MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	VDS	25	Vdc
Drain-Gate Voltage	VDG	30	- Vdc
Gate-Source Voltage	VGS	± 30	Vdc
Gate Current	١G	30	mAdc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	300 1.7	mW mW/℃
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	800 4.56	mW m₩/ºC
Junction Temperature Range	Tj	175	°C
Storage Temperature Range	Tstg	-65 to +175	°C

2N4352

CASE 20-03, STYLE 2 TO-72 (TO-206AF)

MOS FET SWITCHING

P-CHANNEL - ENHANCEMENT

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted.)

	Characteristic	Symbol	Min	Max	Unit			
OFF CHARACTERISTICS								
Drain-Source Breakdown ($I_D = -10 \ \mu A$, $V_{GS} =$	Voltage 0)	V _(BR) DSX	- 25	—	Vdc			
Zero-Gate-Voltage Drain ((V _{DS} = -10 V, V _{GS} =	Current 0) T _A = 25°C T _A = 150°C	IDSS	=	- 10 - 10	nAdc μAdc			
Gate Reverse Current ($V_{GS} = \pm 30 \text{ V}, V_{DS} =$	0)	IGSS	-	±10	pAdc			
ON CHARACTERISTICS								
Gate Threshold Voltage (V _{DS} = -10 V, I _D = -	10 <i>µ</i> A)	V _{GS(Th)}	- 1.0	- 5.0	Vdc			
Drain-Source On-Voltage $(I_D = -2.0 \text{ mA}, V_{GS} = -2.0 \text{ mA})$	10 V)	V _{DS(on)}	-	- 1.0	v			
On-State Drain Current ($V_{GS} = -10 V_{DS} = -$	10 V)	lD(on)	- 3.0	-	mA			
SMALL-SIGNAL CHARACTERISTICS								
Drain-Source Resistance ($V_{GS} = -10 \text{ V}, I_D = 0$)	, f = 1.0 kHz)	^r ds(on)	_	600	ohms			
Forward Transfer Admitta ($V_{DS} = -10 V$, $I_{D} = 2$)	ance .0 mA, f = 1.0 kHz)	Vfs	1000	-	μmho			
Input Capacitance (V _{DS} = -10 V, V _{GS} =	0, f = 140 kHz)	Ciss	-	5.0	pF			
Reverse Transfer Capacita $(V_{DS} = 0, V_{GS} = 0, f$	ance = 140 kHz)	C _{rss}	_	1.3	pF			
Drain-Substrate Capacitar (VD(SUB) = -10 V, f =	nce = 140 kHz)	C _{d(sub)}	_	4.0	pF			
SWITCHING CHARACTER	RISTICS							
Turn-On Delay (Figures 5)	$I_D = -2.0 \text{ mAdc}$, $V_{DS} = -10 \text{ Vdc}$, $V_{GS} = -10 \text{ V}$ (See Figure 9, Times Circuit Determined)	td1	— ,	45	ns			
Rise Time (Figures 6)		tr	_	65	ns			
Turn-Off Delay (Figures 7)		t _{d2}	_	60	ns			
Fall Time (Figures 8)		t _f	_	100	ns			

2N4352

6

FIGURE 3 - DRAIN-SOURCE "ON" RESISTANCE

50

20

10 5

- 0.5

 V_{DS} V_{G} 10 V

> 2.0 ID. DRAIN CURRENT (mA)

- 1 0

SWITCHING CHARACTERISTICS $(T_{A} = 25^{\circ}C)$

- 10

10

50

FIGURE 4 --- "ON" DRAIN-SOURCE VOLTAGE

2N4352

FIGURE 9 --- SWITCHING CIRCUIT and WAVEFORMS

The switching characteristics shown above were measured in a test circuit similar to Figure 10. At the beginning of the switching interval, the gate voltage is at ground and the gate source capacitance (Co₁ = Co₁, -Co₁) has no charge. The drain voltage is at Vo₂ and thus the feedback capacitance (Co₁) is charged to Vo₂. Similarly, the drain-substrate capacitance (Co₁) is charged to Vo₂. Similarly, the drain-substrate capacitance (Co₁) is charged to Vo₂. Similarly, the drain-substrate capacitance (Co₁) is charged to Vo₂ the substrate and source are connected to ground. The substrate and source are connected to ground. The substrate is a substrate capacitance (Co₁) which is capacitance (Co₁) is charged to Vo₂. The substrate and source are connected to ground. The substrate is a substrate capacitance (Co₁) which is a substrate capacitance (Co₁) which is a substrate capacitance (Co₁) which is a substrate capacitance (Co₁) and the charnel resistance (Co₁). In addition, Capical is discharged to a low value (Vo₁) through R and the parallel combination of the load resistor (Ro₂) and the charnel resistance (Co₁) is a function of the gate-source voltage (Vo₂). A Co₂ becomes charged Vo₃ is a sportaching Va₁ and rain decreases (see Figure 4) and since Ca₁ and Ca₁ is a sportaching Va₁ and rain decrease (see Figure 4) and since Ca₁ (which is parallel with Ro) will be voltage (Vo₂). The switching interval and will targely determine the turn-on time s quite non-linear. If the charging time of Co₂ is short compared to Ro during the switching interval and will be almost an open circuit requiring Ca₁ and Ca₁ is a specially noticeable for the curves where R = 0 and Ca₁ is charged to be charged through R and resulting in a turn-off time that is long compared to the turn-on time. This is sepsecially noticeable for the curves where R = 0 and Ca₁ is charged to design with R = R simulate the switching behavior of cascade J stages where the driving source impedan

FIGURE 10 - SWITCHING CIRCUIT with MOSFET EQUIVALENT MODEL

