Chapter 3

Downloading and
Installing Arduino

00 000050000060 500000020 DDOOHIHOROOEOOTTLOEINDOOSSE S

In This Chapter

p» Obtaining and installing the Arduino software

» Getting a feel for the Arduino environment

0088000 P SH 9D DD HSE O CCEEOEH TR EEDIORECE R R EE BB

Before you can start working with the Arduino board, you need to install
the software for it. This is similar to the software on your home com-
puter, laptop, tablet, or phone: It’s required to make use of your hardware.

The Arduino software is a type of an Integrated Development Environment
(IDE). This is a tool that is common in software development and allows you
to write, test, and upload programs. Versions of Arduino software are avail-
able for Windows, Macintosh OS X, and Linux.

In this chapter, you find out where to obtain the software for the platform
you're using, and 1 walk you through the steps for downloading and install-

- ing it. Also in this chapter is a brief tour of the environment in which you
develop your Arduino programs.

- Installing Arduino

This section talks you through installing the Arduino environment on your
platform of choice. These instructions are specifically for installation using
an Arduino Uno R3, but work just as well for previous boards, such as the
Mega2560, Duemilanove, Mega, or Diecimila. The only difference may be the
drivers needed for the Windows installations.

34

Part I: Getting to Know Arduino

L]
Figure 3-1:
An A-B

USB cable
and Arduino
Uno.
]

Installing Arduino for Windows

The instructions and screenshots in this section describe the installation of
the Arduino software and Arduino Uno drivers on Windows 7, but the same
instructions work just as well for Windows Vista and Windows XP.

The only hurdle to jump is in Windows 8, which for the time being, at least,
requires a few tricks to install the drivers. You can find a discussion on the
Arduino forum titled “Missing digital signature for driver on Windows 8”
that details a workaround (go to http://arduino.cc/forum/index.
php?topic=94651.15).

With your Arduino Uno and a USB A-B cable (shown in Figure 3-1) at hand,
follow these steps to obtain and install the latest version of Arduino on your
version of Windows:

1. Open the Arduino downloads page at http://arduino.cc/en/
Main/Software, and click the Windows link to download the .zip file
containing a copy of the Arduino application for Windows.

At the time of writing, the zipped file was 90.7MB. That’s quite a large
file, so it may take a while to download. When downloading is complete,
unzip the file and place the Arduino folder in an appropriate location,
such as

C:/Program Files/Arduino/. -

2. Plug the square end of the USB cable into the Arduino and the flat
end into an available port on your PC to connect the Arduino to your
computer.

Chapter 3: Downloading and Installing Arduino 35

As soon as the board is connected, the green LED labeled ON indicates
that your Arduino is receiving power. Windows then makes a valiant
effort to find drivers, but it will likely fail, as indicated in Figure 3-2. It’s
best to close the wizard and install the driver yourself, as described in
the following steps.

Figure 3-2. 1
N ew Device driver software was not successfully installed

hardware | Please consut with your device manufacturer for sssistance getting this device instalied,

found — || Unidentified Device © 7 %N driver found '
or not, as
the case
may be.
]

3. Open the Start Menu and type devimgmt.msc in the Search Programs
and Files box; then press Enter.

The Device Manager window opens. Device Manager shows you all the
different hardware and connected peripherals in your computer, such as
your Arduino board.

If you look down the list, you should see Arduino Uno with an exclama-
tion mark next to it. The exclamation mark indicates that it is not yet
recognized.

4. Right-click Arduino Uno and select Update Driver Software in the list
that appears; then click the Browse My Computer for Driver Software
option (see Figure 3-3).

The window advances to the next page.
5. Click Browse to find your Arduino folder.

You should find this folder in the location you saved it to in Step 1 of
these steps.

6. Within your Arduino folder, click the Drivers folder and then click the
Arduino UNO file.

Note that if you're in the FTDI USB Drivers subfolder, you have gone too far.

7. Click Next, and Windows completes the installation.

36 Part |: Getting to Know Arduino

7
A . |
i How do you want to search for driver software? r
o 2]
Search automatically for updated driver software
Windows will search your computer and the Internet for the latest driver software
for your device, unless you've disabled this feature in your device instailation
settings,
TR ‘
. % Browse my computer for driver software
Fi gure 3_3: ! Locate and install driver soltwars mantialhy.
Installing
drivers in
Device
Manager. ey

After you've taken care of the software installation, an easy way to launch
the program is to place a shortcut on your desktop or your computer’s Start
menu, whichever you prefer. Just go to your main Arduino folder, find the
Arduino.exe file, right-click and click Create Shortcut to make a shortcut.
Double-click the shortcut icon whenever you want to launch the Arduino
application. This opens a new sketch window, as shown in Figure 3-4.

skalch_fellda

|
Figure 3-4:

A beautiful
turquoise
Arduino
window in
Windows 7.
|

Chapter 3: Downloading and Installing Arduino 39

Installing Arduino for Linux

Installation on Linux is more involved and varies depending on the distribu-
tion you use, so it is not covered in this book. If you use Linux, you are prob-
ably already more than competent at installing the software and will relish
the challenge. All the details on installing Arduino for Linux can be found in
the Arduino Playground:

“http://arduine.ecyplayground/Learning/Linux

Surveying the Arduino Environment

Programs written for Arduino are known as sketches. This is a naming con-
vention that was passed down from Processing, which allowed users to
create programs quickly, in the same way that you would scribble out an idea
in your sketchbook.

Before you look at your first sketch, [encourage you to stop and take a look
around the Arduino software, and to that end, this section offers a brief tour.
The Arduino software is an integrated development environment, or IDE, and
this environment is presented to you as a graphical user interface, or GUI
(pronounced goo-ey).

A GUI provides a visual way of interacting with a computer. Without it, you
would need to read and write lines of text, similar to what you may have seen
in the DOS prompt in Windows, Terminal in Mac OS X, or that bit about the
white rabbit at the start of the Matrix.

The turquoise window is Arduino’s GUI. It’s divided into the following four
main areas (labeled in Figure 3-8):

» Menu bar: Similar to the menu bar in other programs you're familiar
with, the Arduino menu bar contains drop-down menus to all the tools,
settings, and information that are relevant to the program. In Mac OS,
the menu bar is at the top of your screen; in Windows and Linux, the
menu bar is at the top of the active Arduino window.

v Toolbar: The toolbar contains several buttons that are commonly
needed when writing sketches for Arduino. These buttons, which are
also available on the menu bar, perform the following functions:

» Verify: Checks that your code makes sense to the Arduino soft-
ware. Known as compiling, this process is a bit like a spelling and
grammar checker. Be aware, however, that although the compiler
checks that your code has no obvious mistakes, it does not guaran-
tee that your sketch works correctly.

4 0 Part I: Getting to Know Arduino

* Upload: Sends your sketch to a connected Arduino board. It auto-
matically compiles your sketch before uploading it.

s New: Creates a new sketch.
* Open: Opens an existing sketch.
s Save: Saves the current sketch.

* Serial monitor: Allows you to view data that is being sent to or
received by your Arduino board.

g .~ Text editor: This area displays your sketch is displayed as text. It is almost
‘ identical to a regular text editor but has a couple of added features. Some
text is color coded if it is recognized by the Arduino software. You also
have the option to auto format the text so that it is easier to read.

§ .~ Message area: Even after years of using Arduino, you'll still make mis-
§ takes (everybody does), and this message area is one of the first ways
for you to find out that something is wrong. (Note: The second way is
the smell of burning plastic.)

Upload Open

Verify New | Save Serial monitor

¢ HEEE Toolbar

[sketch_febolla] . Tabs

Text editor

Message area

Figure 3-8:
The areas of
the GUL.

Console

Adruino Uno on /dev/tty.usbmodem411

Chapter 4

Blinking an LED

00 0600006000 06000060 8500065090080 3LE&D®COO DG S S »B B Y P

In This Chapter

p Finding the Blink sketch

p Identifying your board

p» Setting the software

p Uploading Blink

p Completing your first Arduino sketch
p Explaining the Sketch

p More Blink

000 & 0000060600006 660 9La3dCOOGELOPDIIONOOO DTSR GLEL DD LS POE

Brace yourself. You are about to take your first real step into the world
of Arduino! You've bought a board, maybe an Arduino starter kit (pos-
sibly from one of the suppliers | recommended), and you're ready to go.

It's always a good idea to have a clear work surface or desk to use when
you're tinkering. It's not uncommon to drop or misplace some of the many
tiny components you work with, so make sure your workspace is clear, well
lit, and accompanied by a comfortable chair.

By its nature, Arduino is a device intended for performing practical tasks.
The best way to learn about Arduino, then, is in practice — by working

with the device and doing something. That is exactly the way [write about it
throughout this book. In this chapter, | take you through some simple steps
to get you on your way to making something.

[also walk you through uploading your first Arduino sketch. After that, you
examine how it works and see how to change it to do your bidding.

Working with Your First Arduino Sketch

In front of you now should be an Arduino Uno R3, a USB cable, and a com-
puter running your choice of operating system (Windows, Mac OS, or Linux).
The next section shows what you can do with this little device.

452

Part I: Getting to Know Arduino

L]
Figure 4-1:
Find your
way to

the Blink
sketch.
I

Finding the Blink Sketch

To make sure that the Arduino software is talking to the hardware, you
upload a sketch. What is a sketch, you ask? Arduino was created as a device
that allows people to quickly prototype and test ideas using little bits of
code that demonstrate the idea — kind of like how you might sketch out an
idea on paper. For this reason, programs written for Arduino are referred to
as sketches. Although a device for quick prototyping was its starting point,
Arduino devices are being used for increasingly complex operations. So don’t
infer from the name sketch that an Arduino program is trivial in any way.

The specific sketch you want to use here is called Blink. It's about the
most basic sketch you can write, a sort of “Hello, world!” for Arduino.
Click in the Arduino window. From the menu bar, choose File®>Examples=
01.Basics=Blink (see Figure 4-1).

A new window opens in front of your blank sketch and looks similar to
Figure 4-2.

E R TN AL AR b A TR st LR e T St
New BN
. Open... 0
i Sketchhook >)
[v OB [AnalogReadSerial
¢ Close XW ' 02.Digital » | BareMinimum
i Save ®S | 03.Analog » S
| Save As... a%S ¢ 04.Communication » 3 DigitalReadSerial
i Upload ®U | 0S.Control »{ Fade
! Upload Using Programmer ¢ 3%U 06.Sensors » i ReadAnalogVoltage
; i 07.Display [e ;
; Page Setup 13 14 © 0B.Strings > # i
[Print » #P {59 usB(Leonardo) > 3
TR T T ArduinolSP ; g b
i -« ¥
EEPROM . B
" Ethernet [B
© Flrmata > | R
’ LiquidCrystal > i
sD [
Servo > .
i SoftwareSerial > t
© SP1 > !
{ Stepper >, ¥
| Wire L %
i

Figure 4-2:
The Arduino
Blink

sketch.
]

Chapter 4: Blinking an LED 43

Blink

Elink
tuins on on LED an for one second, then off for one second, repeatediy,

Thiz exampie code is in the public donair.,
*

/7 Pin 13 hag an LED conrected on most Arduino boards.
F7 Qive iL Q@ nome:
it led a 133

/A4 the setup routine runs once when you press reset:
vord setup() {
/7 initiagltze the digital pin as an output.
pintode(led, OUTPUT);

'/ the {oop routine runs over and over ajain forever:

word loop() {
digitat¥rite(led, HIGH); // turn the LED on (HIGH 1= the voltnge level)
e Loy (1000); // wait for o second
digttalrite(led, LOW); /7 turn the LED of f by making the volitage LOW
delay(1092); 7/ woit for o second

Identifying your board

Before you can upload the sketch, you need to check a few things. First you
should confirm which board you have. As I mention in Chapter 2, you can
choose from a variety of Arduino devices and several variations on the USB
board. The latest generation of USB boards is the Uno R3. If you bought your
device new, you can be fairly certain that this is the type of board you have.
To make doubly sure, check the back of the board. You should see details
about the board’s model, and it should look something like Figure 4-3.

44

Part I: Getting to Know Arduino

]
Figure 4-3:
Back side

of Arduino
Uno.

Also worth checking is the ATMEL chip on the Arduino. As [mention in
Chapter 2, the ATMEL chip is the brains of the Arduino and is similar to the
processor in your computer. Because the Uno and earlier boards allow you
to replace the chip, there is always a chance, especially with a used board,
that the chip has been replaced with a different one.

Although the ATMEL chip looks quite distinctive on an individual board, if
you compare it to an older Arduino, telling them apart at first glance would
be difficult. The important distinguishing feature is written on the surface of
the chip. In this case, you are looking for ATmega328P-PU. Figure 4-4 shows a
close-up of the chip.

T
Figure 4-4;
Close-up

of the
ATmega-
328P-PU
chip.
———

Chapter 4: Blinking an LED 4 5

Configuring the software

After you confirm the type of board you are using, you have to provide that
information to the software. From the Arduino main menu bar (at the top of
the Arduino window on Windows and at the top of the screen on Mac 0S X),
choose Tools®>Board. You should see a list of the different kinds of boards
supported by the Arduino software. Select your board from the list, as shown
in Figure 4-5.

Next, you we need to select the serial port. The serial port is the connection
that enables your computer and the Arduino device to communicate. Serial
describes the way that data is sent, one bit of data (0 or 1) at a time. The port
the physical interface, in this case a USB socket. | talk more about serial com-
munication in Chapter 7.

To determine the serial port, choose Tools=>Serial Port. A list displays of
devices connected to your computer (see Figure 4-6). This list contains any
device that can talk in serial, but for the moment, you're only interested

in finding the Arduino. If you've just installed Arduino and plugged it in,

it should be at the top of the list. For OS X users, this is shown as /dev/
tty.usbmodemxXXXxX (where XXXXXX is a randomly signed number). On
Windows, the same is true, but the serial ports are named CoM1, COM2, COM3,
and so on. The highest number is usually the most recent device.

46 Part I: Getting to Know Arduino

Auto Format

i Archive Sketch
Fix Encoding & Reload J
Sertal Monitor %M B

Ho et » v A e b
Serial Port » | Arduino Duemilanrove w/ ATmega328 :
- w1 Arduino Diecimila or Duemitanove w/ ATmegal68 i
P'““’:’""}" » { Ardulno Nano w/ ATmega328 I
1 8urn Bootloader | Arduino Nano w/ ATmegal68 P
E G W Arduino Mega 2560 or Mega ADK f
T/"“ exomple code (s in the pisl] Arduino Mega (ATmegal280) :
/ Arduino Leonardo !
/4 Fin 13 hos an LEL convestsd on f Arduino Mini w/ ATmega328 i
"’;"t"::; _‘l'ig."““‘”’ . Arduine Mini w/ ATmegal68
! 4 Ardulno Ethernet i
/4 the setup routum runs once wiet Arduino Flo H
unig 3 i
o x:Lvu\)S%ér the digitai pin os) Arduino BT w/ ATmega328 :
pintnce(lad, DUTRUTY; Arduino BT w/ ATmegal68 i
} LilyPad Arduino w/ ATmega328
ZF the oo roubine runs over and LHyPad Arduino w/ ATmegalBB :
void foop) { Arduino Pro or Pro Mini (5V, 16 MHz) w/ ATmega328 |
\:"f‘wi:;é'-f(lﬂﬂn RIGH); “ tut Arduino Pro or Pro Mini (5V, 16 MH2) w/ ATmegal68 |
;;,Taﬁggw,,@;(m,, Wy “a Arduino Pro or Pro Minl (3.3V, 8 MH2) wj ATmega328 i
datay(1008); /¢ waf Arduino Pro or Pro Mini 3.3V, 8 MH2) w/ ATmegal68
‘ } 4 Arduino NG or older w/ ATmegal68 i
] 1]
1 Arduino NG or older w/ ATmega8 i
Figure 4-5: ‘ " ' '
Select
Arduino
Uno from
the Board
menu.
L]
Auto Format ®T
j Archive Sketch |
i Fix Encoding & Reload
4 Serial Monitor oM &
Board »
Serial Port » v st e taaniopen
/dev/cu.usbmodem621
Programmer 4 ¥ ¢ jdev/tty.Bluetooth-PDA-Sync
Burn Boatlaader dev/cu.Bluetooth-PDA-Sync
e e [dev/try,Bluetooth-Modem
's'mx. sxample code s the paol] /dav/cu,Bluetooth-Modem
A Pn 13 has an LED connected on wost Md«;;nn bxaard;.
Ji Qivs (E A nopa:
int led = 13;
S this setdp pouRing rons Once ohen You Press reset:
i setn() {
A imtialice the dupial pin as an outpnt,
piteas(led, QUTPUTY;
W o/ the 100D riutine TURT ovEr and OvEX Agatn faraver:
ot oo () {
Jdigitatvr ite(led, HIGH); /7 turn the LEC on (HIGH is fhe vnitage lewsi)
dnlay (1608); S Wit Tor o second
dtgital¥rie(led, LOV); A4 turn the LED it by woktng the voltoge LOY
|] iy (16001)3 £ walt tor n serond
Figure 4-6:
Alist of
serial con-
nections
available to
the Arduino
environment.
|

L]
Figure 4-7:
Arduino GUI
board and
port.
N

Chapter 4: Blinking an LED 4 7

After you find your serial port, select it. [t should appear in the bottom right
of the Arduino GUI, along with the board you selected (see Figure 4-7).

Blink

Biink
Turns on an LED oh for cone second, then off far one second, repeatediy.

Tras example code 1z in the public domain.
*

4 Pin A3 has on LED conrnected on nost Arduind boords.
JF give it a name:

int led = 133

/7 the setup routine rung once when vou press reseh:
votd setup() {

/7 intttatize the digital pin as an output,
pintode(led, OUTPUT);
}

/¢ the loop rout.ing runs ovar and over again tforever:

vaid toop() {
diguentWrite(led, HIGH); /7 turn the LED on (HIGH 1= the voltage level)
delay(1008); 44 wait for a second
digitatbrite(led, LOW); /7 turm the LED oft by making the voltoge LOW
deloy(1008); /¢ wait for a zecord

Uploading the sketch

Now that you have told the Arduino software what kind of board you are
communicating with and which serial port connection it is using, you can
upload the Blink sketch you found earlier in this chapter.

First click the Verify button. Verify checks the code to make sure it makes
sense. This doesn't necessarily mean your code will do what you are
anticipating, but it verifies that the syntax is written in a way Arduino can
understand (see Chapter 2). You should see a progress bar and the text
Compiling sketch (see Figure 4-8) for a few seconds, followed by the text
Done compiling after the process has finished.

48 Part |: Getting to Know Arduino

Blink

Kl

Blink
Turrie on an LED an for one second, then oft for one second, repeatediy.

This exanple code iz in the public domain,

*l

/4 Pin 13 hos on LED connected on most Arduing boords.
7/ qive it a nome:
it led = 13;

/7 the setup routine rung once when you prass reset:
void setup() {
/7 initialize the digital pin as on output,
pirtode(led, QUTPUT);

}

A7 the joop routine runs over ond aver again forever:

void toop()
digttaivrite(led, HIGH); /4 turn the LED on (HISH is the voltaoge tevel)
e tay (1000); 47 wott for a secoand
digital¥rite(led, LOW); A turn the LED of f by moking the woltage LOW
de{7:(1000); /7 wait for a second

}

|
Figure 4-8:
The prog-
ress bar
shows that
the sketch is
compiling.
]

If the sketch compiled successfully, you can now click the Upload button next
to the verify button. A progress bar appears, and you see a flurry of activity
on your board from the two LEDs marked RX and TX (that | mentioned in
Chapter 2). These show that the Arduino is sending and receiving data. After
a few seconds, the RX and TX LEDs stop blinking, and a Done Uploading
(see Figure 4-9) message appears at the bottom of the Arduino window.

]
Figure 4-9:
The Arduino
GUl is done
uploading.
]

Chapter 4: Blinking an LED

49

Blink
*

Blink

Turns an an LED on far ane second, then of f for one second, repestsdly.

Thiz example code is w0 the public domoin,
*/

J¢ Pim L3 hos an LED corwiected on most Arduinn boards.
A7 @ive 14 a rome:
int led = 13;

/7 the setup routine runs orce when you press reset:
woid setup() {
/¢ initialize the digitel pin as on output.
pinMode(led, QUTPUT);
}

/ the loop routine runs over ond over agotn Yorswver:

void toop() {
digitatvrite(led, HIGH);
deloy(1888);
digttalvrite(led, LOW);
dilay(1000);

A4 turn the LED on (HIGH iz the voltoge level)
A owait for a second

/7 turn the LED off by making the vaoltoage LOW
/¢ wait for a second

Congratulate yourself!

You should see the LED marked L blinking away reassuringly: on for a
second, off for a second. If that is the case, give yourself a pat on the back.

You've just uploaded your first piece of Arduino
of physical computing!

code and entered the world

If you don’t see the blinking L, go back through all the preceding sections.
Make sure you have installed Arduino properly and then give it one more go.
If you still don't see the blinking L, check out the excellent troubleshooting
page on the official Arduino site: http://arduino.cc/en/Guide/

troubleshooting.

5 0 Part I: Getting to Know Arduino

What just happened?

Without breaking a sweat you've just uploaded your first sketch to an
Arduino. Well done (or good job, if you're from the States)!

Just to recap, you have now

¥ Plugged your Arduino into your computer
¥ Opened the Arduino software
» Set the board and serial port

v Opened the Blink sketch from the Examples folder and uploaded it to
the board

In the following section, [walk you through the various sections of the first
sketch you just uploaded.

Looking Closer at the Sketch

In this section, | show you the Blink sketch in a bit more detail so that you
can see what’s actually going on. When the Arduino software reads a sketch,
it very quickly works through it one line at a time, in order. So the best way
to understand the code is to work through it the same way, very slowly.

Arduino uses the programming language C, which is one of the most widely
used languages of all time. It is an extremely powerful and versatile language,
but it takes some getting used to.

If you followed the previous section, you should already have
the Blink sketch on your screen. If not, you can find it by choosing File>
Examples=>01.Basics=>Blink (refer to Figure 4-1).

When the sketch is open, you should see something like this:

/*
Blink | B
Turns on an LED on for one'second,” *
then off ‘for one second, repeatedly.

This example code is in the public domaj.:i,'
*/ ! e e «:"k

// Pin 13 has an LED connected on most Arduino boards-
// give it a mname: »

Chapter 4 Blinkingan LED 5]

int ied =

/7" the Setup routiné runs once. when you press resets
void setup() { 2
/1 -initialize the-digital pin as an output.
pioMode (led, OUTPUT);
}

I the 1oop routine runs over and over again forever
. void 1oop () { ‘

A7 turn the LED ‘on (HIGH is the voltage level)
/1 wait for a sedond
11 turn the LED off by mak
U/ wait for a second

the/voltage LOW -

The sketch is made up of lines of code. When looking at the code as a whole,
you can identify four distinct sections:

i Comments

v Declarations

¥ void loop

¥ void setup

Read on for more details about each of these sections.

Comments

Here’s what you see in the first section of the code:

/*
Blink : :
Turns -on an LED on. for -one second, then off for one second repeatedly

Thls example code ie in the publlc domaln

Multiline comment

Notice that the code lines are enclosed within the symbols /* and */.

These symbols mark the beginning and end of a multi-line or block comment.
Comments are written in plain English and, as the name suggests, provide an
explanation or comment on the code. Comments are completely ignored by
the software when the sketch is compiled and uploaded. Consequently, com-
ments can contain useful information about the code without interfering with
how the code runs.

5 2 Part |: Getting to Know Arduino

In this example, the comment simply tells you the name of the sketch, and
what it does, and provides a note explaining that this example code is in the
public domain. Comments often include other details such as the name of the
author or editor, the date the code was written or edited, a short description
of what the code does, a project URL, and sometimes even contact informa-
tion for the author.

Single-line comment

Further down the sketch, inside the setup and 1oop functions, text on
your screen appears with the same shade of gray as the comments above.
This text is also a comment. The symbols // signify a single-line comment
as opposed to a multiline comment. Any code written after these lines will
be ignored for that line. In this case, the comment is describing the piece of
code that comes after it:

// Pin 13 has an LED connected on most Ar&dinb#bdards,
// give it a name: o
iat led = 13;

This single line of code is in the declarations section of the sketch, but “what
is a declaration?”] hear you ask. Read on to find out.

Declarations

Declarations (which aren’t something you put up at Christmas, ho ho ho)

are values that are stored for later use by the program. In this case, a single
variable is being declared, but you could declare many other variables or
even include libraries of code in your sketch. For now, all that is important to
remember is that variables can be declared before the setup function.

Variables

Variables are values that can change depending on what the program does
with them. In C, you can declare the type, name, and value of the variable
before the main body of code, much as ingredients are listed at the start of a
recipe.

int led = 13;

The first part sets the type of the variable, creating an integer (int). An
integer is any whole number, positive or negative, so no decimal places are
required. It’s worth noting that for Arduino, there are lower and upper limits
for the int type of variable: -32,768 to 32,767. Beyond those limits, a different

Chapter 4: Blinking an LED 5§ 3

type of variable must be used, known as a 1ong (you learn more about these
in Chapter 11). But for now, an int will do just fine. The name of the variable
is 1ed and is purely for reference; it can be any single word that’s useful for
figuring out what the variable applies to. Finally, the value of the variable is
set to 13. In this case, that is the number of the pin that is being used.

Variables are especially useful when you refer to a value repeatedly. In this
case, the variable is called 1ed because it refers to the pin that the physi-
cal LED is attached to. Now, every time you want to refer to pin 13, you can
write led instead. Although this approach may seem like extra work initially,
it means that if you decided to change the pin to pin 11, you would need
only to change the variable at the start; every subsequent mention of 1ed
would automatically be updated. That’s a big timesaver over having to trawl
through the code to update every occurrence of 13.

With the declaration made, the code enters the setup function.

Functions

The next two sections are functions and begin with the word void: void
setup and void loop. A function is a bit of code that performs a specific task,
and that task is often repetitive. Rather than writing the same code out again
and again, you can use a function to tell the code to perform this task again.

Consider the general process you follow to assemble IKEA furniture. If you
were to write these general instructions in code, using a function, they would
look something like this:

_put ‘the pieces together;

admire your hatidiwork; <o i
wow nevaer to do it again; .

The next time you want to use these same instructions, rather than writing
out the individual steps, you can simply call the procedure named build-
FlatpackFurniture().

Although not compulsory, there is a naming convention for function or vari-
able names containing multiple words. Because these names cannot have
spaces, you need a way to distinguish where all the words start and end,;
otherwise, it takes a lot longer to scan over them. The convention is to

54 Part |: Getting to Know Arduino

capitalize the first letter of each word after the first. This greatly improves the
readability of your code when scanning through it, so [highly recommend that
you adhere to this rule in all your sketches for your benefit and the benefit of
those reading your code!

The word void is used when the function returns no value, and the word that
follows is the name of that function. In some circumstances, you might either
put a value(s) into a function or expect a value(s) back from it, the same

way you might put numbers into a calculation and expect a total back, for
example.

void setup and void loop must be included in every Arduino sketch;
they are the bare minimum required to upload. But it is also possible to

write your own custom functions for whatever task you need to do. For now,
you just need to remember that you have to include void setup and void
loop in every Arduino sketch you create. Without these functions, the sketch
will not compile.

Setup

Setup is the first function an Arduino program reads, and it runs only once.
Its purpose, as hinted in the name, is to set up the Arduino device, assigning
values and properties to the board that do not change during its operation.
The setup function looks like this:

/! the. setup routine runs once when you p;r:eaﬁ-m £y
void setup() {

/7 1n1tiallze the digltal pa.n as ‘an outp
pinnndO(led, OU'I‘PU'I') : ‘

}

Notice on your screen that the text void setup is orange. This color indi-
cates that the Arduino software recognizes it as a core function, as opposed
to a function you have written yourself. If you change the case of the words to
Void Setup, you see that they turn black, which illustrates that the Arduino
code is case sensitive. This is an important point to remember, especially
when it’s late at night and the code doesn’t seem to be working.

The contents of the setup function are contained within the curly brackets,

{ and }. Each function needs a matching set of curly brackets. If you have too
many of either bracket, the code does not compile, and you are presented
with an error message that looks like the one shown in Figure 4-10.

]
Figure 4-10:
The Arduino
software

is telling

you that a
bracketis
missing.
|

Chapter 4: Blinking an LED

Biink §
Y
Blink
Turnz on on LED un For one seoarad, then off tor one second, repeabediy,

This waample code 3% in the poablic domin.
*y

A7 Pin 13 hag an LED connected on post Ardulng boords,
Sogive th g name:
int led = 13;

47 the setup routine runs once when you press reset;
void setup() {
/4 initiettze the digital pin as an output,
pintiode(led, OUTPUT);

/¢ the toop routine rung over and aver agoin forever:

e
digitatérite(led, HIGH); /7 turt the LED on (HIGH 13 the voltioe favel)
de1ay (1008); A want for o second
digitalirite(led, LOW); A4 turn bhe LED oft by meding the wolhtage (W
e {0y (18085 /¢ watt {or o secomg

PinMode

The pinMode function configures a specified pin either for input or output: to
either receive or send data. The function includes two parameters:

v pin: The number of the pin whose mode you want to set
¥ mode: Either INPUT or OUTPUT
In the Blink sketch, after the two lines of comments, you see this line of code:
pinMode {led, .OUTPUT) ;'
The word pinMode is highlighted in orange. As [mentioned earlier in this
chapter, orange indicates that Arduino recognizes the word as a core function.
OUTPUT is also coloured blue so that it can be identified as a constant, which is
a predefined variable in the Arduino language. In this case, that constant sets

the mode of this pin. You can find more about constants in Chapter 7.

That’s all you need for setup. The next section moves on to the 1oop section.

55

56 Part I: Getting to Know Arduino

Loop

The next section you see in the Blink sketch is the void loop function. This
is also highlighted in orange so the Arduino software recognizes it as a core
function. loop is a function, but instead of running one time, it runs continu-
ously until you until you press the reset button on the Arduino board or you
remove the power. Here is the 1oop code:

void loop() ,{;
digitalwrite (led, HIGH); // set the LED on

delay(1000); // wait for a'ée'cond"’
digitalwrite{led, LOW); // set the LED off
delay(1000); // wait for a second e
) S
DigitalWrite

Within the loop function, you again see curly brackets and two different
orange functions: digitalWrite and delay.

First is digitalWrite:

digitalWrite(led, HIGH); // set the LED tm

The comment says set LED on, but what exactly does that mean? The func-
tion digitalwrite sends a digital value to a pin. As mentioned in Chapter 2,
digital pins have only two states: on or off. In electrical terms, these can be
referred to as either a HIGH or LOW value, which is relative to the voltage of
the board.

An Arduino Uno requires 5V to run, which is provided by either a USB or a
higher external power supply, which the Arduino board reduces to 5V. This
means that a HIGH value is equal to 5V and LOW is equal to OV.

The function includes two parameters:

g ¥ pin: The number of the pin whose mode you want to set

V¥ value: Either HIGH or LOW

Sodigitalwrite(led, HIGH) ; in plain English would be “send 5V to pin
13 on the Arduino,” which is enough voltage to turn on an LED.

Delay

In the middle of the 1oop code, you see this line:

delay(1000); // wait for a second

Chapter 4: Blinking an LED 5 7

This function does just what it says: It stops the program for an amount of
time in milliseconds. In this case, the value is 1000 milliseconds, which is
equal to one second. During this time, nothing happens. Your Arduino is
chilling out, waiting for the delay to finish.

The next line of the sketch provides another digitalWrite function, to the
same pin, but this time writing it low:

digitalwrite(led, LOW); // set the LED off

This tells Arduino to send 0V (ground) to pin 13, which turns the LED off.
This is followed by another delay that pauses the program for one second:

delay(1000); - // wait for a second

At this point, the program returns to the start of the loop and repeats itself,
ad infinitum.

So the loop is doing this:

v Sending 5v to pin 13, turning on the LED
v Waiting a second
v Sending Ov to pin 13, turning off the LED
v Waiting a second

As you can see, this gives you the blink!

Blinking Brighter

I have mentioned pin 13 a few times in this chapter. Why does that pin blink
the LED on the Arduino board? The LED marked L is actually connected just
before it reaches pin 13.0n early boards, it was necessary to provide your
own LED. Because the LED proved so useful for debugging and signaling,
there is now one in permanent residence to help you out.

For this next bit, you need a loose LED from your kit. LEDs come in a variety
of shapes, colors, and sizes but should look something like the one shown in
Figure 4-11.

Take a look at your LED and notice that one leg is longer than the other. Place
the long leg (anode or +) of the LED in pin 13 and the short leg (cathode or -) in
GND (ground). You see the same blink, but it is (hopefully) bigger and brighter
depending on the LED you use. Insert the LED as shown in Figure 4-12.

5 8 Part |: Getting to Know Arduino

|
Figure 4-11;
Alone LED,
ready to be
put to work.
]

|
Figure 4-12:
Arduino LED
Pin 13.
]

From the description of the digitalWrite function in the preceding sec-
tion, you know that your Arduino is sending 5V to pin 13 when it is HIGH.
This can be too much voltage for most LEDs. Fortunately, another feature of
pin 13 is a built-in pull-down resistor. This resistor keeps your LED at a com-
fortable voltage and ensures it has a long and happy life.

Chapter 4: Blinking an LED 59

Tweaking the Sketch

I've gone over this sketch in great detail, and [hope everything is making
sense. The best way to understand what is going on, however, is to experi-
ment! Try changing the delay times to see what results you get. Here are a
couple of things you can try:

»” Make the LED blink the SOS signal.

1 See how fast you can make the LED blink before it appears to be on all
the time.

Chapter 7

Basic Sketches: Inputs, Outputs,
and Communication

008960 &8 TV VOEEDH OHDGEDETHHSEE D DD O RS SHH DRSO

In This Chapter
p Fading like a pro

p Coming to grips with inputs
p Varying resistances with potentiometers
p Showing off your stats with the serial monitor

6 0080300080088 e 0000 GHLEHET S SDEE PP EERIEEEDRHIERSED

n this chapter, 1 discuss some of the basic sketches that you need to get
you on your Arduino feet. This chapter covers a broad range of inputs
and outputs using the sensors in your kit. If you don’t yet have a kit, I suggest

reading through Chapter 2 to find one of the recommended ones.

The Blink sketch (described in Chapter 4) gives you the basis of an Arduino
sketch, but in this chapter, you expand on it by adding circuits to your
Arduino. This chapter walks you through building circuits using a bread-
board, as mentioned in Chapter 5, and additional components from your kit
to build a variety of circuits.

I detail uploading the appropriate code to your Arduino, walk you through
each sketch line by line, and suggest tweaking the code yourself to gain a
better understanding of it.

Uploading a Sketch

Throughout this chapter and much of the book, you learn about a variety of
circuits, each with their respective sketches. The content of the circuits and
sketches can vary greatly and are detailed in each of the examples in this
book. Before you get started, there is one simple process for uploading a
sketch to an Arduino board that you can refer back to.

92 Part II: Getting Physical with Arduino

Follow these steps to upload your sketch:

1. Connect your Arduino using the USB cable.

The square end of the USB cable connects to your Arduino and the flat
end connects to a USB port on your computer.

2. Choose Tools=>Board=>Arduino Uno to find your board in the Arduino
menu.

In most of the examples in this book, the board is Arduino Uno, but you
can also find many other boards through this menu as well, such as the
Arduino MEGA 2560 and Arduino Leonardo.

3. Choose the correct serial port for your board.

You find a list of all the available serial ports by choosing Tools=>Serial
Port=> comX or /dev/tty.usbmodemXXXXX. X marks a sequentially or
randomly assigned number. In Windows, if you have just connected your
Arduino, the COM port will normally be the highest number, such as
com 3 or com 15. Many devices can be listed on the COM port list, and if
you plug in multiple Arduinos, each one will be assigned a new number.
On Mac OS X, the /dev/tty.usbmodem number will be randomly assigned
and can vary in length, such as /dev/tty.usbmodem1421 or /dev/tty.usb
modem262471. Unless you have another Arduino connected, it should
be the only one visible.

4. Click the Upload button.

This is the button that points to the right in the Arduino environment, as
detailed in Chapter 3. You can also use the keyboard shortcut Ctrl+U for
Windows or Cmd+U for Mac OS X.

Now that you know how to upload a sketch, you should be suitably hungry
for some more Arduino sketches. To help you understand the first sketch in
this chapter, I first tell you about a technique called Pulse Width Modulation
(PWM). The next section briefly describes PWM and prepares you for
fading an LED.

Using Pulse Width Modulation (PWM)

When I tell you about the board in Chapter 2, I mention that sending an
analog value uses something called Pulse Width Modulation (PWM). This is
a technique that allows your Arduino, a digital device, to act like an analog
device. In the following example, this allows you to fade an LED rather than
just turn it on or off.

Here’s how it works: A digital output is either on or off. But it can be turned
on and off extremely quickly thanks in part to the miracle of silicon chips. If

Chapter 7: Basic Sketches: Inputs, Outputs, and Communication

the output is on half the time and off half the time, it is described as having
a 50 percent duty cycle. The duty cycle is the period of time during which the
output is active, so that could be any percentage — 20 percent, 30 percent,
40 percent, and so on.

When you’re using LEDs as an output, the duty cycle has a special effect.
Because it is blinking faster than the human eye can perceive, an LED with a
50 percent duty cycle looks as though it is at half brightness. This is the same
effect that allows you to perceive still images shown at 24 frames per second
(or above) as a moving image.

With a DC motor as an output, a 50 percent duty cycle has the effect of
moving the motor at half speed. So in this case PWM allows you to control
the speed of a motor by pulsing it at an extremely fast rate.

So despite PWM’s being a digital function, it is referred to as an analogWrite
because of the perceived effect it has on components.

The LED Fade Sketch

In this sketch, you make an LED fade on and off. In contrast to the sketch that
resulted in a blinking LED in Chapter 4, you need some extra hardware to
make the LED fade on and off.

For this project you need:

+* An Arduino Uno

v+ A breadboard

v+ An LED

v A resistor (greater than 120 ohm)

v Jump wires

It's always important to make sure that your circuit is not powered while
you're making changes to it. You can easily make incorrect connections,
potentially damaging the components. So before you begin, make sure that the
Arduino is unplugged from your computer or any external power supply.

Lay out the circuit as shown in Figure 7-1. This makes a simple circuit like
the one used for the Blink sketch in Chapter 4, using pin 9 instead of pin 13.
The reason for using pin 9 instead of 13 is that 9 is capable of Pulse Width
Modulation (PWM), which is necessary to fade the LED. However, note that
pin 9 requires a resistor to limit the amount of current supplied to the LED.
On pin 13, this resistor is already included on the Arduino board itself, so
you didn’t need to worry about this.

93

94

Part lI: Getting Physical with Arduino

Puttmg up reSIstan e =

As you learn from Chapter 6, calculating the

correct resistance is important for a safe.. luck.
and jong lasting.cirouit, In this case you arg - ne
... potentially. supplving your LED with & source ... moj

..V {volts), the maxir
“supply. A typscal LEU s
“hasan appruxuma’te

of 2.1V {volts), so a resisto

that @ dlgatal

you can calculate the' resnstance (ohms):
R= (V) /1 |
R=(5-2.1)/ 0.025 = 116 ohms
The nearest fixed resistor above this balculae

s.nesded to pro-. “ from v
 tectit. It draws a maximum current of approxi-,. and 5
mately 25mA (milliamps), Using these. flgures,

There a’re Bven apps for your smartph j
_ have resistor.color charts (although this may -

brown),

soif you have one ofthuse you a{e in ‘

be a source of great embarrassment and rid

tion that you can buy is 120 ohms (brown, ;re,d,w;‘zzcule friends)

Figure 7-2 shows the schematic of the circuit. This schematic shows you the
simple circuit connection. Your digital pin, pin 9, is connected to the long leg
of the LED; the short leg connects to the resistor and that goes on to ground,
GND. In this circuit, the resistor can be either before or after the LED, as long
as it is in the circuit.

It's always a good idea to color code your circuits — that is, use various
colors to distinguish one type of circuit from another. Doing so greatly helps
keep things clear and can make problem solving much easier. There are a
few good standards to keep to. The most important areas to color code are
power and ground. These are nearly always colored red and black, respec-
tively, but you might occasionally see them as white and black as well, as
mentioned in Chapter 6.

The other type of connection is usually referred to as a signal wire, which is
a wire that sends or receives an electrical signal between the Arduino and a
component. Signal wires can be any color that is not the same as the power
or ground color.

95

tion

ica

Inputs, Outputs, and Commun

ooooo ooooo
ooocoo ooooo
‘J/J ooooo oo
ooooo oo
Num ooooo oo
= (gl ooooo oo
S~[@ ooooo oo
m1ﬂ ooooao
cAoﬂ ooooo oo
7] g 2 ooooao oo
o 3 =@ 3 ooooo oo
= = mmvﬂ o ooooo oo
m m wMWj L} ooooo oo
4] — = ooooo
- i e m) gooooo oo
(7] L= opoooo oo
= 13534/ ooooo oa
.m o w:o_m goooaao oo _ _W_ W_W _ _ _ _
<) ooooo oo R
b ooooo MmN - O DN IS M N - O g
B ooooo oo mmmmDDDDDDDDDD%D
(7]
= oogoo | oo — £ nding/ndu| (eubig
- ooooo oo =
] 5 £ a
-t Wll’l ooooco oo 2 5 S [
=3 : gooooo 3 S z
] oooono oo —= 5
= ooooo oo o
© ooooo oo /2 w5 Analog Input
onoon no = W e ¢y
vy oC Q = N M =<t 10O
ooooo oo T <22 S gaada <
[T 11 [TTTT]
- 0Ty = X oo
2% 8 o2 VNs3v3
NS Hag 5 ~coay
®.E aow ndub o] mﬁmo =
S5a c oo = 5o e85
] c = [=g T =] gnn @
= w2 ® o o 2c =
= < ©

96 Part Il: Getting Physical with Arduino

After you assemble your circuit, you need the appropriate software to use it.
From the Arduino menu, choose FilewExamples=>01.BasicsFade to call up
the Fade sketch. The complete code for the Fade sketch is as follows:

) ‘w:;waadé: an LED'

This example code ig: n th, pub 3

*/
int led =9; - // thepin that the, BED.
int brightness = 6;) how‘bright the»L
int fadaAmOunt’& 5,“‘ // how manyupo;nt

1l the setup routlne runs once when yof
‘ void utup(:

void loop() t' o
// set the brlghtnesa of pin
alogWrite(led brlghtness),

// change the brightness for next tlme :
brightness = brlghtness + fadeAmount,,_

// reverse the direction of the fading aﬁ'ﬁh
if (brightnees == 0.|| brightness == 255
fadeAmount ~fadeAmount. ;
3 :
11 waat for 30 mllllseconds to seefthe'
dcluy(30)

Upload this sketch to your board following the instructions at the start of the
chapter. If everything has uploaded successfully, the LED fades from off to
full brightness and then back off again.

If you don’t see any fading, double-check your wiring:

i »” Make sure that you're using the correct pin number.

1~ Check that your LED is correctly situated, with the long leg connected
by a wire to pin 9 and the short leg connected via the resistor and a wire
to GND (ground).

§ .~ Check the connections on the breadboard. If the jump wires or compo-
; nents are not connected using the correct rows in the breadboard, they
will not work.

Chapter 7: Basic Sketches: Inputs, Outputs, and Communication 9 7

Understanding the fade sketch

By the light of your fading LED, take a look at how this sketch works.

The comments at the top of the sketch reveal exactly what’s happening in
this sketch: Using pin 9, a new function called analogWrite () causes the
LED to fade off and on. After the comments, three declarations appear:

/:the pin that the LED is attached to
how bright the LED is. e
" /1 mow many points to fade the ‘LED by

int fadaAmeunt

Declarations, as mentioned in Chapter 4, are declared before the setup or

loop functions. The Fade sketch has three variables: 1ed, brightness and
fadeAmount. These are integer variables and are capable of the same range
of values, but are all used for different parts of the process of fading an LED.

With declarations made, the code enters the setup function. The comments
are reminders that setup runs only once and that just one pin is set as an
output. Here you can see the first variable at work. Instead of writing pinMode
(9, OUTPUT), you have pinMode (led, OUTPUT).Both work exactly the
same, but the latter uses the 1ed variable.

The loop starts to get a bit more complicated:

/1 the loop routine runs over and over again forever:
void 1oup() {
// set the bri

thess == 255) { .

i Walt for 30 milliseconds to see the dimming effect
celay(30)
}

Instead of just on and off values, a fade needs a range of values. analogWrite
allows you to send a value of 0 to 255 to a PWM pin on the Arduino. 0 is equal
to Ov and 255 is equal to 5v, and any value in between gives a proportional
voltage, thus fading the LED.

98 Part ll: Getting Physical with Arduino

The loop begins by writing the brightness value to pin 9. Abrightness
value of 0 means that the LED is currently off.

/1" set the brightness of pin 9:*
anzlogWrite(led, brightness);

Next you add the fade amount to the brightness variable, making it equal
to 5. This won’t be written to pin 9 until the next loop.

The brightness must stay within the range that the LED can understand. This
is done using an i f statement, which essentially tests variables to determine
what to do next.

The word i £ starts the statement. The conditions are in the brackets that
follow, so in this case you have two: the first being, is brightness equal to 0?
The second is, is brightness equal to 255? In this case == is used rather than =.
The double equal sign indicates that the code is comparing two values (if a
is equal to b) rather than assigning a value (a equals b). In between the two
conditional statements is the symbol | |, which is the symbol for OR.

So the complete statement is, “If the variable named brightness is equal to
0 or equal to 255, then do whatever is inside the curly brackets.” When this
eventually becomes true, the line of code inside the curly brackets is read.
This is a basic mathematical statement that inverts the variable named
fadeAmount. During the fade up to full brightness, 5 is added to the bright-
ness with every loop. When 255 is reached, the if statement becomes

true and fadeAmount changes from 5 to -5. Then every loop updates to
“add minus 5” to the brightness until 0 is reached, when the if statement
becomes true again. This inverts the fadeAmount of -5 back to 5 to bring
everything back to where it started.

fadeamount :,~fadeAﬁountk;' /
These conditions give us a number that is continually counting up and then

down that an Arduino can use to continually fade your LED on and then
off again.

Tweaking the fade sketch

There are many ways to get something done, but I don’t cover them all in
this book; I can, however, show you one different way to fade an LED using

Chapter 7: Basic Sketches: Inputs, Qutputs, and Communication

the circuit that you created in the previous section. The following code is the
Fading code from a previous release of Arduino, and in some ways I prefer it
to the current example. Upload it and you will see that no visible difference
exists between this and the previous example.

CMBER Some areas of the code appear colored on your screen, most often either orange
é" or blue. This marks a function or a statement that is recognized by the Arduino
environment (can be extremely handy for spotting typos). Color can be difficult
to recreate in a black-and-white book, so any colored code appears in bold.

/ * g
%fFadxng

snin Sf;obgrpund{;af:;; 4

:”modifled 30 Rug
By Tom Igoe

http://gfduing:c

void letup() f?\

‘ /4. £ade ‘out from: max o mlnyln)lncrements of 5. points:
£or(int fadeValue 255 fadeValue >= 0; fadeValue ~=5) {
)} sets the value {range from 0 to 255):

: analocWrita(ledPLn, fadeValue), e # R
/7 wait for 30 milliseconds to see the dlmmlng effect g
delaY(30)," e S L , S

99

J1O0 Parti: Getting Physical with Arduino

The default example is very efficient and does a simple fade very well, but it
relies on the 1oop function to update the LED value. This version uses for ;
loops, which operate within the main Arduino 1oop function.

Using for loops

After a sketch enters a for loop, it sets up the criteria for exiting the loop
and cannot move out of it until the criteria are met. for loops are often used
for repetitive operations; in this case, for loops are used for increasing or
decreasing a number at a set rate to create the repeating fade.

The first line of the for loop defines the initialization, the test, and the
amount of increment or decrement;

“for(int fadevalue = 0;fadeValue <= 255;fadeValye #=5) - ' = -

In plain English, this would read: “Make a variable called fadevalue (that i
is local to this for loop) equal to a value of 0; check to see whether it is less i
than or equal to 255; if it is, set fadeValue to be equal to fadeValue plus

5.” fadevalue is equal to 0 only when it is created; after that, it is increased

by 5 every time the for loop cycles.

Within the loop, the code updates the analogWrite value of the LED and
waits 30 milliseconds (ms) before attempting the loop one more time.

for(int; fadeValue =0 ¢ fadevValue <~v255'
By sets the wvalue (range from 0 to. 25
e amloqm;iue (ledPin, fadeValua);
/1 wait for 30 mill:l.seconds to see th
dolay(BO), ' S ;

This for loop behaves the same as the main 1oop in the default Fade exam-
ple, but because the fadevalue is contained in its own loop, and broken
into fade up and fade down loops, it is a lot easier for to start experimenting
with fading patterns in a more controlled way. For example, try changing +=5
and -=5 to different values (that divide into 255 neatly) and you can have
some interesting asymmetrical fading.

You could also copy and paste the same for loops to create further fading

animations. Bear in mind, however, that while it’s in a for loop, your Arduino
can do nothing else.

The Button Sketch

This is the first and perhaps most basic of inputs that you can and should
learn for your Arduino projects: the modest pushbutton.

Chapter 7: Basic Sketches: Inputs, Outputs, and Communication ’ 0 I

For this project, you need:

»* An Arduino Uno

v A breadboard

» A 10k ohm resistor

» A pushbutton

v An LED

V¥ Jump wires
Figure 7-3 shows the breadboard layout for the Button circuit. It's impor-
tant to note which legs of the pushbutton are connected. In most cases,
these small pushbuttons are made to bridge the gap over the center of your

breadboard exactly. If they do bridge the gap, the legs are usually split at 90
degrees to the gap (left to right on this diagram).

You can test the legs of a pushbutton with a continuity tester if your multime-
ter has that function (as detailed in Chapter 5).

Digital Pin 2

" PEEECEEEEEE
, 09
: ? 0
L 22
£Z

& Arduino

B

ANALOG IN ‘
012345

ooooooooo oooooooooo
ooooooooo ooooooooon
oooocooooon oooooooooo
onooonoooo 0o0opoo0o0ooo0o
opoooooono oooooooonon

] coooooooo oooooooooo
oooooooon Oooooooooog
Figure 7-3: oooooooon ooooooooon
- cooooooon ooooooooon
Pin2is oooonDOoOn Oooooooooon
reading the
pushbutton, ooooo oo oo ooooo
ooooo oo oo onoooo

7 02 Part Il: Getting Physical with Arduino

]
Figure 7-4;
A sche-
matic of the
pushbutton
circuit.
L]

From the schematic in Figure 7-4, you can see that the resistor leading to
ground should be connected to the same side as pin 2, and that when the
button is pressed, it connects those to the 5V pin. This setup is used to com-
pare ground (0V) to a voltage (5V) so that you can tell whether the switch is
open or closed.

3V3 5V Vin
Power D13 —
— RST D12 |— °© H
— AREF D17 oM T
—{ 10REF Arduino Di1o (B
— N/C D9 [eM
g D8 |—
(=%
5 D7 |—
S Dp [
£ ps jpam
— A0 ‘_:,3, D4 b—
— A1 g & D3 (M
— A2 2 D2
—iA3 @ D1 |2
— A 2 Do [
— A§ SCL f— § 10K Ohm
GND SPA
I

Build the circuit and upload the code from File>Examples=>02.Digital=>Button.

/*
Button

The circuit: =
* LED attached from pm 13 to ground

* pushbutton attached: to pin. 2 “Erom +%Y
* 10K res1stor attached to pin'lz, from ,g«

bydDOJODa.Ve <ht:,p. f
modified 30 Aug 2011

Chapter 7: Basic Sketches: Inputs, Outputs, and Communication 1 03

by Tom Tgoe, . .

,vThas,example codgie i the publlc domain

http* //www. arduin‘
*/

en[Tutorlalzautton> '

used here ‘to

pinMode(ledPin, OUTRUT)
Lot iinitialive th ' uttmn pin as an input s

gshbti‘tv;:on value:
uttonPin); -

,*button is pressed
i nState is HIGH

After you upload the sketch, give your button a press and you should see
the pin 13 LED light up. You can add a bigger LED to your Arduino board
between pin 13 and GND to make it easier to see.

If you don’t see anything lighting up, you should double-check your wiring:

»” Make sure that your button is connected to the correct pin number.

v If you are using an additional LED, check that it is correctly situated,
with the long leg in pin 13 and the short leg in GND. You can also remove
it and monitor the LED mounted on the board (marked L) instead.

»* Check the connections on the breadboard. If the jump wires or compo-
nents are not connected using the correct rows in the breadboard, they
will not work.

’ 04 Part Il: Getting Physical with Arduino

Understanding the Button sketch

This is your first interactive Arduino project. The previous sketches were
all about outputs, but now you are able to affect those outputs by providing
your own real-world, human input!

While pressed, your button turns on a light. When released, the light turns
off. Take a look at the sketch from the top to see how this happens.

As before, the first step is to declare variables. In this case, there are a
couple of differences. The word const is short for constant, so instead of
changing these two values, they are fixed for the duration of the program.
This approach is best used for values that aren’t supposed to change; this
way, you can make doubly sure that they won't. In this case, pin numbers are
being assigned because you won’t change the pin number physically.

The variable buttonState is set to 0. This is used to monitor changes to

the button.
const :l.nﬁ 'but:tonl?in\-—* 2; // the number - he: pushbutton p:Ln .

const i‘;.nytv’ ledpin = . 13; /1 the numbe;

1/ variables will change: AR SR A r T I N e
int buttonState = 0; /} variable fot ing the pushbutton status
Setup establishes pinMode, with 1edPin (pin 13) as the output and
buttonPin,(pin 2) as the input.

void setup() { ‘ '
/7 mitlallze the LED pin as an outpu :
pinMode{ledrin, OU‘I'PUT), '
[/ initialize the pushbutton pm as an |
pinllodlo(buttOan, INPUT) ;

2

In the main loop, you can see the order of things quite clearly. First, the
digitalRead function is used on pin 2. Just as digitalWrite can write a
HIGH or LOW (1 or 0) value to a pin, digitalRead can read a value from a
pin. That value is then stored in the variable buttonsState.

void loop() {
// read the: state of the pushbutton va;
buttonsState = digitalRead(buttonPin);

Chapter 7: Basic Sketches: Inputs, Outputs, and Communication ’ 0 5

With the button state established, a test is used to determine what happens
next using an if statement. The statement reads: “If there is a HIGH value
(voltage connected to the circuit), then send a HIGH value to 1edPin (pin 13)
to turn the LED on; if there is a LOw value (the pin is grounded), then send a
LOW value to 1edPin to turn the LED off; repeat.”

uéténgisypresséd:',

"1/ check if the p sssed.
\ ateis RIGH:

g ks,
48 (buttonstal
ﬂ]//‘turn:LE@,o

else (:

// turn LED o

digitalwrite (1

; ‘ il
}

Tweaking the Button sketch

It’s often necessary to invert the output of a switch or sensor, and you have
two ways to do this. The easiest is to change one word in the code.

By changing the line of code in the above sketch from
1€ (buttonState a;;ﬁxauwn'

to
if (buttonState == LOW)

the output is reversed.

This means that the LED is on until the button is pressed. If you have a com-
puter, this is the easiest option. Simply upload the code.

However, there are often occasions (such as when your laptop battery is
dead) when you don’t have the means to upload the edited code. Often, the
easiest way to flip the logic is to flip the polarity of the circuit.

Instead of connecting pin 2 to a resistor and then GND, connect that resistor
to 5V and move the GND wire to the other side of the button, as shown in
Figure 7-5.

’06 Part Il: Getting Physical with Arduino

Digital Pin 2
EEEEEREE

MR EEEEE

anaoan @
012345

¢

] oood ocogfpo ooooo oooo
Doooo ooogdo oogoo ooOoo oooon
oooooOooOoo ;y{;mnrﬁgz;uummnnunu
ooooooooon mooooooooOoooooooooa
oooooooooo ==([eeooocooooooooon
oooOooooooo oooooOoOoOoOOoOoOoOoOoOoOooon
ooooooooon Doooooooooo
]
Figure 7-5: oooooooooooon ooooooOooooo
* DoOoooOoOoooOoOOOOO0 OOoocoooOooooo
A button DoOoOoOoOoO0O0C0OO0OO0OO0OOO oooooOoOoooo
. D0OoO0O00CO0O0O0OONOO00O0O0OO0OO0OOOOOOOOOOOOO
with the 000oD0O0000O00D0O00O0O0ODO0OO0O0OO0DOOO0OOODOODDOO0
polarity
flipped. OOO0OO0O0 O0OO0OODO0O O0OO0OO0OO0 OO0O0O0OO0 OoO0O0O00
O0DOO0 00000 OOOOO0 OOO0OO0O OO0O0O0O
|

The Analoglnput Sketch

The previous sketch showed you how to use a digitalRead to read either
on or off, but what if you want to handle an analog value such as a dimmer
switch or volume control knob?

For this project, you need

f . An Arduino Uno

| A breadboard

‘-5.5; v~ A 10k ohm variable resistor
| .- AnLED

i Jump wires

