} . .265 \mathrm{~V}, 50 / 60 \mathrm{~Hz} . \end{aligned}$

At min. 90 operating days $1^{0} /$ oo of f.s.d. on the average.

2.2. Mechanical

Dimensions	Height 145 mm Width 236 mm Depth 298 mm
Weight	Approx. 3.5 kg.

3. ACCESSORIES
3.1. Supplied as part of the equipment.

- Measuring cable for voltages above 3 mV and frequencies below 100 kHz
- Manual.
3.2. Optionally available.
- Measuring probe (10:1) PM 9336 (fig. 1 page 22)
- Measuring cable BNC-BNC PM 9074 Length 1 m Impedance 50Ω
- Measuring cable BNC-BNC PM 9075

Length 1 m Impedance 75Ω

- Measuring cable BNC-BNC PM 9076

Length 1 m Impedance 135Ω

4. PRINCIPLE OF OPERATION

Blockdiagram fig. 2 (page 22)
The test voltage connected to the "INPUT" socket is supplied to the input attenuator. This is a capacitively compensated and fully screened voltage divider with a proportion of $1: 1$ or $1000: 1$. The output of the attenuator is connected to the input of the impedance transformer consisting of a feedback two-stage amplifier.

The main attenuator following it is an ohmic voltage divider operating in steps of 10 dB and ensuring a constant and low impedance for the pre-amplifier

The latter consists of two amplifier stages with a high input impedance and a low output impedance. The amplifier stage supplies the voltage for the a.c. output and the rectifier circuit, the rectifiers of which are included in the feedback network of an amplifier. The rectified current, which is proportional with the input voltage, flows through a test resistor.

The voltage drop across this resistor is measured differentially by means of a d.c. amplifier supplying the current for the test instrument. This amplifier also supplies the voltage for the d.c. output.

A reference voltage supplied by a calibrating-voltage generator.
With the aid of this voltage the unit can be calibrated in the 100 mV range. Furthermore this voltage renders it possible to adjust the attenuator probe; this should be done in the 10 mV range. The unit can be fed from the mains.
The equipment power supply voltage is stabilized to ensure that variations in mains supply voltage do not influence the display.

Before any other connection is made, the protective earth terminal shall be connected to a protective conductor (see section: EARTHING).

5.1. Mains supply and fuse

Before inserting the mains plug into a mains socket, make sure that the instrument is set to local mains voltage.
The instrument is wired for operation from a $180 \mathrm{~V} \ldots .265 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ mains voltage.
5.1.1. Adapting of the mains voltage

Adaption of the instrument for other mains voltages is possible by altering the wiring of the mains transformer (see fig. 3 page 26)
To adapt the mains voltage proceed as follows:

- Remove the top cover by removing the two screws A (see fig. 5 page 26)
- Change the wiring of the transformer according to figure 3 page 26

The PM 2554 is suitable for mains voltages of $90 \mathrm{~V} \ldots 132 \mathrm{~V}$ and $180 \mathrm{~V} \ldots 265 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$.

5.2. Fuse

Make sure that only fuses with the required current rating and of the specified types are used. The use of repaired fuses and the short-circuiting of fuse holders is prohibited.
The rating of the mains fuse of the instrument should be: 50 mA d.a. for 180 V ... 265 V
100 mA d.a. for $90 \mathrm{~V} . . .132 \mathrm{~V}$

5.3. Earthing

The instrument should be connected to a protective earth in accordance with the local safety regulation. This can be effected via the 3 -core mains lead. The mains plug should only be inserted in a socket outlet provided with a protective contact, the protective action of which is not cancelled by the use of an extension card or device without protective conductor.
5.4. Rackmounting

The PM 2554 can be mounted in a $19^{\prime \prime}$ rack by using a mounting-set as shown in fig. 22 page 27 . This set is not delivered by Philips.

6. OPERATION

6.1. Mechanical zerosetting

- Place the meter in a horzontal position and check the zero-setting of the meter.
- If necessary correct the setting by means of plastic screw " A ", fig. 4 (page 26)
6.2. Switching on

The instrument is ready for use after connection to the mains and earthing.
It is switched on by means of switch POWER ON (S 2).
A warming-up time of approximately 30 min . should be observed to obtain full accuracy.
6.3. Calibration
6.3.1. Instrument

- Select measuring range 100 mV
- Put the signal lead (Hi) to the connector X 4 at the rear
- Adjust the meter to 100 scale divisions with potentiometer "CAL" (R 80).
6.3.2. Measuring probe PM 9336
- Before adjusting, the instrument should be calibrated as described above
- Select measuring range 10 mV
- Put the signal lead (Hi) to the connector X 4 at the rear
- Adjust the probe by means of adjusting screw "A", fig. 1 (page 22).

6.4. Measuring

- Select the correct measuring range with range selector S 101
- Connect the test voltage to coaxial socket "INPUT" (X1) with the delivered measuring cable.

Notes:

- By means of the 10:1 measuring probe PM 9336 the input impedance can be increased from $1 \mathrm{M} \Omega / / 30 \mathrm{pF}$ (except capacity of the cable: 100 pF) to $10 \mathrm{M} \Omega / / 11 \mathrm{pF}$.
This permits of carrying out measurements on very high-ohmic circuits.
- Do not use the delivered measuring cable for measuring voltages below 3 mV , and/or with a frequency above 100 kHz .
- In case of measurements of voltages in the lowest range, (1 mV) or with high frequencies (above 1 MHz) it may occur that h.f. interference signals respectively the standing wave ratio will influence the results. Therefore it is advised to shield the measurements circuit.
- For measurements at low frequencies, switch SLOW-FAST (S 102) should be set in position SLOW to obtain a proper reading.
As a result the indicating speed of the meter will be reduced and the pointer deflection will become more stable.

6.5. Output (X2 and $X 3$)

The instrument is provided with a floating output.
The Lo is directly connected to the shield of the "INPUT" connector X1.
By means of an internal jumper or a d.c. output or an a.c. output is selected.
(see fig. 16 page 42).
6.5.1. D.C. output

The output voltage is proportional to the input voltage and is 1 V at full scale deflection, irrespective of the selected measuring range.
The output resistance is approx. $1 \mathrm{k} \Omega$.
6.5.2. A.C. output

The output voltage is proportional to the input voltage and is 50 mV at full scale deflection, irrespective of the selected measuring range.
The output impedance is approx. 600Ω in serial with $47 \mu \mathrm{~F}$.
6.6. Errors due to disortion.

Although the meter indicates the mean value of the full-wave rectified voltage, the scale of the instrument is calibrated in rms values of sinewave voltages. As a result measuring errors will arise when measuring nonsinusoidal voltage.
The values of these depend on the coefficient of non-lineair distortion.

Fig. 1.

Fig. 2.

Fig. 4.

Fig. 5.

7. CIRCUIT DESCRIPTION

7.1. Measuring section

Input circuit, fig. 6

The test voltage connected to X 1 is supplied to the impedance transformer stage via C1 and S 101/1f and S 101/2r (direct input) or via S 101/1f; R1...R4; C4...C6; C50...C56 and S 101/2r (via high ohmic, frequencyindependent 1000:1 attenuator).
In both cases the input capacitance is equalised by means of C3, so that a possible probe (PM 9336) can be used in every test area.

Impedance transformation circuit, fig. 7

This circuit consists of a two-stage amplifier V5 and V6, the output signal of which is fully fed back.
Thus a stable single amplifier with a low output impedance is obtained.
For the protection of the field effect transistor V 5 two protective diodes V 2 and V 4 are provided which in the reverse direction are connected between the input and V 1 and V 3 respectively.
If the input voltage exceeds the zener voltage of V 1 , or V 2 or V 4 will become conductive, as a result of which the voltage on the gate of V 5 is limited.
The current through the diodes is limited by the impedance of the input circuit R 106-R 7 and C8. In the voltage divider that follows now and that consists of S 101/3r, R 119...R 126 and R $128 \ldots$... 132 the test voltage is attenuated in steps of $10 \mathrm{~dB}, \mathrm{C} 118$ and C 119 prevent the frequency-response curve from rising.

Amplifier, fig. 8

This consists of two feedback circuits, viz. V7 with V8 and V9 with V10.
A d.c. feedback from nodal point R40 and R41 via R31 to the base of V7 is wired across the whole assembly. The amplification of the first circuit is determined by R34 and R35 and that of the second circuit by R38 and R37.
The RC network R33 and C22 blocks oscillations from the first circuit.

AC-DC converter, fig. 9, 10

This converter contains the amplifier stages V12 and V15 with V16 coupled by the emitter-follower V14 and the current source V18.
Test resistor R65 is included in the feedback network together with the rectifier circuit.
V15 and V16 together constitute an amplifier stage in cascode arrangement. Thus feedback from the output signal to the input of this amplifier stage is avoided.

By means of a differential amplifier A2 the operating point of V16 compared with the voltage obtained from voltage divider R58 - R59. A possible deviating voltage is amplified and fed back to the base of V12 so that the voltage is corrected. The voltage on the collector of V 16 has been chosen so that it is equal to the emitter voltage plus half the knee voltage of V 19 and V 20 ; consequently the latter diodes can never become conductive on account of a voltage difference between the collector of V 16 and the emitter of V 12 .
To prevent the a.c. signal from the collector of V 16 from being fed back to the base of V 12 via the differential amplifier, C33 has been applied across this amplifier. As a result of this the variable-gain amplifier behaves as an integrator with a time constant governed by C33 and R56. The property of this integrator is that it passes on signal with frequencies below $f=\frac{1}{2 \pi \text {. RC }}$ after amplification, but attenuates signals strongly if their frequency is higher.

Fig. 6. Input circuit.

Fig. 7. Impedance transformation circuit

Fig. 8. AC Amplifier

Fig. 9. $A C$ - DC Converter

Fig. 10. Feedback circuit

DC amplifier, fig. 11

The dc voltage which appears over the measuring resistor R65 is fed via resistors R63 and R67 which, together with the resistors R27 and R73 determine the amplification factor (X1) for dc signals. The ripple voltage at the output of the amplifier A2 is suppressed by the capacitors C45 and C42 and the resistor R73. Owing to the circuit arrangement by which capacitors C45 and 42 can be switched using S 102 the ripple suppression is also effective at very low frequencies. At the same time the meter response is damped so that unwanted virbration of the meter needle is reduced. The offset voltage for A2 is determined by resistor R91.

7.2. Supply section, fig. 12

The two primary windings S1 and S2 of transformer T1 can be connected in series or in parallel by connecting together the appropriate soldering pins.

For mains voltages between 180 and 265 volts the windings must be connected in series and for voltages between 90 and 132 volts in parallel.

The output of T1 is rectified by V21 and smoothed by C46.
The current source consisting of V23-26 and R84 delivers the current for the equipment and at the same time provides a stabilized supply voltage via zener diodes V 24 and V 25 .

The adjusting current for V23 is delivered by the current source consisting of V22-25 and R83.
R82 is the starting resistor for both current sources.
7.3. Reference voltage generator, fig. 13

The generator consists of a CMOS circuit with a time constant determined by R85 and C47. The supply voltage for this circuit is further stabilized by means of zener diode V 27 , resulting in the square wave at the output (pin 10) being extremely stable.

This voltage is applied to a potential divider consisting of resistors R86 to 89 and a proportion of it is applied to reference output X4.
Applying this voltage to the 100 mV range enables the instrument to be calibrated.

Fig. 11. DC Amplifier

Fig. 12. Mains section

Fig. 13. Reference voltage generator

8. ACCESS

The opening of parts, or removal of covers, is likely to expose live conductors. The instrument should therefore be disconnected from all voltage sources before any opening of parts or removal of covers is started.

During and after dismantling, bear in mind that capacitors in the instrument may still be charged even if it has been separated from all voltage sources.

USE A WELL-FITTING CROSSHEAD SCREW-DRIVER TO DISMANTLE THE INSTRUMENT TO PREVENT THE CORSS-SLOTTED SCREWS FOR DAMAGE.

8.1. Dismantling

1. Top cover

- Remove both screws "A" (fig. 5)
- Lift the cover at the rear and slide it backwards from the unit.

2. Bottom cover

- Remove both screws "B" (fig. 5)
- Lift the cover at the rear and slide it backwards from the unit.

9. MAINTENANCE AND SERVICING

AC millivoltmeter PM 2554 requires no maintenance because the instrument contains no components which are subject to wear.

However, to ensure reliable and faultless operation, the instrument should not be exposed to moisture, heat, corrosive vapours and excessive dust.

9.1. Service hints

If service work must be performed, the following points should be taken into account to avoid damage of the instrument.

- In case of measurements on a switched-on instrument proceed carefully to avoid short-circuits by means of measuring clips or measuring hooks.
- For soldering use absolutely acid-free soldering tin.
- For all soldering work on the printed circuit boards, use a miniature soldering iron (35 W max.) with a thincleaner or a vacuum soldering iron.
- On the printed wiring boards jumpers are introduced at the conductor side; they can be used to interrupt circuits in order to test the functioning of the corresponding circuit.
- The dc settings of the instrument given on the circuit diagram are measured with the input short circuited. These values represent an average instrument.

10. CHECKING AND ADJUSTING

10.1. General

The tolerances stated in this chapter correspond to the factory data; they apply when the instrument is readjusted completely. Such data may differ from these given in chapter 2. Technical Data.

To calibrate this instrument, only reference voltages and measuring equipment with the required accuracy should be applied.

Before calibration, a warming-up time of approximately 30 minutes should be taken into account.
10.2. Survey of adjusting elements

The next table gives a survey of the adjustments and checking procedure.
For a complete adjustment adhere to the sequence of point 3 of this chapter.

Adjusting unit	Fig.	Adjustment or final adjustment	Required measuring or auxiliary instrument	Adjust according to chapter 10 sub-point
R80	18	Calibrating the instrument		3.4
R4	19	Frequency-independent voltage divider	LF generator precision LF millivoltmeter	3.5
R91	18	Zero point DC amplifier	Voltmeter, for instance PM 2403	3.3
R77	18	DC output	LF generator, precision LF millivoltmeter. Voltmeter, for instance PM 2421	3.4
R86	18	Reference voltage	LF generator, precision LF millivoltmeter	3.6
C3/C6	18	Frequency-independent voltage divider	LF generator, precision LF millivoltmeter. Probe PM 9336	3.5

10.3 Adjusting procedure

10.3.1. Mechanical zero-setting

- Check with the unit switched off whether the mechanical zero adjustment of the pointer is correct. Deviations can be corrected by means of the correction screw. The unit should be placed horizontal in this case.

10.3.2. Supply voltages

- The value adjusted by means of the wiring of T1 (see fig. 3) must correspond with the local mains voltage
- The mains fuse must have a current value of 50 mA d.a. ($90 \mathrm{~V} . . .132 \mathrm{~V}$) or 100 mA d.a. ($180 \mathrm{~V} . . .265 \mathrm{~V}$)
- The supply voltages are +15 V and -15 V with respect to 0

Test points	+15 V : cathode V 24
$0 \mathrm{~V}:$ cathode V 25	
	-15 V : anode V 25

10.3.3. Zero-setting d.c. amplifier

- Set S 101 to position 300 mV
- Measure the voltage on the d.c. output
- Adjust this voltage to 0 V by means of potentiometer R91
- Set S 101 to position 1 mV
- The pre-deflection must be less than 3 scale devisions (sd.)

10.3.4. Adjusting the d.c. output

- Set S 101 to position 30 mV
- Connect a voltage of $31.6 \mathrm{mV} \pm 0.2 \% ; 1 \mathrm{kHz}$ to X 1
- Adjust the test system to 100 sd by means of R80
- Measure the voltage on the d.c. output X2 and X3
- Adjust the voltage to $1 \mathrm{~V} \pm 0.2 \%$ by means of R 77
10.3.5. Adjusting the frequency-independent voltage divider
- Set S 101 to position 10 V
- Connect a voltage of $10 \mathrm{~V} \pm 0.2 \% 400 \mathrm{~Hz}$ to X 1
- Adjust the test system to 100 sd by means of R4
- Increase the frequency to 50 kHz
- Adjust the test system to 100 sd by means of C6
- Set S 101 to position 100 mV
- Connect a voltage of $1 \mathrm{~V} \pm 0.2 \%$ to X 1 via a PM 9336 probe
- Note down the deflection of the test system.
- Increase the frequency to 50 kHz
- Adjust the system to the value noted by means of the trimming potentiometer in the probe
- Set S 101 to position 1 V
- Connect a voltage of $10 \mathrm{~V} \pm 0.2 \%, 200 \mathrm{~Hz}$ to X 1 via the probe now adjusted
- Noted down the deflection of the test system
- Increase the frequency to 50 kHz
- Adjust the system to the latter value by means of C3.

10.3.6. Adjusting the reference generator

- Set S 101 in position 100 mV
- Apply a voltage of $100 \mathrm{mV} \pm 0.2 \% 1 \mathrm{kHz}$ to X 1
- Adjust the test system to 100 sd by means of R80
- Interconnect X1 and X4
- Adjust the test system to 100 sd by means of R86
10.3.7. Ripple suppression
(Only necessary if C 41 or C 45 has to be replaced)
- Set S 101 in position 1 V
- Set S 102 in position slow
- Connect a voltage of 0.9 V 2 Hz to X 1
- The total swing of the needle should be smaller than 0.5 sd
- If necessary add a capacitor of $0.1 \mu \mathrm{~F}$ in parallel with R41 or R45
10.3.8. Final check

After the above adjustments, the instrument must comply with the specifications given in the table below.

Position S 101	Supply			Indication in sd test system	D.C. Output
10 mV	10	mV	10 kHz	$100 \pm 1.5 \%$	$1 \mathrm{~V} \pm 1.5 \%$
30 mV	31.6 mV	10 kHz	$100 \pm 1.5 \%$	$1 \mathrm{~V} \pm 1.5 \%$	
100 mV	100	mV	10 kHz	$100 \pm 1.5 \%$	$1 \mathrm{~V} \pm 1.5 \%$
100 mV	100	mV	400 kHz	$100 \pm 1.5 \%$	$1 \mathrm{~V} \pm 1.5 \%$
100 mV	100	mV	10 Hz	$100 \pm 1.5 \%$	$1 \mathrm{~V} \pm 1.5 \%$
100 mV	100	mV	2 Hz	$100 \pm 3.5 \%$	$1 \mathrm{~V} \pm 3.5 \%$
100 mV	100	mV	2 MHz	$100 \pm 2 \%$	$1 \mathrm{~V} \pm 2.5 \%$
100 mV	100	mV	6 MHz	$100 \pm 4 \%$	$1 \mathrm{~V} \pm 4 \%$
100 mV	100	mV	12 MHz	$100 \pm 7 \%$	$1 \mathrm{~V} \pm 7 \%$
1 V	1	V	10 kHz	$100 \pm 1.5 \%$	$1 \mathrm{~V} \pm 1.5 \%$
1 V	1	V	12 MHz	$100 \pm 7 \%$	$1 \mathrm{~V} \pm 7 \%$
3 V	3.16	V	10 kHz	$100 \pm 1.5 \%$	$1 \mathrm{~V} \pm 1.5 \%$
10 V	10	V	10 kHz	$100 \pm 1.5 \%$	$1 \mathrm{~V} \pm 1.5 \%$

Note:- Accuracy of the voltage supplied: $+0.5 \%$

- In case of a to high indication at 2 Hz C60 should be increased or C16 should be decreased.
10.3.7. Ripple suppression
(Only necessary if C 41 or C 45 has to be replaced)
- Set S 101 in position 1 V
- Set S 102 in position slow
- Connect a voltage of 0.9 V 2 Hz to X 1
- The total swing of the needle should be smaller than 0.5 sd
- If necessary add a capacitor of $0.1 \mu \mathrm{~F}$ in parallel with R41 or R45
10.3.8. Final check

After the above adjustments, the instrument must comply with the specifications given in the table below.

Position S 101	Supply			Indication in sd test system	D.C. Output
10 mV	10	mV	10 kHz	$100 \pm 1.5 \%$	$1 \mathrm{~V} \pm 1.5 \%$
30 mV	31.6 mV	10 kHz	$100 \pm 1.5 \%$	$1 \mathrm{~V} \pm 1.5 \%$	
100 mV	100	mV	10 kHz	$100 \pm 1.5 \%$	$1 \mathrm{~V} \pm 1.5 \%$
100 mV	100	mV	400 kHz	$100 \pm 1.5 \%$	$1 \mathrm{~V} \pm 1.5 \%$
100 mV	100	mV	10 Hz	$100 \pm 1.5 \%$	$1 \mathrm{~V} \pm 1.5 \%$
100 mV	100	mV	2 Hz	$100 \pm 3.5 \%$	$1 \mathrm{~V} \pm 3.5 \%$
100 mV	100	mV	2 MHz	$100 \pm 2 \%$	$1 \mathrm{~V} \pm 2.5 \%$
100 mV	100	mV	6 MHz	$100 \pm 4 \%$	$1 \mathrm{~V} \pm 4 \%$
100 mV	100	mV	12 MHz	$100 \pm 7 \%$	$1 \mathrm{~V} \pm 7 \%$
1 V	1	V	10 kHz	$100 \pm 1.5 \%$	$1 \mathrm{~V} \pm 1.5 \%$
1 V	1	V	12 MHz	$100 \pm 7 \%$	$1 \mathrm{~V} \pm 7 \%$
3 V	3.16	V	10 kHz	$100 \pm 1.5 \%$	$1 \mathrm{~V} \pm 1.5 \%$
10 V	10	V	10 kHz	$100 \pm 1.5 \%$	$1 \mathrm{~V} \pm 1.5 \%$

Note:- Accuracy of the voltage supplied: $+0.5 \%$

- In case of a to high indication at $2 \mathrm{HzC6O}$ should be increased or C16 should be decreased.

11. LIST OF PARTS

11.1 Mechanical

Item	Fig.	Qty.	Ordering number	Description
1	14	1	532244794068	Top and bottom cover
2	14	2	532246064003	Ornamental strip
3	14	2	532253574367	Spindle for handle
4	14	1	532252034138	Bearing bush, left
5	17	1	532252034139	Bearing bush, right
6	14	1	532249874003	Cab for handle
7	14	1	532249854032	Handle assey
8	14	1	532246064002	Ornamental frame
9	16	1	532241464039	Knob for S 101
10	14	1	532241474019	Cab for knob
11	14	1	532252644136	Insulating bush
12	16	1	532240594159	Clip
13	14	1	532253254209	Coppling piece
14	17	1	532253574394	Spindle
15	16	532253594637	Extension spindle	
16	16	1	532253264119	
17	17	1	532246244175	Bush
18	15	4	532249264337	Foot
19		532246244121	Foot	

11.2 Miscellaneous

Item	Fig.	Qty.	Ordering number	Description
20	16	1	482225330003	Fuse 50 mA da 5×20
21	14	1	532234464055	Measuring system
22	17	1	532227614085	Fast-Slow switch
23	17	1	482227610554	Mains switch
24	16	1	532227364036	Range switch
25	16	1	532214624186	Mains transformer
26	14	1	532226714022	HF-Con BNC
27	15	1	532226730231	Connector Hi
28	15	1	532226730231	Connector Lo
29	15	1	532226730231	Connector REF
30	15	1	532226754072	Connector 8-P
31	16	1	532232014093	Measuring cable
32	14	2	482225330006	Fuse 100 mA da 5×20
33	15	2	532241414011	Push botton knob
34	15	1	532232114001	Mains cable
35	16	1	532232550101	Cable grommet
36	1	532246244362	Protective cover	

Fig. 14. Front view with item numbers

Fig. 15. Rear view with item numbers

Fig. 16. Top view

Fig. 17. Bottom view
11.3. Electrical

11.3.1. Resistors *

No.	Ordering number	Value (Ω)	\%	Series
R 1	532211654188	1 M	1	MR30
R 2	532211654554	1,1 k	1	MR25
R 3	532211654617	9,53 k	1	MR25
R 4	482210120416	$4,7 \mathrm{k}$	20	0.1W Potentiometer
	482211651123	100 k	1	MR30
R 8	532211654188	1 M	1	MR30
R 11	532211654641	19,6 k	1	MR25
R 12	532211654012	6,81 k	1	MR25
R 13	532211650452	10	1	MR25
R 14	532211650729	$4,22 \mathrm{k}$	1	MR25
R 15	532211650452	10	1	MR25
R 31	532211654643	20,5 k	1	MR25
R 32	532211654534	681	1	MR25
R 33	532211654466	90,9	1	MR25
R 34	532211654455	68,1	1	MR25
R 35	532211654502	261	1	MR25
R 36	532211654567	1,69 k	1	MR25
R 37	532211654472	105	1	MR25
R 38	532211654561	1,33 k	1	MR25
R 39	532211654543	866	1	MR25
R 40	532211654519	402	1	MR25
R 41	532211654532	649	1	MR25
R 42	532211650452	10	1	MR25
R 43	532211654009	562	1	MR25
R 44	532211654696	100 k	1	MR25
R 45	532211654627	13,3 k	1	MR25
R 50	532211654446	56,2	1	MR25
R 57	532211654696	100 k	1	MR25
R 58	532211654188	1 M	1	MR30
R 59	532211654558	8,25 k	1	MR25
R 61	532211654595	$5,11 \mathrm{k}$	1	MR25
R 62	532211650451	$21,5 \mathrm{k}$	1	MR25
R 63	532211654696	100 k	1	MR25
R 64	532211654536	750	1	MR25
R 65	532211654513	332	1	MR25
R 66	532211654536	750	1	MR25
R 67	532211654696	100 k	1	MR25
R 72	532211654696	100 k	1	MR25
R 73	532211654696	100 k	1	MR25
R 74	532211654469	100	1	MR25

[^0]| No. | Ordering number | Value (Ω) | \% | Series | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| R 76 | 532211650671 | 2,61 k | 1 | MR25 | |
| R 77 | 482210010037 | 1 k | 20 | 0,05W | Potentiometer |
| R 78 | 532211650536 | 464 | 1 | MR25 | |
| R 79 | 532211654565 | $1,62 \mathrm{k}$ | 1 | MR25 | |
| R 80 | 532210124138 | 10 k | 20 | MR25 | |
| R 81 | 532211654549 | 1 k | 1 | MR25 | |
| R 83 | 532211650509 | $4,87 \mathrm{k}$ | 1 | MR25 | |
| R 84 | 532211654469 | 100 | 1 | MR25 | |
| R 86 | 482210010029 | 2,2 k | 20 | 0,05W | Potentiometer |
| R 87 | 532211650482 | $33,2 \mathrm{k}$ | 1 | MR25 | |
| R 88 | 532211650728 | $1,87 \mathrm{k}$ | 1 | MR25 | |
| R 89 | 532211654549 | 1 k | 1 | MR25 | |
| R 90 | 532211650729 | $4,22 \mathrm{k}$ | 1 | MR25 | |
| R 91 | 482210010088 | 220 k | 20 | 0,05W | Potentiometer |
| R 105 | 532211654852 | 100 | 1 | MR30 | |
| R 106 | 532211654852 | 100 | 1 | MR30 | |
| R 118 | 532211654767 | 205 | 0,25 | MR24C | |
| R 120 | 532211654767 | 205 | 0,25 | MR24C | |
| R 122 | 532211654767 | 205 | 0,25 | MR24C | |
| R 123 | 482211063145 | 27 k | 5 | CR25 | |
| R 124 | 532211654767 | 205 | 0,25 | MR24C | |
| R 126 | 532211650865 | 140 | 0,25 | MR24C | |
| R 127 | 532211654472 | 105 | 1 | MR25 | |
| R 128 | 532211655038 | 301 | 0,25 | MR24C | |
| R 129 | 532211655038 | 301 | 0,25 | MR24C | |
| R 130 | 532211655038 | 301 | 0,25 | MR24C | |
| R 313 | 532211655038 | 301 | 0,25 | MR24C | |
| R 132 | 532211655038 | 301 | 0,25 | MR24C | |

No.	Ordering number	Value (F)	\%	V	Description
C 1	482212140117		10	400	Polyester
	482212231217	3,9p	0,25pF		Ceramic
	482212560037	6		500	Trimmer
C 4	482212231192	6,8p	0,25pF	500	Ceramic
	482212231191	5,6p	0,25pF	500	Ceramic
	532212564011	3 p		500	Trimmer
	482212230103	22 n	$-20+80$	40	Ceramic
C 8	532212144225	4,7 n	10	630	Polyester
C 9	482212230103	22 n	$-20+80$	40	Ceramic
C 10	482212420467	15μ	$-10+50$	16	Electrolytic
C 11	482212230103	22 n	$-20+80$	40	Ceramic
C 12	482212420461	47μ	$-10+50$	10	Electrolytic
C 13	482212420467	15μ	$-10+50$	16	Electrolytic
C 14	482212230103	22 n	$-20+80$	40	Ceramic
C 15	482212230103	22 n	$-20+80$	40	Ceramic
C 16	482212420457	470μ	$-10+50$	6,3	Electrolytic
C 17	482212140232	220 n	10	100	Polyester
C 18	482212420457	470μ	$-10+50$	6,3	Electrolytic
C 22	482212231076	68 p	2	100	Ceramic
C 23	482212230103	22 n	$-20+80$	40	Ceramic
C 24	482212420467	15μ	$-10+50$	16	Electrolytic
C 25	482212230103	22 n	$-20+80$	40	Ceramic
C 26	482212420467	15μ	$-10+50$	16	Electrolytic
C 27	482212230103	22 n	$-20+80$	40	Ceramic
C 28	482212230103	22 n	$-20+80$	40	Ceramic
C 29	482212420462	100μ	$-10+50$	10	Electrolytic
C 30	482212420461	47μ	$-10+50$	10	Electrolytic
C 31	482212231061	18 p	2	100	Ceramic
C 32	482212550062	10 p		250	Trimmer
C 33	482212420467	15μ	$-10+50$	16	Electrolytic
C 34	482212231067	33 p	2	100	Ceramic
C 35	482212420467	15μ	$-10+50$	16	Electrolytic
C 36	482212230103	22 n	$-20+80$	40	Ceramic
C 37	482212420459	22μ	$-10+50$	10	Electrolytic
C 38	532212140308				Polyester
C 39	482212230103	22 n	$-20+80$	40	Ceramic
C 40	482212420467	15μ	$-10+50$	16	Electrolytic
C 41	532212140197	1μ	10	100	Polyester
C 42	532212144138	47 n	10	100	Polyester
C 43	482212231067	33 p	2	100	Ceramic
C 44	532212144138	47 n	10	100	Polyester
C 45	532212140197	1μ	10	100	Polyester
C 46	482212420537	220μ	$-10+50$	63	Electrolytic
C 47	482212231081	100 p	2	100	Ceramic
C 48	482212230103	22 n	$-20+80$	40	Ceramic

No.	Ordering number	Value (F)		\%	V	Description
C 49	482212230103	22	n	$-20+80$	40	Ceramic
C 50	482212230055	330	p	$-20+80$	100	Ceramic
C 51	482212230055	330	p	2	100	Ceramic
C 52	482212230055	330	p	2	100	Ceramic
C 53	482212230055	330	p	2	100	Ceramic
C 54	482212230055	330	p	2	100	Ceramic
C 55	482212230055	330	p	2	100	Ceramic
C 56	482212230055	330	p	2	100	Ceramic
C 57	482212140232	220	n	10	100	Polyester
C 58	482212420465	330	μ	$-10+50$	10	Electrolytic
C 60	482212420508	1000	μ	$-10+50$	4	Electrolytic
C 61	482212420581	220	μ	$-10+50$	4	Electrolytic
C 62	482212420515	2200	μ	$-10+50$	6,3	Electrolytic
C 64	482212230103	22	n	$-20+80$	40	Ceramic
C 70	482212231058	15	p	2	700	Ceramic
C 118	482212231058	15	p	2	100	Ceramic
C 119	482212231074	56	p	2	100	Ceramic
C 121	482212420468	33	μ	$-10+50$	16	Electrolytic

11.3.3. Semiconductors

No.	Ordering number	Type
V 1	532213034174	BZX79-C4V7
V 2	482213030613	BAW62
V 3	532213034174	BZX79-C4V7
V 4	482213030613	BAW62
V 5	532213040408	BFW11
V 6	532213044127	2N2894A
V 7	532213040493	BFY90
V 8	532213044127	2N2894A
V 9	532213040493	BFY90
V 10	532213040493	BFY90
V 11	482213040964	BC549
V 12	532213040493	BFY90
V 13	532213034049	BZX75-C2V1
V 14	482213044257	BC547
V 15	482213044257	BC547
V 16	532213044127	2N2894A
V 17	482213030613	BAW62
V 18	482213044257	BC547
V 19	532213034062	FH1100
V 20	532213034062	FH1100
V 21	482213030414	BY164
V 22	482213044256	BC557
V 23	532213034174	BZX79-C4V7
V 24	532213034156	BZX87-C15
V 25	532213034156	BZX87-C15
V 26	532213044325	BD201 (TO220)
V 27	532213034439	BZV10

11.3.4. Integrated circuits

No.	Ordering number	Type
D 1	532220914125	HEF 4047BP
A 1	5322 209 84679	LM301AN
A 2	532220984679	LM301AN

Fig. 20. Printed circuit board U1 with S 101

Fig. 18. Printed circuit board U1 Component side

Fig. 19. Printed circuit board U1 Conductor side

AC-DC CONVERTER

5T276

Fig. 21. Circuit diagram.

[^0]: * Carbon resistors CR25 5\% - 0,125 W are not mentioned in this list

