2N4352

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	$V_{D S}$	25	Vdc
Drain-Gate Voltage	$V_{\text {DG }}$	30	Vdc
Gate-Source Voltage	V_{GS}	± 30	Vdc
Gate Current	I_{G}	30	mAdc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{aligned} & 300 \\ & 1.7 \end{aligned}$	$\underset{\mathrm{mW} / \mathrm{C}}{\substack{ \\\hline}}$
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{array}{r} 800 \\ 4.56 \\ \hline \end{array}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Junction Temperature Range	TJ	175	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +175	${ }^{\circ} \mathrm{C}$

CASE 20-03, STYLE 2 TO-72 (TO-206AF)

MOS FET SWITCHING

P-CHANNEL - ENHANCEMENT

ELECTRICAL CHARACTERISTICS ${ }^{(T}{ }_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Drain-Source Breakdown Voltage $\left(I_{D}=-10 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0\right)$	$V_{\text {(BR) }}$ DS X	-25	-	Vdc
Zero-Gate-Voltage Drain Current $\begin{aligned} &\left(V_{D S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\right) \mathrm{T}_{\mathrm{A}} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \end{aligned}$	IDss	-	$\begin{array}{r} -10 \\ -10 \end{array}$	nAdc μ Adc
Gate Reverse Current $\left(\mathrm{V}_{\mathrm{GS}}= \pm 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0\right)$	IGss	-	± 10	pAdc

ON CHARACTERISTICS

Gate Threshold Voltage $\left(V_{D S}=-10 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=-10 \mu \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{GS}(\mathrm{Th})}$	-1.0	-5.0
Drain-Source On-Voltage $\left(I_{D}=-2.0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V}\right)$	$\mathrm{V}_{\mathrm{DS}(\mathrm{on})}$	-	-1.0
On-State Drain Current $\left(V_{G S}=-10 \mathrm{~V}_{\mathrm{DS}}=-10 \mathrm{~V}\right)$	$\mathrm{ID}(\mathrm{on})$	-3.0	-

SMALL-SIGNAL CHARACTERISTICS

Drain-Source Resistance $\left(\mathrm{V}_{\mathrm{GS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0, \mathrm{f}=1.0 \mathrm{kHz}\right)$	${ }^{\text {r }}$ ds $(0 n)$	-	600	ohms
Forward Transfer Admittance $\left(\mathrm{V}_{\mathrm{DS}}=-10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}\right)$	$\left\|y_{f s}\right\|$	1000	-	$\mu \mathrm{mho}$
Input Capacitance $\left(V_{D S}=-10 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=140 \mathrm{kHz}\right)$	$C_{\text {iss }}$	-	5.0	pF
Reverse Transfer Capacitance $\left(V_{D S}=0, V_{G S}=0, f=140 \mathrm{kHz}\right)$	$\mathrm{C}_{\text {rss }}$	-	1.3	pF
Drain-Substrate Capacitance $\left(\mathrm{V}_{\mathrm{D}(\mathrm{SUB})}=-10 \mathrm{~V}, \mathrm{f}=140 \mathrm{kHz}\right)$	$\mathrm{C}_{\text {d(sub) }}$	-	4.0	pF

SWITCHING CHARACTERISTICS

Turn-On Delay (Figures 5)	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=-2.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{DS}}=-10 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{GS}}=-10 \mathrm{~V} \text {) } \\ & \text { (See Figure } 9 \text {, Times Circuit Determined) } \end{aligned}$	$t_{d 1}$	-.	45	ns
Rise Time (Figures 6)		tr_{r}	-	65	ns
Turn-Off Delay (Figures 7)		${ }^{\text {d }}$ 2	-	60	ns
Fall Time (Figures 8)		t_{f}	-	100	ns

FIGURE 1 - FOWARD TRANSFER ADMITTANCE

FIGURE 2 - TRANSFER CHARACTERISTICS

FIGURE 3 - DRAIN-SOURCE "ON" RESISTANCE

FIGURE 4 - "ON" DRAIN-SOURCE VOLTAGE

SWITCHING CHARACTERISTICS

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

FIGURE 9 - SWITCHING CIRCUIT and WAVEFORMS

The switching characteristics shown above were measured in a test circuit similar to Figure 10 . At the beginning of the switching interval, the gate voltage is at ground and the gate source capacitance (Cos $_{9,}=\mathrm{C}_{1}$. $-\mathrm{Cr}_{\text {rus }}$) has no charge. The drain voltage is at Vo, and thus the feedoack capacil) is charged to $V_{D D}$ since the substrate and source are connected to ground
During the turn-on interval, $C_{g s}$ is charged to $V_{G S}($ the input voltage) through Rs (generator impedance) (FIgure 11). Cra, must be discharged to VGs - Voton) through Rs and the parallel combination of the load resistor (Ro) and the channel resistance (rds). In addition, Cdisub) is discharged to a low value (Volon) through Ro in paralle! with ras. During turn-off this charge flow is reversed
Predicting turn-on time proves to be somewhat difficult since the channel
resistance $\mathrm{I}_{\text {das }}$ is a function of the gate-source resistance (ras is and and Cdstubl are charged through rds, turn-on time is quite non-linear.
 interval and will largely determine the turn-on time. On the other hand, during
 time. This is especially noticeable for the curves where $\mathrm{R}_{5}=0$ and C_{9} is charged through the pulse generator impedance only.
The switching curves shown with $\mathrm{R}_{\mathrm{s}}=$ Ro simulate the switching behavior of cascade y stages where the driving source impedance is normally the same as the load impedance. The set of curves with Rs $=0$ simulates a low source im pedance drive such as might occur in complementary logic circuits

FIGURE 10 - SWITCHING CIRCUIT with MOSFET EQUIVALENT
MODEL

