
Prototype to production: Arduino for the
professional
Jacob Beningo - May 12, 2016

Despite its popularity among hobbyists and electronics enthusiasts, the Arduino has become
infamous among professional embedded systems developers. I must admit that for the longest time I
also viewed the Arduino as so simple it was nearly useless for professional developers. But I have
changed my mind.

I’ve found that on a number of occasions over the last few years, rapid prototyping using Arduinos
and Arduino shields has proven invaluable in moving a project forward. Despite, or perhaps because
of, its abstracted simplicity, the Arduino has been key in turning an abstract idea into a defined
product. For that reason, let’s take a closer at the Arduino and how professional developers can
benefit from it.

The Arduino hardware platform

One of the most powerful aspects of the Arduino for professional developers is the hardware
ecosystem that supports it. Every Arduino board and derivative has a standard hardware interface
that allows custom designed electronics to be stacked on top of the processor board to flesh out the
prototype of an embedded system. The custom electronic boards, known as shields as probably most
developers are aware, can literally have any type of electronics onboard such as motor drivers,
sensors, actuators, LEDs or whatever the application needs may be. The popularity of Arduino
among hobbyists has greatly benefited embedded system professionals because the result has been
a wide variety of Arduino shields for nearly every application imaginable available off the shelf.

One of my personal favorite shields, seen in Figure 1, is the Sparkfun weather shield. This shield
provides a collection of analog and digital sensors that are perfect for teaching embedded systems
courses. But if you have a different requirement, a quick search on nearly any electronic vendors’
website will reveal dozens of commercially available and stocked Arduino shields of all kinds.
Arduino shields are typically inexpensive, costing less than $50 depending on the collection of
sensors and electronics onboard.

http://edn.com/electronics-blogs/embedded-basics/4442018/Prototype-to-production--Arduino-for-the-professional
http://edn.com/electronics-blogs/embedded-basics/4442018/Prototype-to-production--Arduino-for-the-professional
http://edn.com/user/Jacob_Beningo
https://www.sparkfun.com/categories/103

Figure 1 – Sparkfun Weather Shield

Professional developers can also leverage the Arduino hardware platform to interface with
commercial devices of interest. Using available shields for CAN, SPI, RS-485, Ethernet, and other
equipment interfaces it's possible to perform rapid prototyping activities for proof-of-concepts or
one-off customer demos. For a few hundred dollars, a developer can easily assemble a complete
hardware representation of the proposed embedded system and write some "dirty code" to make it
functional.

The Arduino hardware interface has changed slightly over the years with the latest revision being
based on the UNO R3 pinout. The standard interface consists of six analog inputs, fourteen digital
input, outputs, a dedicated I2C channel and then miscellaneous power rails and references. An
example of the UNO R3 pinout can be found in Figure 2.

Figure 2 – Arduino Uno R3 Standard Pinout

(Source https://github.com/Bouni/Arduino-Pinout)

The Arduino shield interface is designed for low cost, low pin count microcontrollers, which can
potentially be an issue for professional embedded systems developers needing more. Microcontroller
companies have tried to resolve this issue by creating development boards for their more powerful
processors while following the footprint for an Arduino shield. They then expanded the headers for
additional functionality. By expanding their headers in the same way, developers can build their own
custom shields for these enhanced development boards that utilize the extra functionality. Yet they
can still also purchase off-the-shelf Arduino shields that remain compatible with the development
board. The NXP FRDM-26Z and FRDM-64F are prime examples of how microcontroller companies
are utilizing the Arduino shield interface and then expanding on those capabilities (There are plenty
of other examples; just pick your favorite and check out its own website).

The Arduino software platform

The Arduino is more than hardware; it's a complete hardware and software prototyping system. Its
software development environment and libraries leave much to be desired from a professional
developer's point of view, but it is still useful to get a basic understanding of how Arduino handles

http://www.nxp.com/products/software-and-tools/hardware-development-tools/freedom-development-boards/freedom-development-platform-for-kinetis-kl16-and-kl26-mcus-up-to-128-kb-flash:FRDM-KL26Z
http://www.nxp.com/products/software-and-tools/hardware-development-tools/freedom-development-boards/freedom-development-platform-for-kinetis-k64-k63-and-k24-mcus:FRDM-K64F

software development.

First, a developer examining the Arduino website -- arduino.cc -- will discover that there is some
really strange language going on when it is talking about software. Arduino has invented a concept
for the general public known as sketching, which to a professional developer is "writing code". A
sketch is really nothing more than a software project but the terminology sketch comes from the fact
that Arduino was originally developed as a rapid prototyping tool for individuals who knew little to
nothing about software or electronics, artists for example.

Next, a would-be Arduino developer will discover that the Arduino programming language is used to
program Arduino devices. Never heard of the Arduino programming language? That is because the
Arduino programming language is actually nothing more than C/C++. The "Arduino language" as
they refer to it is actually just a collection of libraries that provide a consistent set of APIs for
controlling microcontroller peripherals.

As a professional developer, the Arduino libraries can provide a fast track for rapid prototyping. For
example, API calls for controlling a digital input/output pin are digitalWrite() and digitalRead().
There are loads of different library functions for internal microcontroller peripherals and external
device control such as EEPROMs and motor controllers. Developers can choose to use these libraries
or instead write their own. Many of the library calls tends to be inefficient and not optimized for
speed or size, though, so any development effort needs to pay careful attention to the real-time
response of the built-in libraries.

The Arduino software is open source and can be used for any purpose, but developers and managers
need to keep in their mind that the software was developed for prototyping purposes. The code is
not written to be fault tolerant, secure, or be used in any production-intent environment. A
developer will still need to go through the whole production process to take a product to market. But
Arduino can at least be used to prove early on that the system could work, rather than spend months
only to fail.

Conclusions

Professional developers can leverage the Arduino ecosystem to rapidly prototype and prove out an
embedded system concept. Existing Arduino libraries can be used for quick and dirty development
but many developers will find the software development environment wanting and will likely choose
to use their own development tools and environments. Despite the professional deficiencies in the
software platform, though, the use of the Arduino shields and hardware environments offer a great
opportunity to help accelerate development through the use of readily available shields. Just don’t
forget that Arduino is meant for rapid prototyping rather than developing production-intent systems.

Jacob Beningo is principal consultant at Beningo Engineering, an embedded software consulting
company. Jacob has experience developing, reviewing and critiquing drivers, frameworks and
application code for companies requiring robust and scalable firmware. Jacob is actively involved in
improving the general understanding of embedded software development through workshops,
webinars and blogging. Feel free to contact him at jacob@beningo.com, at his website
www.beningo.com, and sign-up for his monthly Embedded Bytes Newsletter here.

Also see:

Prototype to production - A hands-on series●

Arduino: embedded engineering for all●

https://www.arduino.cc/
http://www.beningo.com/814-2/
http://www.edn.com/electronics-blogs/embedded-basics/4441960/Prototype-to-production-A-hands-on-series
http://www.edn.com/collections/4429669/Arduino--embedded-engineering-for-all

