information contained in the present datasheet is subject to confirmation at time of ordering

7/8" CELLFLEX® Premium Attenuation Low-Loss Foam-Dielectric Coaxial Cable

Product Description

CELLFLEX®7/8" premium attenuation low loss flexible cable

Application: Main feed line, Riser-rated In-Building

7/8" CELLFLEX® Low-Loss Foam Dielectric Coaxial Cable

Features/Benefits

Ultra Low Attenuation

The further reduced attenuation of CELLFLEX® premium attenuation coaxial cable results in extremly efficient signal transfer in your RF system, especially at high frequencies.

• Complete Shielding

The solid outer conductor of CELLFLEX® coaxial cable creates a continuous RFI/EMI shield that minimizes system interference.

Low VSWR

Special low VSWR versions of CELLFLEX® coaxial cables contribute to low system noise.

• Outstanding Intermodulation Performance

CELLFLEX® coaxial cable?s solid inner and outer conductors virtually eliminate intermods. Intermodulation performance is also confirmed with state-of-the-art equipment at the RFS factory.

High Power Rating

Due to their low attenuation, outstanding heat transfer properties and temperature stabilized dielectric materials, CELLFLEX® cable provides safe long term operating life at high transmit power levels.

Wide Range of Application

Typical areas of application are: feedlines for broadcast and terrestrial microwave antennas, wireless cellular, PCS and ESMR base stations, cabling of antenna arrays, and radio equipment interconnects.

Structure			
Inner conductor:	Copper Tube	[mm (in)]	9.32 (0.37)
Dielectric:	Foam Polyethylene	[mm (in)]	22.4 (0.88)
Outer conductor:	Corrugated Copper	[mm (in)]	25.2 (0.99)
Jacket:	Polyethylene, PE, Metalhydroxite Filling	[mm (in)]	27.8 (1.09)
Mechanical Prop	perties		
Weight, approximately		[kg/m (lb/ft)]	0.48 (0.32)
Minimum bending radius, single bending		[mm (in)]	120 (5)
Minimum bending radius, repeated bending		[mm (in)]	250 (10)
Bending moment		[Nm (lb-ft)]	13 (9.6)
Max. tensile force		[N (lb)]	1440 (324)
Recommended / maximum clamp spacing		[m (ft)]	0.8 / 1 (2.75 / 3.25)
Electrical Proper	rties		
Characteristic impedance		[Ω]	50 +/- 1
Relative propagation velocity		[%]	90
Capacitance		[pF/m (pF/ft)]	74 (22.5)
Inductance		[µH/m (µH/ft)]	0.185 (0.056)
Max. operating frequency		[GHz]	5
Jacket spark test RMS		[V]	8000
Peak power rating		[kW]	85
RF Peak voltage rating		[V]	2920
DC-resistance inner conductor		[Ω/km (Ω/1000ft)]	1.54 (0.47)
DC-resistance outer conductor		[Ω/km (Ω/1000ft)]	1.55 (0.47)
Recommended 1	Temperature Range	_	_
	•		

Installation temperature Operation temperature

Storage temperature

Other Characteristics
Fire Performance: Flame Retardant, LS0H

VSWR Performance: Standard [dB (VSWR)] 24 (1.135)
Other Options: Phase stabilized and phase matched cables and assemblies are available upon request.

Frequency	Attenuation		Power
[MHz]	[dB/100m	[dB/100ft]	[kW]
[2]	1	[42/ 100/(]	[]
0.5	0.0780	0.0238	85.0
1.0	0.110	0.0336	85.0
1.5	0.135	0.0412	73.6
2.0	0.156	0.0476	63.7
10	0.351	0.107	28.3
20	0.498	0.152	20.0
30	0.612	0.186	16.2
50	0.793	0.242	12.5
88	1.06	0.323	9.38
100	1.13	0.345	8.80
108	1.18	0.358	8.42
150	1.39	0.425	7.15
174	1.50	0.458	6.63
200	1.62	0.493	6.14
300	2.0	0.608	4.97
400	2.32	0.707	4.28
450	2.47	0.753	4.02
500	2.61	0.796	3.81
512	2.64	0.806	3.77
600	2.88	0.876	3.45
700	3.12	0.951	3.19
750	3.24	0.987	3.07
800	3.35	1.02	2.97
824	3.41	1.04	2.91
894	3.56	1.08	2.79
900	3.57	1.09	2.78
925	3.62	1.10	2.75
960	3.70	1.13	2.69
1000	3.78	1.15	2.63
1250	4.27	1.30	2.33
1400	4.54	1.38	2.19
1500	4.71	1.44	2.11
1700	5.05	1.54	1.97
1800	5.21	1.59	1.91
2000	5.52	1.68	1.80
2100	5.67	1.73	1.75
2200	5.82	1.77	1.71
2400	6.11	1.86	1.63
2500	6.25	1.91	1.59
2600	6.39	1.95	1.56
2700	6.53	1.99	1.52
3000	6.93	2.11	1.43
3500	7.56	2.30	1.31
4000	8.16	2.49	1.22
4900	9.17	2.80	1.08
5000	9.28	2.83	1.07

| 5000 | 9.28 | 2.83 | 1.07 |
Attenuation at 20°C (68°F) cable temperature
Mean power rating at 40°C (104°F) ambient temperature

RFS The Clear Choice ®

LCF78-50JFNA-A0

[°C (°F)]

[°C (°F)]

[°C (°F)]

Rev: D / 11.Dec.2013

-70 to 85 (-94 to 185)

-25 to 60 (-13 to 140)

-50 to 85 (-58 to 185)

Print Date: 06.08.2014