

GENERAL INSTRUMENT MOS TRANSISTOR

P CHANNEL-ENHANCEMENT MODE SILICON INSULATED GATE FIELD EFFECT TRANSISTOR Technical Specifications May, 1965

> MEM 511 TENTATIVE

Silicon P-Channel, Insulated — Gate Enhancement Mode Field Effect Transistor Designed Primarily For Low-Power Audio, Radio Frequency and Commutating Applications.

FEATURES:

- 10¹⁰ ohms input resistance
- Integrated zener clamp protects the gate
- Normally off with zero gate voltage
- Square Law linear transfer characteristics

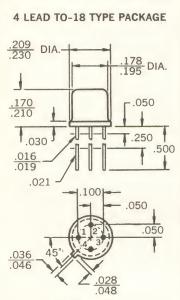
APPLICATIONS:

- High input impedance amplifiers
- Series and shunt choppers
- Operational amplifiers
- Logic circuits
- RF and IF amplifiers

CASE STYLE:

See Drawing

MAXIMUM RATINGS:

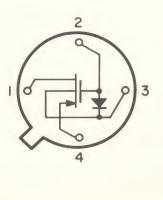

 $(T_A = 25^{\circ}C_{.,.}unless otherwise specified)$

Drain to Source Voltage	
Gate to Source Voltage	-30V
Gate to Drain Voltage	-30V
Drain Current	—50mA
Gate Current (Forward Direction for Zener Clamp)	+0.lmA
Storage Temperature	-50 to 150°C
Operating Junction Temperature	—50 to 125°C
Total Dissipation at 25°C Case Temperature	650mW
Total Dissipation at 25°C Ambient Temperature	225mW

ELECTRICAL CHARACTERISTICS:

 $(T_A = 25^{\circ}C, unless otherwise specified)$

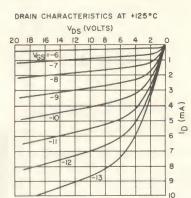
•						
SYMBO	CHARACTERISTIC	MIN.	TYP.	MAX.	UNITS	CONDITIONS
V_{GS}	Gate Source Cutoff Voltage	-3		-6	Volts	$V_{GS} \equiv V_{DS}$, $I_D \equiv 10 \mu_r A$
DSS	Drain Leakage Current			10	na	$V_{DS} = -20V, V_{GS} = 0$
less	Gate Leakage Current			1	na	$V_{GS} = -15V$, $V_{DS} = 0$
D(on)	Drain Current	- 3			ma	$V_{GS} \equiv V_{DS} \equiv 10V$
BV _{DSS}	Drain-Source Breakdown	30			Volts	$I_D = 10 \mu A, V_{GS} = 0$
\mathbf{Y}_{FS}	Transadmittance	1000 1000			μmho μmho	1 KC, V _{GS} $=$ V _{DS} $=$ 10 V 10 MC, V _{GS} $=$ V _{DS} $=$ 10 V
Cgs	Gate to Source Capacitance			3	pf	$V_{GS}=V_{DS}=10V$
Cgd	Gate to Drain Capacitance			2.5	pf	$V_{GS} = V_{DS} = 10V$
Cds	Drain to Source Capacitance			2.0	pf	$V_{GS} = V_{DS} = 10V$
r _{ds(on)}	Drain to Source Resistance		250		ohms	$V_{GS} = -15V$, $I_{DS} = -1mA$

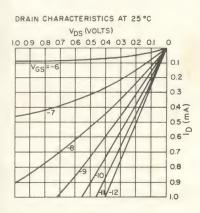


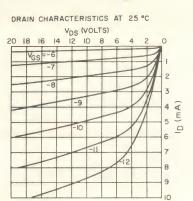
Note: All dimensions in inches.

TERMINAL DIAGRAM

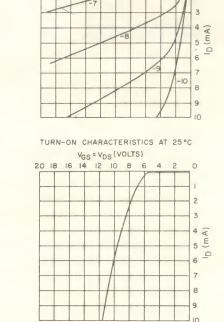
Lead

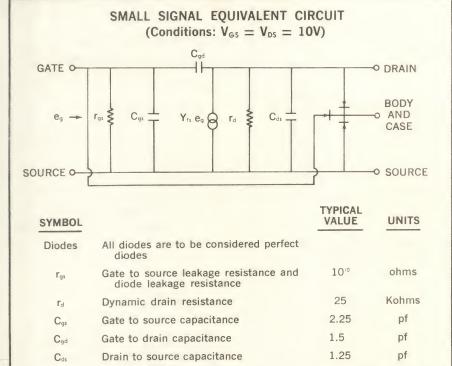

- 1. Drain
- 2. Gate
- 3. Body (Case)
- 4. Source




MEM


ច


TYPICAL CHARACTERISTIC CURVES



DRAIN CHARACTERISTICS AT -200 °C

VDS (VOLTS)

12 10 8

20 18 16 14

HANDLING PRECAUTIONS

The MEM 511 insulated gate field effect transistors have been designed with an integrated zener diode clamp from the high input resistance (10¹⁵ ohm typical) gate, to the body which is internally connected to the case. This clamp eliminates the detrimental effects of high electrostatic voltages on the gate that can be generated in normal handling.

It is recommended that the body (lead 3) be connected to the source (lead 4) for most applications.

GENERAL INSTRUMENT CORPORATION

Western Area Headquarters 6108 West Venice Blvd., Los Angeles, Calif. 90034 (213) WE 3-7261

Forward transadmittance

Central Area Headquarters 5404 West Diversey Ave., Chicago, III. 60639 (312) 622-6970

μmho

2500

DIVISION

Eastern Area Headquarters 256 Passaic St., Newark, N. J., 07104 (201) HU 5-0072

Yrs