

Mach2
Customisation Guide

All queries, comments and suggestions welcomed via support@artofcnc.ca

Mach Developers Network (MachDN) is currently hosted at:
http://groups.yahoo.com/group/mach1mach2cnc/files/

© 2003/4 Art Fenerty and John Prentice

Front cover: Brown & Sharpe Universal mill 1862 (with some "artistic" liberties)

Back cover (if present): The old, gear, way of co-ordinating motion on mill table and a
rotary axis

For Mach2 Release 6.11 Manual Revision 6.11-A6

mailto:support@artofcnc.ca
http://groups.yahoo.com/group/mach1mach2cnc/files/

Contents

Mach2 Customisation Guide Rev 6.11-A6 ii

Contents

1. Preface ... 1-1

2. Communication routes ... 2-1
2.1 Electrical connections ... 2-1
2.2 Keystroke connections .. 2-1

2.2.1 Keystrokes.. 2-1
2.2.2 Keystrokes and Shortcuts (Hotkeys) .. 2-3

2.3 The KeyGrabber and profilers ... 2-3
2.4 VB Script connections... 2-4

2.4.1 VB Script program.. 2-4
2.4.2 Mach2 macro.. 2-4

2.5 Windows' control .. 2-5
2.6 Other customisation .. 2-5

2.6.1 Global hotkeys.. 2-5

3. Screen Designer.. 3-1
3.1 Screen Designer basics.. 3-1
3.2 Try out the Designer ... 3-1
3.3 Making the controls work... 3-2

3.3.1 Key scan codes ... 3-2
3.3.2 Defining function by G-code or VB Script... 3-3
3.3.3 Defining function by name.. 3-4
3.3.4 Defining buttons by OEM code ... 3-4

3.4 Getting a tidy visual effect .. 3-4
3.4.1 Alignment icons.. 3-5
3.4.2 Sizing icons .. 3-5
3.4.3 Spacing controls uniformly ... 3-5

3.5 Properties of other types of control .. 3-6
3.5.1 User LEDs and DROs ... 3-6
3.5.2 Properties of Intelligent Labels.. 3-6

3.5.2.1 System labels ... 3-6
3.5.2.2 User Labels/Tickers ... 3-6

3.5.3 DRO groups.. 3-6
3.5.4 Use of Bitmaps ... 3-7

3.5.4.1 Bitmap buttons... 3-7
3.5.4.2 Visual grouping with bitmaps... 3-7
3.5.4.3 Identifying controls by the background bitmap ... 3-7
3.5.4.4 Dynamic changes with bitmaps .. 3-8

3.6 Advanced features for setting up controls .. 3-8
3.7 Colors .. 3-9
3.8 Implementing two levels of screen complexity.. 3-9

4. Coding VB Script programs ... 4-1
4.1 A simple button script... 4-1
4.2 Sample macros .. 4-2

4.2.1 A simple macro... 4-2
4.2.2 More complex macro .. 4-2

Contents

Rev 6.11-A6 Mach2 Customisation Guide iii

4.3 A common confusion with VB Script and a hint .. 4-3
4.4 The Mach2 VB Script functions and subroutines... 4-4

4.4.1 To execute G or M-codes from a script.. 4-4
4.4.2 For accessing the screen controls... 4-4
4.4.3 Interrogating Mach2 internal variable.. 4-6
4.4.4 Access to the machine G-code parameter block ... 4-6
4.4.5 Arguments of macro call ... 4-7
4.4.6 Information to and from the user ... 4-7
4.4.7 Handling files of Part Programs... 4-8
4.4.8 Screen handling routines for wizards etc.. 4-9
4.4.9 Input/Output signals, a serial port and "foreign" ports .. 4-9
4.4.10 Serial port... 4-10
4.4.11 Foreign ports... 4-10
4.4.12 Waiting and system features.. 4-10
4.4.13 A more complicated macro example.. 4-11

4.5 Script Snags and Hints.. 4-12
4.5.1 What Windows/Mach2 does with your macro.. 4-12
4.5.2 Script error reporting... 4-12
4.5.3 Stuck in a rut?... 4-13
4.5.4 Reporting errors to users ... 4-13

4.6 Legacy/System VB Script Functions... 4-14

5. Designing wizards... 5-1
5.1 What is a wizard? ... 5-1
5.2 A wizard's working in a nutshell .. 5-1
5.3 Worked example – the Digitize wizard explained .. 5-1

5.3.1 The first step... 5-2
5.3.2 Making the wizard work ... 5-3
5.3.3 Making the wizard write a part program .. 5-4
5.3.4 A wizard that runs its own code... 5-6
5.3.5 Other precautions.. 5-6

5.4 Wizard design hints .. 5-7
5.4.1 Function ... 5-7
5.4.2 Screen Design... 5-7
5.4.3 Writing the Code... 5-7
5.4.4 Error checking .. 5-8
5.4.5 Documenting the wizard ... 5-9
5.4.6 Troubleshooting.. 5-9

6. Appendix 1 – Reference tables for Codes..................................... 6-1
6.1 Keyboard shortcut codes .. 6-1
6.2 Button, LED and DRO codes.. 6-2
6.3 Signal codes... 6-12

7. Appendix 2 - Screen Layout files (.SET & .SSET)......................... 7-1
7.1 Roles of Screen Designer and Mach2ScreenTweak.. 7-1
7.2 Using Mach2ScreenTweak.. 7-1

7.2.1 Introduction .. 7-1
7.2.2 Installation.. 7-1
7.2.3 The main screen and its buttons... 7-2
7.2.4 Manipulate all screens in layout .. 7-3

7.2.4.1 Open .SET ... 7-3
7.2.4.2 CSV Save .. 7-3
7.2.4.3 Save As ... 7-3
7.2.4.4 Edit All Controls.. 7-3
7.2.4.5 Edit Undo .. 7-3

Contents

Mach2 Customisation Guide Rev 6.11-A6 iv

7.2.5 Manipulate selected screen.. 7-3
7.2.5.1 Delete .. 7-4
7.2.5.2 Move Up/Down list.. 7-4
7.2.5.3 Update Buttons .. 7-4

7.2.6 The Additional Layout .. 7-4
7.2.6.1 Append to Principal Layout.. 7-4

7.2.7 Control Manipulation.. 7-5
7.2.7.1 Re-scale controls.. 7-5
7.2.7.2 Re-order DROs .. 7-6

7.2.8 Screen captions and other workarounds ... 7-6
7.2.8.1 Screen captions .. 7-6
7.2.8.2 Buttons identify screens ... 7-6

7.3 Layout file format ... 7-6
7.3.1 Overall file format .. 7-6
7.3.2 ControlRec ... 7-7

7.3.2.1 Screen.. 7-7
7.3.2.2 Type .. 7-7
7.3.2.3 Function... 7-8
7.3.2.4 OEMCode.. 7-8
7.3.2.5 Text ... 7-8
7.3.2.6 GText .. 7-8
7.3.2.7 BitMapPath.. 7-8
7.3.2.8 Horiz & Vert.. 7-8
7.3.2.9 Label ... 7-8
7.3.2.10 Color ... 7-8
7.3.2.11 HotKey .. 7-8
7.3.2.12 Flash Flag .. 7-9
7.3.2.13 RedGreen Flag... 7-9
7.3.2.14 Tabbing Group... 7-9
7.3.2.15 PosX1, Y1, X2, Y2 .. 7-9

7.3.3 ColorsRec... 7-9

8. Appendix 3 – General utility programs.. 8-1
8.1 KeyGrabber .. 8-1

8.1.1 Overview.. 8-1
8.1.2 Installation.. 8-2

8.1.2.1 The files... 8-2
8.1.2.2 Windows compatibility .. 8-2
8.1.2.3 Running KeyGrabber and then Mach2.. 8-2
8.1.2.4 Shortcut Icons .. 8-2

8.1.3 Configuring KeyGrabber... 8-2
8.1.4 Configuring Keyboard Keys.. 8-3
8.1.5 Configuring Keyboard Encoders ... 8-5
8.1.6 Configuring HIDs ... 8-6

8.1.6.1 Preparation for HIDs .. 8-6
8.1.6.2 The HID Controllers tab... 8-6
8.1.6.3 HID Keys... 8-6
8.1.6.4 HID encoders... 8-7
8.1.6.5 Misc Settings ... 8-7

8.1.7 Axes as joysticks... 8-8
8.1.8 Multiple machines and KeyGrabber Profiles (.GRAB files) ... 8-8
8.1.9 Keyboard Emulator programming ... 8-9
8.1.10 Testing and troubleshooting .. 8-9

9. Revision history ... 1

10. Index.. 2

Preface

Rev 6.11-A6 Mach2 Customisation Guide 1-1

1. Preface

Any machine tool is potentially dangerous. Computer controlled machines are
potentially more dangerous than manual ones because, for example, a
computer is quite prepared to rotate an 8" unbalanced cast iron four-jaw chuck
at 3000 rpm, to plunge a panel-fielding router cutter deep into a piece of oak or
to mill the clamps holding your work to the table!

This manual tries to give you guidance on safety precautions and techniques
but because we do not know the details of your machine or local conditions we can accept
no responsibility for the performance of any machine or any damage or injury caused by its
use. It is your responsibility to ensure that you understand the implications of what you
design and build and to comply with any legislation and codes of practice applicable to your
country or state.

If you are in any doubt you must seek guidance from a professionally qualified expert
rather than risk injury to yourself or to others.

This document is intended to give details about how to customise the Mach2 system. It
assumes that you are familiar with the contents of Using Mach2Mill or Using Mach2Turn
(still in preparation) as appropriate.

Some customisation, for example, changing keyboard shortcuts or removing unwanted
controls from a screen, is very straightforward and can easily be achieved by a user familiar
with typical Windows applications and the conventions for using them. Other features such
as interfacing special devices like tool-changers and designing wizards for automating
special tasks requires a knowledge of programming and/or hardware. This manual does not
attempt to cover the basic skills but shows how to apply them when customising Mach2.

You are strongly advised to join the online discussion forum for Mach2. This is currently
hosted by Yahoo! A link to join it is on the Company page at www.artofcnc.ca You should
be aware that, while the forum has many engineers with a vast range of experience as
participants, it does not constitute a substitute for a machine tool manufacturer's support
network. If your application requires this level of support then you should buy the system
from a local distributor or an OEM with a distributor network. In that way you will get the
benefits of Mach2 with the possibility of on-site support.

Certain portions of text in this manual are printed "greyed out". They generally describe
features found in machine controllers but which are not presently implemented in Mach2.
The description of a greyed out feature here is not to be taken as a commitment to
implement it at any given time in the future.

Thanks are due to numerous people including the original team who worked at National
Institute for Standards and Testing (NIST) on the EMC project and the innumerable users of
Mach2 without whose experience, materials and constructive comments this manual could
not have been written. Particular thanks are due to Olivier Adler and Brian Barker for their
contributions to the development and documentation of Wizards and to Les Newell for his
KeyGrabber (which now grabs a lot more than key strokes!).

ArtSoft Corporation is dedicated to continual improvement of its products, so suggestions
for enhancements, corrections and clarifications will be gratefully received.

Art Fenerty and John Prentice assert their right to be identified as the authors of this work.
The right to make copies of this manual is granted solely for the purpose of evaluating
and/or using licensed or demonstration copies of Mach2. It is not permitted, under this
right, for third parties to charge for copies of this manual.

Every effort has been made to make this manual as complete and as accurate as possible but
no warranty or fitness is implied. The information provided is on an "as is" basis. The
authors and publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this manual,
Use of the manual is covered by the license conditions to which you must agree when
installing Mach2 software.

http://www.artofcnc.ca

Preface

Mach2 Customisation Guide Rev 6.11-A6 1-2

Windows XP and Windows 2000 are registered trademarks of Microsoft Corporation. If
other trademarks are used in this manual but not acknowledged please notify ArtSoft
Corporation so this can be remedied in subsequent editions.

Communication Routes

Rev 6.11-A6 Mach2 Customisation Guide 2-1

2. Communication routes

In this chapter we will look how the hardware of the machine tool and its
user controls, the computer hardware and Mach2 communicate with each

other.

You will probably find it best to skim this chapter and return to it as you look
at the other individual customisations.

Before we can look at customisation in detail you will have to know how the various parts
of your machine communicate with Mach2 and, indeed, how you communicate with it.

Figure 2.1 shows the important communication routes and with the following description
should allow you to understand how they work. The diagram looks complex and this is a
fair reflection of the fact that Mach2 is complex and can be configured to work with many
types of machine. Your system will, almost certainly, not have all the features on it but,
before you start customising, now is a good time to understand the options. Notice the key
which explains what the different type of lines represent.

2.1 Electrical connections
If you have set up your own system you will have been through the process of connecting
switches like the home switches to pins of the parallel port(s) and using the dialogs to tell
Mach2 which pins are used for which function. This is shown at the bottom left of figure
2.1. Notice we have shown the limit and EStop switches directly controlling the drive
electronics because this is the safest technique and recommended in this manual. Your
switches might, of course, control Mach2 via the parallel port(s). This would change the
arrows from the switches on the diagram to go into the port(s) instead of the motor drives
box.

Mach2 makes extensive use of these signals during running. This is shown by the arrow
into the "brain".

Some switches (currently 3) can be assigned to input pins as OEM Trigger signals. These
can be configured to do what you wish by issuing an "OEM code" command directly to
Mach2 - just like pressing a screen button does. They do not, however, need anything on a
screen to do this. The OEM Button codes that are issued by each signal are defined using
the Config>Set Axis Hotkeys dialog.

2.2 Keystroke connections

2.2.1 Keystrokes
A "keystroke" produces a scancode that is sent to your computer using the PS/2 or USB
connectors. They can be generated in three different ways:

• By typing on the computer keyboard
• By closing/opening a switch connected to a keyboard emulator. Such devices

may be connected via the Universal Serial Bus (USB) and/or be daisy-chained
to the main keyboard. They were originally developed by the gaming
community to allow computer games to put in and be controlled by arcade-
like cabinets but are very convenient for machine control applications. It is
also possible to connect an encoder (typically low resolution like those used
as "digital potentiometers" in hi-fi and video equipment) and to generate a
given scancode for each "click" in the clockwise direction and another
scancode for each counterclockwise click.

• By pressing a button or key on a custom keyboard (perhaps like a numeric
pad on a long lead, buttons on a joystick, or a "console"). These options are

Communication Routes

Mach2 Customisation Guide Rev 6.11-A6 2-2

really just some switches and an emulator in a standard box, probably with
some neat way of labelling the switches. Windows refers to them as Human
Interface Devices (HIDs) Figure 2.2 shows an example with a Mach2
function overlay sheet in place.

A keystroke when Mach2 is running can, of course, do many things: be part of a command
entered in the MDI line, be part of a value entered into a DRO or be a hotkey shortcut. A
real keyboard will be used for all these things but the other sources of keystrokes will
generally only be used for shortcuts.

Figure 2.1 – Flow of control in a Mach2 system

Communication Routes

Rev 6.11-A6 Mach2 Customisation Guide 2-3

2.2.2 Keystrokes and Shortcuts (Hotkeys)
A keystroke generates a Scancode which is processed by Windows and then Mach2. If it is
not used directly as input to MDI or a DRO then it can perform three functions:

• if the code defined as a
Button Shortcut
(Hotkey) for a button
currently displayed on
screen then it is
equivalent to clicking
the mouse on that
button

• if the code defined in
the Config>Set Axis
Hotkeys it will jog,
load a file or select
MDI or a DRO as
appropriate

• if the code defined in the Config>Ports and Pins Input Pins dialog it will turn
On (key down) or Off (key up) the signal to which it is attached. This, used
with a keyboard emulator, gives a mechanism for extending the number of
input pins far beyond those available on the two parallel ports. Not all signals
can be made "virtual" like this and you are advised not to use the mechanism
for safety critical operations.

You may consider using having real push buttons (or perhaps a membrane switch pad)
beside the screen which can be labelled for different functions on each screen (making soft
keys like in a bank ATM) or be used for a common function like screen changing. This is
illustrated top right of figure 2.1.

A rotary encoder (MPG) connected by keyboard emulator can be used to send jog axis
hotkeys to jog axes or to send the codes for hotkeys for buttons like Raise/Lower spindle
speed or override feedrate.

This keystroke processing mechanism is shown by the blue lines on figure 2.1 from the
"keyboard devices" to the screen buttons and the Input Pins dialog.

2.3 The KeyGrabber and profilers
As mentioned above, keystokes from the actual keyboard and keyboard emulators have
their scancodes processed by Windows before they are given to Mach2. In particular, of
course, Windows has to route the keycodes to the application whose window has the focus.

Custom keyboards, game pads etc. (HIDs) generally need a piece of software to define
which keycodes each button is to generate. This software is often called a profiler and is
supplied by the custom keyboard manufacturer. Profilers usually have a picture of the
device and its buttons and when you click on these you are prompted to input the keycode
and any <Shift>, <Ctrl> or <Alt> modifiers to be used with it.

A utility, KeyGrabber, has been developed, by Les Newell, for use in conjunction with
Mach2 (and its Screen Designer) to make it easy to configure Keyboard Emulators and
USB connected HIDs including custom buttons, joy sticks, throttle controls etc. It has the
additional advantage that it will pass selected keycodes to Mach2 whatever program has
the focus. This Mach2 can continue to be controlled even if you need to briefly run another
application like Windows Explorer, the Calculator, indeed, you accidentally swap to a
program by clicking in the task bar. Although at first sight translation of a few key codes
sounds rather trivial, if you look into it we think you will discover how powerful a
technique it is for making Mach2 easy to use with a variety of standard and therefore
reasonably priced input devices.

Details of KeyGrabber and its installation and configuration are given in Appendix 3.

Figure 2.2 – A customisable keyboard

Communication Routes

Mach2 Customisation Guide Rev 6.11-A6 2-4

2.4 VB Script connections
A part program is written using G and M codes. It is, however, also possible to program
Mach2 in another language called VB Script. This is a subset of the Microsoft Visual Basic
language which is available in many applications besides Mach2, including Microsoft
Office. While it would be possible to totally control a machine tool using Mach2 with a VB
Script program, the facility is really intended to help customise the environment in which a
G-code part program runs.

2.4.1 VB Script program
A VB Script program can be used in three ways:

• By being "attached" to a screen button and so be run when the button is
clicked or its hotkey is pressed

• By being put in a macro and called from within a part program, the MDI line
of the G-code attached to a button. The last of these methods being suitable if
the program is too big to attach directly to the button or is required to be used
as a macro from a part program as well as a button.

• By being a macro attached to an OEM input trigger by OEM code 177.
The VB Script program can:

• declare and use VB variables,
• execute conditional statements (If-Then-Else),
• perform loops, and
• call VB the functions and subroutines defined by the macro writer or provided

by Mach2 as its interface to scripts.
The predefined interface functions and subroutines are defined in detail in chapter 4 below.
The main ones allow the script to issue G-code commands, to read and write the values of
DROs, to inspect LEDs (and for User LEDs, to set them), and to send Function and OEM
codes to Mach2 thus simulating what a user does when s/he clicks a screen button.
Additionally a macro can test the values of input signals, set output signals, access internal
data such as motor tuning parameters and use parallel and serial ports not used by Mach2
itself.

2.4.2 Mach2 macro
As already mentioned, a macro is a piece of VB Script. Each macro has a name like M134.
The M is used at the start of every macro name and the number can be any integral value up
to 99999 that is not used to define a built-in M-code. These built-in numbers are listed in
chapter 11. Thus for example, M12, M50, M16543 are all valid macro names; while M3,
M-56, M0234, M567.4 are not valid names.

Standard macros will use the number range up to M999, Original Equipment Manufacturers
(OEMs) are advised to use M1000 to M89999 and end-users can avoid naming conflicts by
using M90000 to M99999.

Each macro is stored as text in its own file whose name is the macro name with file
extension ".m1s". Thus one would find files: M12.m1s, M50.m1s and M16543.m1s on a
system with the above macros in it. The macro files are collected in a folder called
"Macros" within the Mach2 folder.

A macro is called just like an ordinary M-code command by:

• Execution of a line (block) of a part program containing its name
• Including its name on commands entered on the MDI line
• Including its name in the code to be executed on clicking a screen button.

All these features are shown by the arrows into and out of the Macro box in figure 2.1.

Communication Routes

Rev 6.11-A6 Mach2 Customisation Guide 2-5

2.5 Windows' control
The final elements shown in figure 2.1 are the standard devices that control Windows.
Common examples are the mouse, and trackball. Windows also supports a gaming joystick
and throttle. This can be used for jogging and overriding jog and feed rates.

2.6 Other customisation

2.6.1 Global hotkeys
Config>Set Axis Hotkeys allows you to set up the keys which will jog the axes when the
Jog Mode button is displayed on the current screen. Click the button for the axis and
direction you want to set and then type the keystroke to be used. It is your responsibility to
make sure they are unique and do not clash with other hotkeys you might want to use. See
appendix 1 or use Screen Tweak to prepare a list of standard hotkeys.

These hotkeys can very usefully be generated by a profiler such as KeyGrabber to provide
jogging support from Human Interface Devices or buttons and encoders attached to a
keyboard emulator.

You can also define hotkeys which will select the MDI window, will select a DRO and will
display the File>Load G-code dialog. These are useful if you are controlling Mach2 without
a mouse or similar pointing device.

Communication Routes

Mach2 Customisation Guide Rev 6.11-A6 2-6

Screen Designer

Rev 6.11-A6 Mach2 Customisation Guide 3-1

3. Screen Designer

His chapter describes the features of Mach2 Screen Designer. This program
allows you to customise the released screens and to design your own, from

scratch, both as main screens and for wizards

Mach2Mill comes with a standard set of screen layouts to suit many uses. You are strongly
advised to use a screen resolution of 1024 x 768 pixels if you can, but screens can be
provided for 800 x 600 and 640 x 480 pixels.

The Screen Designer lets you change the layout of any or all of the information displayed
on screen by Mach2. You can, if you wish, design a complete set of custom screens but, as
there are more than 800 individual objects on the standard screens, most users will probably
only want to make detailed changes to the layout.

The screen to use is loaded into Mach2 using the View>Load Screen menu. Screen layouts
are stored in files with the .SET extension or the .SSET extension. The Screen Editor
application is used to edit layout files.

The individual screens within a layout can be moved, deleted, imported etc. using the
ScreenTweak utility (q.v.) This is primarily concerned with manipulating whole screens
while Screen Designer deals with individual controls, their functions and positioning.

3.1 Screen Designer basics
The Screen Designer allows you to create and edit a set of 15 screens which form the .SET
file. A screen consists of a collection of Controls. The Controls supported are:

1) DRO (digital read-out) - to display and optionally enter numerical values
2) Button - to request an action
3) Bitmap button - action but with an image rather than text giving function
4) Bitmap – display an area of color or a picture
5) Joystick - to control manual jogging
6) Label - to identify other objects or be a placeholder for a text display
7) LED (light emitting diode) - On/Off or warning indicator
8) MDI (manual data input line) - to allow input of "G-code" line
9) G-code list - to display current part program text
10) Toolpath - to display path followed by tool in current part program.

The screens are numbered 1 to 15 and screen P which is used to place controls that will
appear on every screen (P is for Persistent). This is used, for example, for the buttons used
to change from screen to screen.

3.2 Try out the Designer
Close Mach2, if it is running, and use the shortcut you installed in the desktop to run the
Screen Designer.

You should see a mainly blank screen with a menu bar, a Tool bar (top of screen), a Status
bar (bottom of screen) and a Pallet of buttons. The pallet and toolbar can be dragged around
the screen to a convenient place out of the way of controls that you are editing. The toolbar
and status bar can be hidden and viewed using the View menu. You will only need to do
this if you want to place controls very near or sometimes off the bottom of your finished
screen.

Run Screen Designer and do not open a layout. You will get a blank screen. Click a button
on the pallet and the click anywhere on the screen. You will get a default sized control of
the type chosen. You need to press a pallet button and click for each control you want.

Screen Designer

Mach2 Customisation Guide Rev 6.11-A6 3-2

By default you will be putting controls on Screen #1. Use the numbered buttons on the
toolbar to select other screens and place controls on them. Try placing some controls on the
"P screen" and see that they actually appear on all screens 1 to 15.

If you click on a control you have placed you will see that it becomes selected and is drawn
with the traditional sizing handles. It can be moved around the screen and resized by
dragging the outline or the relevant handles. You can also move selected objects by
"nudging" them with the left/right/up/down cursor keys. Each keypress moves the control
by one pixel.

Multiple objects can be selected using Shift-click. One selected object in a set can be
deselected by Control-click.

The selected objects can be cut or copied to a clipboard and the contents of the clipboard
can be pasted onto the same or another of the fifteen screens. Notice, that although you can
run more than one copy of Screen Designer at one time editing different .SET files, each
has its own clipboard so you cannot move controls from one file to another using the
clipboard.

When you resize a control, other than a button, with the handles then its contents are scaled
to fit the new size. This is how you decide on the font size for DROs, labels etc.

When you have created a test screen, use Save As to save it with a new file name. Run
Mach2 and load your screen using the View>Load Screens menu. You should never
overwrite the default screens with your designs as these files are likely to be overwritten by
the installer each time you upgrade Mach2 to a new version.

3.3 Making the controls work
It is now time to see how to see how controls "work". It is easiest to do this by looking at
the standard Mach2 screens. Assuming you have a 1024 x 768 screen, save your trial
screens (perhaps in file Junk.set) and open C:Mach2/1024.set (or perhaps safer make
and use a copy of this)

You will be shown Screen #1 - the "Program Run" screen. See which screens are displayed
for screens 2 to 7. Do not save this work especially if you are using the real screen layout!

Double-click the Cycle Start button on screen #1. You will be shown its properties which
will look similar to figure 3.1.

3.3.1 Key scan codes
When Mach2 is running, Buttons and Bitmap buttons can of course be "pressed" by clicking
the mouse. They can also have a "hotkey" assigned to them. Pressing that key on the
keyboard when the button is visible is equivalent to clicking it with the mouse.

The "hotkey" is defined by its "Mach2 scancode". Screen Designer allows you to type the
key you want to use and it will store and display (in decimal notation) the associated
scancode.

If you need to check these codes at any time then you can calculate the value by hand as
follows:

Lookup the ASCII value of the code for the key (For letters it is the uppercase version
of the character for other keys it is the code of the unshifted character – i.e. 5
rather than %). Thus, for example, spacebar = 32, A = 65, / = 47 etc. If you do not
have a printed table of these codes then entering "ASCII code table" into your
favorite search engine should find one.

If your hotkey is to be a given key together with Shift, Ctrl or Alt depressed (or
indeed a combination of these) then add, to the basic code, the following values
(in decimal)

Shift 1,024
Ctrl 32,768
Alt 2,048

Screen Designer

Rev 6.11-A6 Mach2 Customisation Guide 3-3

Thus Shift-A would be 1,089 (65 + 1,024), Alt-/ would be 2,095 (47 + 2,048) and
Shift-Ctrl-Alt-spacebar would be 35,872 (32 + 1,024 + 32,768 + 2,048)

If you have worked with binary numbers then you will recognise that these rather odd
looking numbers are actually powers of two.

3.3.2 Defining function by G-code or VB Script
This is the most direct way of making a new button work. You can provide some G-code or
VB Script to be executed when it is clicked. You need to check the appropriate radio button
to say what type of code you have written in the edit box. As an example look at figure 8.3
and the G50 button on the MDI screen of 1024.set. You will see that the latter (not
unexpectedly!) issues the command "G50".

You can define buttons using G-code to do whatever you want that can be done by a single
MDI line. The VB Script program, indeed almost always will, have multiple lines and can
be up to 64k characters long!

Beware: If you use G-code like this, then any scaling which is active on axes at the time
you click the button will be applied to the coordinates built into your button. The problem
does not, of course, apply to zero values, which is a common case, whatever scaling is
applied.

Hint: Remember that a button will only be operated by its hotkey if it is on the persistent or

Figure 3.1 - Properties of standard Cycle Start button

Screen Designer

Mach2 Customisation Guide Rev 6.11-A6 3-4

currently displayed screen. A useful trick for VB Script or G-code buttons, that you want to
work at all times, is to draw them on the persistent screen but off the bottom of the viewable
area. You can "design" here by hiding the toolbar and status bar using the View menu or by
designing on a higher resolution display than you are going to use with Mach2.

If you are only interested in adding hotkeys, G-code and VB Script then you probably need
to skip to the section on "Properties of other controls" and then read no further about Screen
Designer. Exit not saving any changes to the 1024.SET.

3.3.3 Defining function by name
Notice, after double clicking a button, that there is a long list of radio buttons for functions
that a button can call. Cycle Start uses the one called "Run". One possibility is "OEM code"
which we will look at later. The button has a title given in its "Button Text" box and can be
activated by a "Hot key" (Alt-R in fact). The user is reminded of this in the title - some
buttons are very small so the shortcut is given in a separate label. Mach2 identifies keys by
their scancode. Alt-R is code 2162. If you click Set Hot Key and type any other key (or
Shift/Ctrl/Alt key combination) this will set a new hot key for Cycle Start. You will see its
scan code. For safety set it back to Alt-R.

The list of shortcuts used on the standard screens is given in Appendix 1.

Close the dialog by OK

3.3.4 Defining buttons by OEM code
Now look at the properties of the Flood button by double clicking it. You will notice that its
function is defined as OEM code 113 in the list of radio buttons. OEM codes are a way of
extending the range of buttons for more esoteric purposes without the list of names
becoming much too long. The allocation of named functions and OEM codes to buttons on
the standard screens is given online in Appendix 2.

If you look at the properties on the MDI button you will see that its OEM code is 2. Codes
1 to 15 are used to select the fifteen possible screens. If you look at the codes in all the
screen selection buttons you will see which screen # is allocated to each and this will tie up
with the rather odd order you will have discovered at the beginning of this section.

3.4 Getting a tidy visual effect
The Screen Editor has several features to ensure a neat looking screen design. These are
accessed from the icons at the right hand end of the toolbar. (Figure 3.2)

With the exception of the "Clr" - for Color - button they all act on a multiple selection of
controls. These will often be of the same type (e.g. six DROs for the six axes) but do not
need to be.

The last control selected in the multiple selection is special as it is the master control of the
selection and other controls will be moved, sized etc. in relation to it.

Align with top of... Set colours
Group controls

Equally space vertically
Equally space horizontally

Align with bottom of...
Align with left edge of...
Align with right edge of...
Make same height as...
Make same width as...

...the last object selected

Figure 3.2 - Screen Designer alignment tools

Screen Designer

Rev 6.11-A6 Mach2 Customisation Guide 3-5

Figure 3.3 - Ragged DROs as drawn

3.4.1 Alignment icons
The first four icons on the bar align the appropriate edge of selected controls with that same
edge of the master control. For example "Align with left edge" would move all the controls
selected horizontally so all the left hand sides were in a vertical line with the left edge of the
master one. Figure 3.3 shows the DROs just after drawing. They are then selected with the
top one chosen last and Align Left Edge clicked. Figure 3.4 shows the result.

You need to be slightly careful as if you align left and, say, top then all the controls will be
on top of each other. If this happens by accident then you need to deselect them by clicking
on a blank bit of screen, select them one by one and drag them apart.

3.4.2 Sizing icons
In the example the controls are different sizes. This would not happen if you had used the
clipboard to duplicate them but it is easy to make them all the same width and or height as
the master of the selection. Figures 3.5 and 3.6 show this done in two stages with the two
"Make same.." icons.

The size of a control, other than a button, will determine the size of any text in it.

3.4.3 Spacing controls uniformly
Finally the "Equally space …" icons can be used to space the selected controls equally. The
result of this is shown in figure 3.7.

It is worth spending a bit of time experimenting with these icons on different types of
control to get a feel for what can be done to make a neat layout with very few clicks of the
mouse.

You should get into the habit of saving your layout frequently as the current version of the
Screen Designer has no Edit>Undo facility.

You are strongly advised to save any changes in a layout with a name of your own
choosing. If you just change 1024.set then, as this is replaced at each Mach2 upgrade, you
will lose your changes.

Figure 3.4- Justified DROs

Figure 3.6 - Same size DROs

Figure 3.5 - Same width DROs

Screen Designer

Mach2 Customisation Guide Rev 6.11-A6 3-6

3.5 Properties of other types of control
Now work your way through the different
types of control and by inspecting the
properties of examples of each type you
will be able to see how Mach2 standard
screens are built.

3.5.1 User LEDs and DROs
User defined LEDs and DROs are setup
with values 1000 to 1254 in the OEM code
field.

You can, for example, set the number of
lines to be displayed in the G-code window
and that, together with the size of the
window, will define the text size.

Notice that DROs have a hotkey associated with them. When this key is pressed when
Mach2 is running the appropriate DRO will be selected for data input. This is very useful in
systems that are run without a mouse.

Some controls are very simple (e.g. the joystick ball) while others are complex (LEDs are
different colors, can flash etc.).

3.5.2 Properties of Intelligent Labels
If a label has some reserved text in it then this text is replaced when Mach2 runs by
information about what is happening (e.g. the name of the part program which is loaded).

The following intelligent labels are defined in the current version:

3.5.2.1 System labels
File (the part program), Error (the last Mach2 error message), Mode (the current modes of
the system), Profile (the name of the current profile file)

3.5.2.2 User Labels/Tickers
UserLabel1, UserLabel10, up to UserLabel255

Ticker1 up to Ticker255

These display the text set be VB Script calls to SetTicker and
SetUserLabel. The difference is that a Ticker scrolls the text
so that a small control can display a long message.

Note: The intelligent label name text is case sensitive. For
example "FILE" displays the word FILE but "File" displays
the current part program's file name.

3.5.3 DRO groups
Mach2 is designed so it can be operated without a mouse or
other pointing device although if one is provided it will
probably be best to use it.

DROs can be selected by a hot key and the cursor keys can be
used to move around them. To make this as convenient as
possible they are combined into groups. Left and right keys go
from group to group and up and down keys move within a
group. The Grp icon in Screen Designer allows you to
allocate a group number to a multiply selected group of
DROs.

Figure 3.7 - Equally spaced controls

Figure 3.8 - Bitmap

buttons

Screen Designer

Rev 6.11-A6 Mach2 Customisation Guide 3-7

3.5.4 Use of Bitmaps
The location of the file containing a Windows bitmap is given in the setup dialog for bitmap
buttons and for background
bitmaps. All files must be in
the Mach2 Bitmaps folder or in
folders below it in the tree. It is
convenient to group all the
bitmaps for a custom layout in
a folder within Mach2\Bitmaps
to make them easy to maintain
and to distribute to other users.

Screen Designer will always
store the path relative to
Mach2\Bitmaps in the layout
file and it is this path that is
displayed in the dialog after
you have used Browse to locate
a bitmap file. This can be seen
in figure 3.1.

3.5.4.1 Bitmap buttons
A bitmap button can be used in
place of any normal button to
give emphasis to the function
of the button. For an example see figure 3.8

Bitmap buttons when created are empty and transparent. In Screen Designer a black border
is drawn but such a button will be invisible on the screen when Mach2 is running. Such a
button can be though of as a "hotspot" on the screen with its function being indicated on a
background bitmap below it. An example is given in the next section.

3.5.4.2 Visual grouping with bitmaps
A set of related DROs buttons LEDs etc. can be placed "in" a frame or bezel by placing a
suitable bitmap "underneath". A example is shown in figure 3.9. You should complete the
placing of the controls before drawing the bitmap as it is more difficult to select the handles
to resize the controls when the bitmap is present.

Screen designer provides two options on the Edit menu to assist with bitmaps as
backgrounds. Edit>Paste Exact pastes an object in exactly the same place on a screen as the
place from which it was Cut or Copied. If you wish to change the size or position of
controls on a bitmap then you can cut it and paste it temporarily on an unused screen. Now
move the controls and when finished you can Cut from the temporary screen and Paste
Exact to restore the position of the bitmap.

If you want to make big changes to a screen then you might cut and paste all the bitmaps to
the temporary screen at one time.

After re-pasting bitmaps back to their proper place they will of course be on top of the
layers of objects. Edit>Bitmaps to Back allows you to put all the bitmaps on the current
screen behind the other controls.

You can use one bitmap file for many backgrounds or bezels. A basic size of 100 pixels
square works well for coloured backgrounds.

Stretching a square bezel to become very long and thin will distort the width of the border
so you might need to have more than one basic shape. Try to minimise the different styles
and colour schemes or your screens will look cluttered and be more difficult to use.

3.5.4.3 Identifying controls by the background bitmap
Although the controls in Screen Designer are quite flexible, you can achieve an even more
interesting presentation by putting all the graphic detail in a large background bitmap.

Figure 3.9 - Bitmap frame for DROs

Screen Designer

Mach2 Customisation Guide Rev 6.11-A6 3-8

Figure 3.10 illustrates a prototype of such a screen (courtesy of Ken Bell). In such a design
the DROs, labels, LEDs etc. are real Mach2 controls. The buttons are in the bitmap but have
empty bitmaps drawn over them to define the "hotspots".

Another advantage of this type of screen design is that it is fully scalable to different screen
resolutions using ScreenTweak as it does not have the problem of the fixed size text of
conventional buttons.

3.5.4.4 Dynamic changes with bitmaps
The Screen Designer does not copy the bitmaps when you place them on the screen at
design time; it just sets up a link
to the image file path relative to
the Mach2\Bitmaps folder. The
bitmap is loaded when Mach2
itself is run. This means that you
can replace the bitmaps with ones
of your own design and by giving
them the names used by the
original designer of the screen
you can customise the
appearance of your system
without having to run Screen
Designer or having to place or
size the bitmaps. Figure 3.11
shows this done to the set of
DROs shown in figure 3.9

3.6 Advanced features for
setting up controls
Figure 3.1 shows several other
features of the dialogs for setting

Figure 3.11 - An alternative frame link in dynamically

Figure 3.10 – Screen with all graphics on bitmap and transparent buttons

Screen Designer

Rev 6.11-A6 Mach2 Customisation Guide 3-9

up buttons. Similar features exist on the dialogs for other controls.

Positioning: The position of the top corner of the control and its size is given in the dialog.
If you click the Enable Input button then this data can be altered and the new size and
position will be applied to the control when OK is used to close the dialog.

Original size: The Button will be bitmap's original size checkbox on the dialog for bitmap
buttons and a similar one for bitmaps allows the size of the control to be adjusted t the
number of pixels in your bitmap as it was originally created. This option can be used with
the option to specify a new position. If this is not used then the top lefthand corner is not
altered.

As you can only change the size and position of a control that is on the screen's visible area,
you need to be careful with the values that you enter. In an emergency you can move any
controls that lie partly off a 1024 x 768 screen to a visible position using Edit>Retrieve Off-
screens. This will also reposition controls intentionally placed just off the page such as
labels that start with § used to identify screens to ScreenTweak.
Locking: The Locked for Mouse checkbox allows you to lock the control so that it cannot
be moved or resized by the mouse or be nudged. Double-click will still be available to reset
its properties.

You can also lock all the selected items on a given screen using Edit>Mouse-lock all
selected. You can unlock all the locked controls on a screen using Edit>Clear Mouse-locks.

3.7 Colors
The Screen Designer Clr icon lets you define the colour scheme for your screens and
controls. This is a global setting; it does not relate to the selected items.

3.8 Implementing two levels of screen complexity
It is clear that some users will require a full range of controls on a screen while others will
find a machine easier to use with only the bare minimum of controls displayed. This
requirement can easily be met by designing two (or even more) screen sets and setting up a
profile to load each from its own shortcut.

On occasions, however, it is convenient to be able to switch the level of complexity
dynamically. This is done by having the two screen sets in the same folder and with the
same name but distinguished by the extensions .SET and .SSET The profile should initially
load the .SET file.

The switch between sets is achieved by a button on the screen(s) which calls the VBScript
routine ToggleScreens().
You can see how this works on the standard mill screens by running Screen Designer of
1024.set and 1024.sset.

Screen Designer

Mach2 Customisation Guide Rev 6.11-A6 3-10

Mach2 defined VB Script functions

Rev 6.11-A6 Mach2 Customisation Guide 4-1

4. Coding VB Script programs

This chapter aims to help you write button or macro code of your own which
can range from performing simple tasks (e.g. implementing non-standard M-

codes from other controllers) to performing complex calculations on data
which will be used in the part program. This might simulate, for example,

engine turning as geometric pattern to decorate an object.

Warning: It is not advisable to write macros to call in part programs if you want them to be
portable to other CNC controllers.

If you are considering writing VB Script then you will need to have some experience of
simple computer programming (e.g. in Visual Basic, C or even BASIC). This chapter does
not attempt to teach programming.

All the usual VB Script data and control structures can be used in the program. For details
consult Windows Script 5.6 Documentation available for download by following some
obvious links from:
 http://msdn.microsoft.com/scripting/

The Microsoft presentation is rather oriented to scripts of web pages but the documentation
that you can download summarises the data types, control structures, operators etc. very
clearly. You will not need to use advanced features like Classes. Regrettably this
information is not presented in a form which can conveniently be printed out so you might
consider purchase of one on the many books on VB Script.

You will find that there are many operators for manipulating strings, doing trigonometry
etc. VB Script is a complete and very capable language. The only rstrictions within Mach2
scripts are on the use of input/output functions and subroutines.

4.1 A simple button script
Many machine tools allow you to control the feedrate, spindle speed
in a geometric progression (i.e. each step is so-much times the
previous one).

Figure 4.1 shows the dialog box setting up a button that will increment the feedrate in this
way. This operation is performed using the Screen Designer program. Full details of this are
given below. For the present we concentrate on the VB Script code. Most of it is shown in
the edit box of the dialog. The complete code is as follows:

Figure 4.1 – Setting up the geometric feedrate button

http://msdn.microsoft.com/scripting/

Mach2 defined VB Script functions

Mach2 Customisation Guide Rev 6.11-A6 4-2

Rem Geometric 20% increase of Feedrate
Dim val
val = GetDro(18) ' Feedrate
If val = 0 then
 val = 1
Else
 val = val * 1.2
End If
Call SetDro(18,val)

The first line is a Remark, ignored by Mach2 but useful to remind one what the button does.
The Dim statement declares a variable to use again not essential. GetDRO (18) reads DRO
function code 18 (which is the commanded feedrate) and assigns it to the variable val. The
quote ' character introduces a comment on the end of a line of code. If val is zero then it is
set to 1 otherwise it is incremented by 20%. Finally the new val is stored in the Feedrate
DRO so setting the required rate.

As you can see from the dialog the caption on the button will be "Geometric up". A similar
button might be provided with code for Geometric Down.

4.2 Sample macros

4.2.1 A simple macro
The following is code to form a very simple Mach2 macro. Suppose it is stored in a file
M99990.m1s (the extension is letter-m, figure-one, letter-s). The call M99991 could be
included in the file at the beginning of each part program you want to run. If you set a
feedrate by the F-word before running the program then it will use that rate otherwise the
macro will ask the operator for a value.
Rem Default feedrate setting macro
Dim NewRate, FRateFunCode
FRateFunCode = 18 ' easier to read program if you use a variable
If GetDRO (FRateFunCode) = 0 Then
 Newrate = Question ("What should the feedrate be for this job")
 Call SetDRO (FRateFunCode, Newrate)
End If

4.2.2 More complex macro
The following is more complicated example of a Mach2 macro. Suppose it is stored in the
file M99992.m1s It might be useful to edit M99992 into the start of a part program if the
post-processor that created the program has not taken care to set all the modal values at the
start of the program. It would also be handy macro to call by M99992 Q100 S2000 from
manual data input (MDI) to set up a feed and speed and the modes before running a
program.
Rem This macro sets modals to defined values. Useful at start of
' a part program if you are not certain about the default
' state of your controller
Rem The P-word can be used to choose options:
' Px1 gives inch units (Px0 gives mm)
' P1x gives constant velocity (P0x gives exact stop)
' e.g. P10 gives CV and mm
Rem The Q word can set a feed rate. The S word can set a
' spindle speed
Rem The code is written to illustrate some features of VB Scripting
' so includes declarations that are not strictly needed etc.
' The logic can be done in other ways. You might like to
' try some!

Option Explicit ' declarations are mandatory

Dim TxtChoice, PValue, QValue, SValue
PValue = Param1()
 Select Case PValue
 Case -1
 TxtChoice = "G21G61"
 Case 1

Mach2 defined VB Script functions

Rev 6.11-A6 Mach2 Customisation Guide 4-3

 TxtChoice = "G20G61"
 Case 10
 TxtChoice = "G21G64"
 Case 11
 TxtChoice = "G20G64"
 Case Else
 Code "(MSG,P word is not valid - defaults are set)"
 End Select

 Call Code (TxtChoice & "G17G40G49G50G90G94") ' set the modes

 QValue = Param2() : SValue = Param3() ' get values

 If QValue >0 Then ' a value has been given
 SetFeedRate (QValue) ' using a Mach2 function
 End If
 If SValue > 0 Then
 code "S" & SVal ' using G-code where there is no function
 End If

Commentary on program
As mentioned before the comments, lines starting with Rem or the text following an
apostrophe ' are not interpreted by the system.
Unlike the C and C++ languages, VB Script is not case sensitive so NEWRATE,
NeWRate, newrate are all the same variable. You can, however, use case to make your
programs easier to read.

Variables can be used in the VB Script code to store numbers or character strings. They do
not have to be declared but using a Dim declaration helps other people to follow your
program.

The program next accesses the value of the P word in the macro call using the Mach2
standard function Param1(). The brackets show that a function is being called. The value,
in this case a number, is assigned to the variable PValue.

Next the Select Case control structure is used to assign a different string to
TxtChoice depending on the value of the P word. Other control structures available
include If Then Else End If and various forms of loop.

The VB Script program can interact with the operator by asking for a value by using the
Mach2 function Question. In the example above no value is used. If a value is required then
the form x = Question ("What is the new X value") is used.

Next the program uses the & operator to concatenate (join) the TxtChoice string which is
already set up with the standard initial G values and uses the Mach2 function Code to send
the string to Mach2 to be interpreted.

Finally the R and S words are accessed by Param2() and Param3() and, if used, are
sent to Mach2 by the function SetFeedRate and another use of Code.

4.3 A common confusion with VB Script and a hint
You may have noticed two different ways of calling the Code subroutine in the second
example.

Call Code (TxtChoice & "G17G40G49G50G90G94") and
Code "S" & SVal

Could have been written

Code TxtChoice & "G17G40G49G50G90G94" and
Call Code ("S" & SVal)

Either is correct and both do the same thing. If you like to group the arguments with
brackets then you need to use the keyword Call as well.

Mach2 defined VB Script functions

Mach2 Customisation Guide Rev 6.11-A6 4-4

A function can be called and have its result thrown away as in this example:
Question ("Did you know P word was not valid - defaults are set")

Using brackets with no Call show that it is a Function which is expected.

Sometimes you can get away with breaking these rules but you will find that you get very
hard to find bugs!

If you include the statement Option Explicit at the start of your code the VB Script
will require you to declare all variables (e.g. with Dim statements). This is very helpful in
trapping bugs caused by misspelled variable names.

4.4 The Mach2 VB Script functions and subroutines
This section describes the most important standard routines (i.e. functions and subroutines)
that van be called from VB Script on buttons or in macros.

4.4.1 To execute G or M-codes from a script
The simplest and most powerful routine is:

Subroutine Code (text as String)
The text argument is a string expression (including, or course a constant or simple
variable) which is any line of G or M codes that you could enter into MDI. It will be
passed to Mach2 for execution. The only restriction is that you are advised not to call
another script from within a script.

Examples, using both versions of the syntax for subroutine calls:
Code "G0X0" ' X to zero in current coords
Code "G1X10" & Feed ' variable Feed has been set to something like
 ' "F150"

4.4.2 For accessing the screen controls
As you have seen in the earlier examples, a macro read and change the data in a DRO. It
can also read the state of any LED and simulate the action of clicking a screen button. To
access these operations on Mach2 controls you use the codes used internally by Mach2 and
its Screen Designer for the DRO, LED or button operation you want to use.

There are, for historical reasons, two different code lists for each type of control. The
original built in controls are described by their Function Code. Later features have controls
described by so called "OEM" Codes. You will have seen the reason for this if you have
already tried Screen Designer. If you have not used Screen Designer have a look at the
figure showing the Properties of the Standard Cycle Start button in this chapter. The buttons
that are defined by checking one of the Radio Buttons in the dialog are referred to by
Function Codes. Buttons defined by checking OEM Code and entering a Code value in the
box are referred to by OEM Codes.

DROs and LEDs can be defined that have no meaning to Mach2 being solely for you use.
There are 255 of each denoted by "OEM" codes 1000 to 1254. You must refer to them
using special functions with "User" in the name to make it obvious that they are not
controlling Mach2 itself.

The Function code numbers start at zero in the top-left and count up across the screen. Thus
in the Set Button screen, Run (i.e. the Cycle Start button) is Function = 0 and Zero Y is
Function = 9. Rather than looking up codes using Screen Designer, you may find it more
convenient to refer to the complete table of codes in the appendix.

Although we use literal values (like 14) in the examples you are strongly advised to assign
the values you want to use to variables at the beginning of your macro and then use the
variables in calls to the routines. This will make your program much easier to read. Thus the
first LED example in a complete script would be:

Mach2 defined VB Script functions

Rev 6.11-A6 Mach2 Customisation Guide 4-5

JoyStickLEDFn = 14
:
:
bJoy = GetLed (JoyStickLEDFn)

LEDs
Function GetLED (ledFun as Integer) as Boolean
Function GetOEMLED (ledOEMCode as Integer) as Boolean
Function GetUserLED (ledUserCode as Integer) as Boolean

Choose the appropriate routine depending on whether you want to access a built-in,
OEM or User LED. ledUserCode must be in the range 1000 to 1244. The result is
True (i.e. non-zero if converted to an integer) if the LED referred to is alight.

User LEDs, only, can be set on or off by:
Sub SetUserLED (ledUserCode as Integer, cond as Integer)

If cond = 1 the LED will be on. If cond = 0 then it will be Off

Examples:
bJoy = GetLed (14) ' set variable bJoy if Joystick is enabled
If GetOEMLed (29) Then ….. ' see if a Fixture is in use
SetUserLED (1002, 1) ' turn on user LED

DROs
Function GetDRO (droFun as Integer) as Double
Function GetOEMDRO (droOEMCode as Integer) as Double
Function GetUserDRO (droUserCode as Integer) as Double

Choose the appropriate routine depending on whether you want to access a built-in,
OEM or user DRO. droUserCode will be in the range 1000 to 1254. The result is the
current value displayed by the DRO.

Sub SetDRO (droFun as Integer, newValue as Double)
Sub SetOEMDRO (droOEMCode as Integer, newValue as Double)
Sub SetUserDRO (droUserCode as Integer, newValue as Double)

Choose the appropriate routine depending on whether you want to access a built-in,
OEM or user DRO. droUserCode will be in the range 1000 to 1254. The routine sets the
expression provided for newValue into the DRO. Not all DROs can be written. If you
cannot type a value into the DRO on the screen (e.g. X Velocity = function 6) then you
cannot set it in a script.

Sub KillExponent (result as String, smallNumber as String)
Provided to address the problem that VB Script is liable to represent small numbers (e.g.
0.0000012) in scientific (exponent) notation. The routine forces the string to be decimal.

Example:
Call SetDRO (18, GetDRO (18) * 1.1) ' increase feedrate by 10%

Button Commands

Sub DoButton (buttFun as Integer)
Sub DoOEMButton (buttOEMCode as Integer)

Choose the appropriate routine depending on whether you want to use a built-in or OEM
command. Mach2 is instructed by the script to perform the function specified.

There is no provision for the trapping or reporting of errors but as most functions have
an LED associated with them this can be inspected by the script code to check that the
required action has been performed..

Mach2 defined VB Script functions

Mach2 Customisation Guide Rev 6.11-A6 4-6

Very many "buttons" are toggles or cycle through a range of possible states or values. A
loop containing inspection of an associated LED can be used to set a particular state.
This example would be particularly suitable to be attached to a button.

Example:
Rem This sets the MPG jog on and the wheel to jog the Y axis
Rem There are actually more direct ways to do this in late releases
Rem of Mach2
JogTogButton = 174
JogMPGEn = 175
MPGJogOnLED = 57
MGPJogsY = 60
OK = False
For I = 1 to 2
 If Not GetOEMLED (MPGJogOnLED) Then
 Call DoOEMButton (JogMPGEn) ' try to enable
 Else
 OK = True ' MPG is enabled
 Exit For
 End If
Next I
Rem Could test of OK true here
OK = False
For I = 1 to 6 ' must get there after six axis tries
 If Not GetOEMLED (MPGJogsY) Then
 Call DoOEMButton (JogTogButton) ' try next one
 Else
 OK = True ' got right axis selected
 Exit For
 End If
Next I
Rem Could test OK here as well

4.4.3 Interrogating Mach2 internal variable
The current value of Mach2 internal variables can be read using the GetParam
function.

Function GetParam (name as String) as Double
This returns a numeric value corresponding to the name of the given variable which is
provided as a string (constant or variable)

The corresponding routine SetParam sets the value of the variable to newVal.
Sub SetParam (name as String, newVal as Double)

Examples:
Rem interrogate drive arrangements
mechProp1 = GetParam ("StepsPerAxisX")
Rem make C acceleration be same as X for slaving
Call SetParam("AccelerationC", GetParam ("AccelerationX"))

Notice that the word "Param" is used here in a different sense to the Machine Parameters
accessed by the # operator from within a part program and in accessing the Q, R & S
word "parameters" to a macro call.

4.4.4 Access to the machine G-code parameter block
Mach2 has a block of variables which can be used in part programs. They are identified
by # followed by a number (the parameter address). The contents of the Tool and Fixture
tables are in these parameters but there are many values that can be used by the writer of
a part program.

These machine variables can be accessed within macros by GetVar and SetVar.

Mach2 defined VB Script functions

Rev 6.11-A6 Mach2 Customisation Guide 4-7

Function GetVar (PVarNumber as Integer) as Double
Sub SetVar (PVarNumber as Integer, newVal as Double)

The predefined parameter variables are defined in chapter 11.

Examples:
FixNumb = GetVar (5220) ' get current fixture number
Rem set X offset of fixture 2 to be same as fixture 1
Call SetVar (5241, GetVar (5221))
Rem increment a counter, say in a multiple part layout
Call SetVar (200, GetVar (200) + 1))

4.4.5 Arguments of macro call
When a macro is called from the MDI line or within a part program then data can be
passed to it by P, Q, and S words on the line. The values of these words are "read" in the
macro using the Param functions.

Function Param1 () as Double ' gets P word
Function Param2 () as Double ' gets Q word
Function Param3 () as Double ' gets S word

4.4.6 Information to and from the user
Scripts can communicate with the operator by displaying a dialog box with a prompt into
which the user can type numeric data. The Question function prompts for one item.
The GetCoord routine prompts for the values of X, Y, Z and A coordinates.

The other strategy, probably more suited to scripts attached to buttons, is to provide
DROs of a screen into which data is set before running the macro. These can of course
also display results from the script.

User Intelligent Labels and Tickers enable messages to be displayed.
Function Question (prompt as String) as Double

The string in prompt is displayed in a modal dialog titled "Answer this. The dialog
contains an edit box. The value of the function is set to the number in this when OK is
clicked.

Sub GetCoord (prompt as String)
As with Question, a modal dialog titled "Enter Coordinates" displays prompt. This has
four edit boxes labelled X, Y, Z and A into which values can be typed. GetCoord itself
does not return the values to the macro code. These must be fetched by GetXCoor,
GetYCoor etc.

Function GetXCoor () as Double
Function GetYCoor () as Double
Function GetZCoor () as Double
Function GetACoor () as Double

Outputting text, warnings etc
Sub Message (text as String)

Writes the message on the Error intelligent label and in the History log file.
Sub PlayWave (pathname as String)

Plays a Windows .WAV file (e.g. a chime to warn of an event or error).
Sub Speak (text as String)

A development feature for speaking a text string. Requires detailed setup for which some
information is available in the MACHDN online archive.

Mach2 defined VB Script functions

Mach2 Customisation Guide Rev 6.11-A6 4-8

User defined DROs

This technique is mainly applicable to wizards and scripts which are run from a user
defined screen button.

A block of DRO OEM codes is allocated to 255 DROs which are not used by Mach2
itself. These DROs, suitably labelled, can be placed on a screen.

The operator enters data into the DRO(s) before pressing a button or series of buttons to
run the macro or macros. The macro(s) access the data using GetUserDRO as
explained above. The macro can also use SetUserDRO to update the data or return a
result in another DRO.

In addition there are 255 user LEDs which can be read and (unlike normal LEDs)
written using GetUserLED and SetUserLED.

This technique can, for example, be used to implement a totally personal scheme to
extend the Mach2 offset setting by Touch with Correction. Suppose you have a probe
with a 5 mm tip diameter which only trips in sideways movement (i.e. for X and Y) then
you might use a 1 mm slip or piece of shim-stock to manually feel the Z touch. You
could define a pair of macros attached to two buttons to apply the fixed, 5 mm, X and Y
correction and a third button that uses a Z-correction DRO to set the thickness of the
shim or slip which is in use.

Such features can be made to appear to the operator to be exactly like built-in Mach2
functionality.

User Button captions, Labels and Tickers
Sub SetButtonText (text as String)

This will change the caption text of the button to which the VB script is attached to the
given string. This may only be called "from" a button rather than in a macro.

If the current screen has a label whose, case sensitive, text is in the range UserLabel1 to
UserLabel255 then the actual text displayed can be set in a Script by calling

Sub SetUserLabel (number as Integer, text as String)
This will display the given text in the label corresponding to the number given.

e.g. SetUserLabel 12, "You must enter a whole number of
holes"

Sub SetTicker (number as Int, text as String)
Accesses the 255 tickers Ticker1 to Ticker255. In a ticker the text of the message scrolls
through the box so a very long message can be given in a small area of screen at the
expense of some inconvenience for the user.

e.g. not very seriously:
SetTicker 205, "This is a very long error message because
you seem to have done something very silly"

4.4.7 Handling files of Part Programs
This group of functions deals with loading and running G-code and features for the
Teach MDI and wizard systems

Sub LoadRun (pathname as String)
Loads the given file of G-code and starts its execution.

Sub OpenTeachFile (pathname as String)
Opens the given file for G-code and starts writing of commands executed (e.g. by MDI)
to it.

Sub LoadTeachFile ()
Loads the G-code of the currently open teach file so it can be executed

Mach2 defined VB Script functions

Rev 6.11-A6 Mach2 Customisation Guide 4-9

Sub CloseTeachFile ()
Closes the currently open Teach or wizard file and stops commands being written to it.

4.4.8 Screen handling routines for wizards etc.
Sub ToggleScreens()

Switches between displaying the .SET and .SSET screen sets. This is employed on the
standard screens to switch between the "complex" and "simple" screen sets but could be
used for any purpose such a screens with and without a fourth axis or screens optimised
for daytime and nighttime working.

Function GetPage () as Integer
Returns the number of the screen in the set presently being displayed. Used to remember
where the user is when running a wizard.

Sub SetPage (page as Integer)
Used to display a given screen of a set, typically on return from a wizard. Equivalent to
using DoOEMButton with the screen number.

Sub Savewizard ()
Saves the information in the local controls on a wizard screen in the
wizardname.SET.DEFS file so that the values are on the screen when the wizard is
next run.

4.4.9 Input/Output signals, a serial port and "foreign" ports
Scripts can access the input signals (both on parallel ports and defined virtually in
response to keycodes) such as the state of home and limit switches and can control
output signals.

Function IsActive (sigNo as Integer) as Boolean
Sub ActivateSignal (sigNo as Integer)
Sub DeActivateSignal (sigNo as Integer)

IsActive tests input signals. It will return True if the signal is active (i.e. its LED
would be lit on the Diagnostics screen). In other words this test is after the application of
the Active Hi/Active Lo configuration of the signal hot a test of "0 volts" or "5 volts" on
the signal's pin.

ActivateSignal and DeActivateSignal similarly control the logical state of
output pins. Mach2 will apply the Active Hi/Active Lo configuration to establish the
electrical state required.

Function IsSuchSignal (sigNo as Integer) as Boolean
Returns TRUE if the signal is enabled. It is used to avoid things like digitising if the
machine has no probe input defined.

For all these routines, the required signal is coded using the values defined in the
appendix.

Sub SetTriggerMacro (script as String)
Defines the number of a macro to be executed when an OEMTrigger is set (slightly
unexpectedly on the Config>SetHotkeys dialog) to generate OEM code 277. This
provides script execution without the requirement for a screen button as intermediary.

For example if:
SetTriggerMacro 456

has been executed then a signal on any OEMTrigger configured to 277 will run the code
in the file M543.M1S when activated.

Mach2 defined VB Script functions

Mach2 Customisation Guide Rev 6.11-A6 4-10

4.4.10 Serial port
You can send bytes of raw data to a serial port. The port number (i.e. n in COMn) to be
used and the baud rate for transmission is set in Configure>Logic. RTS/CTS hardware
flow control protocol will be used to control large volumes of data but this will not be
normally required. Data is transmitted 8 data bits, 1 stop bit No Parity by a call of
SendSerial.

Sub SendSerial (chars as String)
Example: to write the value of X DRO to an LCD display connected to the serial
(RS232) port.
Call SendSerial ("X-Axis = " & GetDRO (0))

4.4.11 Foreign ports
Scripts can access ports on the PC which are additional to the one (or perhaps two)
parallel port(s) defined in Configure>Ports and Pins. These are accessed at the basic
hardware port address level and you will have to be aware of the details of the individual
port addresses, allocation of data and status bits etc.

Function GetPortByte (pAddr as Integer) as Byte
Sub PutPortByte (pAddr as Integer, bData as Byte)

This feature should be used with great care as, if misused, it can interfere with any
peripheral on your system, including the hard-drive.

4.4.12 Waiting and system features
As described above the script code and Mach2 itself run in two separate processes. You
can test to see in Mach2 is busy or idle by calling:

Function IsMoving () as Boolean
This will return True if Mach2 is busy. You should call it in a loop after commanding an
axis move or other function which could take a significant time and before reading
DROs or LEDs that could be affected by the move.

Example:
Call Code ("G0X12Z100")
While IsMoving ()
WEnd
x = GetDRO (2) ' get Z value in case it has been Z inhibited

Function IsLoading () as Boolean
Returns true if the part program is loading rather than being actually run (e.g. so the
toolpath is being generated). This can be used to inhibit script actions like
Question().

Sub SystemWaitFor (sigNo as Integer)
Waits for the given signal to become active. This allows interfacing with physical
controls on the machine.

Function IsFirst () as Boolen
Returns True if this is the first call of the function after Mach2 has exited from the EStop
state. This can be used to re-initialse data that would be lost at a n EStop.

Mach2 defined VB Script functions

Rev 6.11-A6 Mach2 Customisation Guide 4-11

4.4.13 A more complicated macro example
The next example is used to
show the features available in
more detail and to point out
some of the difficulties in
using macros. The macro is
designed to perform a
number of roughing cuts to
reduce the size of a piece of
bar. Figure 4.2 shows the
operation partially
completed. The macro asks
the operator for the X values
of the ends of the piece to be
cut, the initial Z position of
the top and the final Z
coordinate of the top when
the roughing has been done.

For the sake of illustration
we suppose it is to be called by M62 and so will be stored in the file M62.m1s
Rem This macro M62 makes a series of roughing cuts to reduce a
' non-standard piece of material to a desired initial size.
Rem The P-word imust be provided to give depth of cut to be used
Rem The tool diameter and area to be machined are input in response to
' prompts from the macro. The units are the currently selected ones.
' The macro leaves the machine in Absolute distance mode
Rem The code is written to illustrate some features of VB Scripting so
' includes declarations that are not strictly needed etc. The logic
' can be done in other ways. You might like to try some!

Option Explicit

Dim TxtChoice, CutDepth, StartX, EndX, StartZ, EndZ

 CutDepth = Param1()
 While CutDepth <= 0 ' the P word is not given
 CutDepth = Question ("What depth of cut do you want each pass?")
 Wend

 StartX = Question ("What is X of left end?")
 EndX = Question ("What is X of right end?")
 While EndX <= StartX
 EndX = Question ("X right must be > left. What is it?")
 Wend

 StartZ = Question ("What is Z of top of material?")
 EndZ = Question ("What is desired final Z?")
 While EndZ >= StartZ
 EndZ = Question ("Final Z must be below initial Z. What is it?")
 Wend
 code "G0Z" & StartZ
 CurrZ = StartZ ' top of work
 code "G0X" & EndX ' cutter to right
 code "G1Z" & CurrZ 'feed down for first cut

 While CurrZ > EndZ ' loop for the z planes cut
 CurrZ = CurrZ – CutDepth ' Update Z
 If CurrZ < EndZ Then
 CurrZ = EndZ ' last cut dead to size
 End If
 code "G1Z" & CurrZ ' feed down
 code "G1X" & StartX ' cut pass
 code "G0Z" & (CurrZ + 0.1) ' avoid scratching surface
 code "G0X" & EndX ' back to right end

Figure 4.2 – Roughing a bar

Mach2 defined VB Script functions

Mach2 Customisation Guide Rev 6.11-A6 4-12

 Wend
 code "G0Z" & StartZ
 code "G0X" & StartX

Rem End of M62

In this macro, which will probably be used from MDI the P word is used to define the depth
of cut in each pass. So a typical call using inch units might be M62 P0.05

The macro then asks a series of questions to establish the X coordinates of the ends of the
bar and the original and desired Z values. These values are validated and re-prompted for if
they are invalid.

A While loop then performs cutting moves with ever decreasing Z until the desired size is
reached.

4.5 Script Snags and Hints

4.5.1 What Windows/Mach2 does with your macro
In order to understand some of the limitations of macros and to help you debug them, you
need to understand what Windows and Mach2 do when you run a script from a button or a
macro from a part program or MDI.

There are three stages in running a script. The last two proceed in parallel:

Analysis: The lines of text in your script or macro file are read by the Windows VB Script
engine and converted into a more compact internal symbolic form.

Macro run-time: The VB Script program is run. At this stage the user will be asked and
will answer questions. Calls to the Mach2 functions will be made. These will return values
or state of an input pin (IsActive()) and write requests for G-code to be executed
(Code etc.).

The function ismoving() can be called to see if the G-code runtime thread (see below) is
executing commands. It returns a non-zero value if commands are being executed or moves
are buffered.

G-code run-time: Mach2 which is running as a separate "thread" executes the G-code.

This scheme has several implications for you which are described below.

4.5.2 Script error reporting
Errors discovered in the analysis stage (e.g. mis-spelling while as whyle) are reported
with the offending line displayed. This will make them fairly easy to correct.

Unless you have a Microsoft debugger from Visual Studio installed on your computer,
errors at macro run-time do not give any useful diagnostics. Errors can range from the
wrong number of arguments passed to a function, division by zero etc. You may be able to
work out where they are from the Questions asked, by putting in extra "dummy" Questions
or by the use of On Error Resume Next followed by a call to the Mach2 Question
function to display the error message stored in the global variable err.description.
Note that, as any G-code issued is not running in synchronism with the script, you cannot
tell where you are by seeing the axes move or the DROs change.

Errors when the G-code runs can be very difficult to trace as Mach2 tends to ignore requests
it does not understand rather than flag them up to you. You will just have to "dry run" the
macro code to see exactly what is being requested. It is sometimes helpful to store a line of
G-code that you have constructed in a variable so that you can print it in a "debugging"
Question or Message to check that it looks right.

Mach2 defined VB Script functions

Rev 6.11-A6 Mach2 Customisation Guide 4-13

4.5.3 Stuck in a rut?
As you have some very powerful control structures it is quite easy to get a script stuck in a
loop. For example in this code fragment EndX is mistyped EndZ
 While EndX <= StartX
 EndZ = Question ("X right must be > left. What is it?")
 Wend

There is nothing that the operator can type that will correct the invalid EndX value for the
code loops for ever. You can only get out of this by using Control-Alt-Delete and getting
Windows to end the Mach2 program. In this case you must run OCXTest to reset the driver
or re-boot Windows.

If the line in grey in this code
 While CurrZ > EndZ ' loop for the z planes cut
 CurrZ = CurrZ – CutDepth ' Update Z
 If CurrZ < EndZ Then
 CurrZ = EndZ ' last cut dead to size
 End If
 code "G1Z" & CurrZ ' feed down
 code "G1X" & StartX ' cut pass
 code "G0Z" & (CurrZ + 0.1) ' avoid scratching surface
 code "G0X" & EndX ' back to right end
 Wend

is omitted or if CutDepth could be zero or negative then the While will run for ever.
This is worse than the loop above because each time round it requests the execution of some
G-code. Eventually the buffer will overflow and may well crash Mach2 in totally
unpredictable ways.

4.5.4 Reporting errors to users
If you accept data from users by Question() or by user DROs in a conversational
programming screen then you need to validate this data with logic in the VB Script. For
example, few mills will drill holes with negative depth successfully!

You can write messages to the error line by exploiting the Message script call
 Message "P word is not valid - defaults are set"

After a user error, you may not be able to take a default action and so may wish to exit from
your script. The VB Script language does not have a suitable Exit command that can be
used in the main program (which is what most scripts will be) or a GOTO so you may end
up with very deeply nested if commands.

A way of avoiding this is to make the code of your script be a subroutine called, say,
MainProg. The actual main program just calls this. Now, because Exit Sub is valid in a
subroutine and immediately exits from it you can easily abort the run of your script. A
skeleton of the whole cone might look like:

Sub MainProg
' get data…from DROs..
'
Rem now check the user data
If UserFooVal > MaxVal Then
 Message "You are not allowed values of " _
 & "Foo greater than" & MaxVal
 Exit Sub ' bail out because of error
End If
Rem script continues to use good value…..
'
'
End Sub ' MainProg
MainProg ' call the actual code when button/macro used

Mach2 defined VB Script functions

Mach2 Customisation Guide Rev 6.11-A6 4-14

4.6 Legacy/System VB Script Functions
The following functions are still available to writers of macro scripts at Release 2.7 of
Mach2. Their general use is, however, deprecated as better and more general ways are
available or they are aimed at internal systems use. They may be withdrawn or changed in
subsequent revisions of the Mach software.
Sub CloseDigFile()

Close the digitize point file.
Function CommandedFeed() as Double

This will return the currently applicable feedrate (including
any override.

Sub DisablePWM ()
Inhibit output of PWM spindle signal for Digispeed.

Sub DisableSignal (signal as Integer)
Disables operation of given signal.

Sub DoSpinCCW ()
Starts the spindle in a counterclockwise direction.

Sub DoSpinCW ()
Starts the spindle in a clockwise direction.

Sub DoSpinStop ()
Stops the spindle.

Sub EnablePWM ()
Enable output of PWM spindle signal for Digispeed.

Sub EnableSignal (signal as Integer)
Enables operation of given signal.

Function GetABSPosition(axis as Byte) as Double
This will return the absolute machine coordinate of the given
axis.

Function GetIJMode() as Integer
Returns 0 for Absolute mode, 1 for Incremental mode.

Function GetRPM() as Double
This will return the actual speed of the spindle as measured
by the Index sensor (if fitted).

Function GetSafeZ() as Double
This will return the current Safe_z to the VB routine.

Function GetScale(Axis as Integer) as Double
Returns the scale factor for the given axis.

Function GetSelectedTool()as Byte
Will return tool selected but not yet activated.

Function GetToolChangeStart(Axis as Byte) as Double
Will return the position of an axis when a toolchange was
called for.

Sub OpenDigFile()
Open a digitize point cloud file. User is prompted for
filename.

Function QueueDepth() as Byte
Depth of planner queue is returned.

Mach2 defined VB Script functions

Rev 6.11-A6 Mach2 Customisation Guide 4-15

Sub RefCombination(Axes as Integer)
Performs simultaneous referencing on several axes. They are
coded by ORing or addition of the following codes: X = 1, Y=
2, Z = 4, A = 8, B = 16 and C = 32.

Sub ResetTHC()
Resets the Torch Height Control code

Sub SetCurrentTool(Tool as Byte)
Will return currently tool

Sub SetFeedRate(Rate as Double)
Sets current FeedRate

Sub SetSpinSpeed(SWord as Double)
Sets current speed as by using the S word

Sub SetMachZero(Axis as Integer)
Defines the current position of the specified axis to be
machine zero.

Sub RunFile ()
Executes the currently loaded G-code file.

Sub SetIJAbs()
This will set the IJ mode to absolute

Sub SetIJInc()
This will set the IJ mode to incremental

Sub SetIJMode(mode as Integer)
This will set the IJ mode to Absolute if mode = 0 and
Incremental if mode = 1

Sub SetSafeZ(SafeZ as Double)
This will set the Safe_Z

Sub SetScale(Axis as Integer, Scale as Double)
Sets the given scale factor for the given axis.

Sub SingleVerify(Axis as Integer)
Do a "silent" verification run on one axis not reporting the
outcome, just correcting the axis position.

Sub SingleVerifyReport(Axis as Integer)
Do a normal verification run on one axis reporting any
discrepancy.

Sub StraightFeed(x as Double, y as Double, z as Double ,
 a as Double, b as Double, c as Double)

This will perform a feedrate move to X1,Y2,Z3…etc
Sub StraightTraverse(x as Double, y as Double, z as Double ,
 a as Double, b as Double, c as Double)

Rapid move.
Sub THCOn()

Turn on THC control
Sub THCOff()

Turn off THC control.
Function ToolLengthOffset() as Double

Gets the tool offset length currently in effect if any.
Function tXStart() as Double

Mach2 defined VB Script functions

Mach2 Customisation Guide Rev 6.11-A6 4-16

Function tZStart() as Double
Function tEndX() as Double
Function tEndZ() as Double
Function tClearX() as Double
Function tLead() as Double
Function tSpring() as Byte
Function tPasses() as Byte
Function tChamfer() as Double
Function tTaper() as Double
Function tInFeed() as Double
Function tDepthLastPass() as Double

Gets parameters defined in a G76 threading cycle call for use
by the canned cycle Script.

Sub VerifyAxis(Silent as Boolean)
Do a verification run. If silent is true, do not report the
outcome, just correct the axis position.

Designing Wizards

Rev 6.11-A6 Mach2 Customisation Guide 5-1

5. Designing wizards

The techniques of VB Script and custom screens can be combined to implement
"conversational programming" of the machining of a design using Mach2. Examples of this
feature have been shown earlier in the manual. This section gives details of how you can
write your own wizards.

5.1 What is a wizard?
A Mach2 wizard is feature which allows you to create a G-code part program by filling in
some simple information on a special screen or screens. Wizards provide open-ended
capability to Mach2 as they can be written and shared by users and are trivial to install on a
system.

Examples of wizards supplied with the standard release of Mach2 allow cutting circular and
rectangular pockets, digitising a model and engraving text.

Wizard functions can replace the need to use a full CAD/CAM software system for some
prototype work. You do not need to be able to write or understand G-code to use a wizard
although the code generated can be a useful learning resource. You can, for example, see
the steps required to cut a pocket by looking at the code produced by running the wizard.

5.2 A wizard's working in a nutshell
The basic operation of a wizard is very straightforward:

• The user chooses a wizard from the table of those installed on the system

• Mach2 sets aside the standard screens and displays the wizard screen (or possibly
the first of a set)

• The user provides information to the wizard by entering values in DROs and by
using buttons to switch LEDs On and Off. For example the diameter of a pocket,
the depth of each cut and the required spindle rotation could be specified.

• The wizard checks that the data that has been provided describes a possible
operation. It is, for example, very difficult to cut a 1" diameter pocket with a 30mm
diameter cutter!

• The wizard then writes a file (like a Teach file) containing the G-code to perform
the required task and loads this into Mach2

• Finally the user exits from the wizard and returns to the normal Mach2 screens.

Before attempting to design your own wizard you need to be familiar with using Screen
Designer and writing your own VB Script to attach to buttons or to use in macros. In
addition, you should experiment with the standard wizards. You will see that they have
slightly different user interfaces because they are written for different purposes by different
people.

The following sections give a step-by-step tutorial for how the Digitize wizard works and
some general advice on creating easy to use and reliable wizards.

We will assume, in this chapter, that Mach2 is set up in metric units although, of course,
you can use inch units just as well.

Creating a wizard that works for you is quite straightforward; it is much more difficult to
include all the checks to guide a user who does not really understand machining.

5.3 Worked example – the Digitize wizard explained
This tutorial will guide you through the development of the Digitize wizard currently found
in the released Mach2 add-ons folders. Its focus will not be primarily on the aesthetic
design of wizards but on the technical aspects involved in the design. Our discussion will

Designing Wizards

Mach2 Customisation Guide Rev 6.11-A6 5-2

detail the use of user DRO’s, teaching files, and restoring the system screens after the
wizard has run.

The wizard creates a part program which moves over a rectangulare area in the X and Y
plane plunging a probe in the tool holder to discover the Z height of a model object on the
table. If you have not used the Digitize wizard, now would be a good time to try it. It does
not matter if you have not got a probe – just stop before actually running the part program.

5.3.1 The first step
To start writing a wizard
you create a new folder in
the Addons directory
which can be found in the
main Mach2 system
directory normally located
at C:/Mach2. (see figure
5.1)

Since this is a wizard for
digitizing we will name our
folder Digitize.

When Mach2 is started it
searches the Addons folder
for the names of all
subdirectories it can see.
These names are used to
build up a table of names to
be displayed to the user to
select from when using the
Wizards menu

Inside the Digitize folder we will put a further folder called Bitmaps. It is best that you keep
bitmaps which are used for a particular wizard's screen(s) in its own bitmaps directory.
This helps to keep the clutter down on your system. Now that we have created the folders
necessary to hold the wizard, we can begin to create our wizard.

A wizard is simply a
screen which is used
for data entry by the
user and has some
buttons to start using
the data when it is
complete. Most
wizards will generate
G-code to be run after
leaving the wizard
screen. While it is
possible for wizard to actually run G-code, this is an advanced use of the wizard and it is
not recommended for inexperienced wizard writers.

The Digitize wizard will have a single screen that you create by running the Screen
Designer program. If you have not got a shortcut set up for it then run
C:/Mach2/Mach1Screen.exe When this loads you will have a blank set of screens with
screen #1 being displayed

The first thing to do is tell the program who wrote this wizard. See figure 5.2. To do this we
create a label which says the word Author followed by the author's name. We also want to
be able to describe to the user what this wizard will do so we create a label which begins
with Desc which tells the program that the following text is the description to be displayed
in the wizard selector. These two "smart labels" will not appear on screen when the wizard
is run; they are only used for the wizard selector dialog.

Figure 5.1 – The Addons folder in C:/Mach2

Figure 5.2 – The smart labels identifying the wizard

Designing Wizards

Rev 6.11-A6 Mach2 Customisation Guide 5-3

Next we add the rest of the controls required for the user to define what the wizard is to do.
We can label and tidy them up them later. You should save your layout in the folder you
created for your wizard. The screen will look like figure 5.3

5.3.2 Making the wizard work

Although this screen looks complete it does not yet do anything. The next job is to define
the functions of each control. Consider the Width DRO.

As you can see, in figure 5.4, it is given an OEM code of 1001. Any DRO which has a
higher value than 1000 is called a User DRO. These User DROs are places to input, display
and remember numbers. They can be used to save settings when a user wishes those settings
to be persistent from one the wizard to another. So we continue by setting up the nine DROs
which we intend to use to provide the data for our program. Each is given its own DRO
number.

You can see that the wizard has a button to test the file size that will be created by running
the finished wizard. This is important, as the user may not realise the implications of
probing at locations that are too close together! Let us look at how this button can be made
to work. Figure 5.5 shows what double-clicking the finished button gives.

Its function is chosen by the Radio button Execute VB Script. When this button is pressed
the VB Script inside the button will be run.

Figure 5.3 – Controls in place on screen

Figure 5.4 – The values for Width DRO

Designing Wizards

Mach2 Customisation Guide Rev 6.11-A6 5-4

It begins by getting the values of all the User DROs on the screen and assigning their value
to variables. This makes the code doing the calculation much easier to read than if it just
has OEM button numbers. We then do a simple calculation of the Width divided by the
Step times the Height divided by its Step. This is roughly the number of probing positions.

We then send the result of the calculation to User DRO 1007.

There is very little to worry about in terms of what Mach2 is doing when running a simple
script which does calculations. Some care is, however, needed when running a script which
actually writes G-code data that you will later run.

5.3.3 Making the wizard write a part program
To understand generating code let us look at the Create and Load G-code button and
analyze what it does

Here is the script which is stored in the create code button.
XWidth = GetUserDRO(1001)
YWidth = GetUserDRO (1002)
Safe = GetUserDRO (1003)
Min = GetUserDRO (1004)
Stepx = GetUserDRO (1005)
Stepy = GetUserDRO (1006)
Feed = GetUserDRO (1008)

It starts by assigning values to the variables for easy of reading the code
Rem now open a digitize.tap file
Rem all code commands then go to file.
OpenTeachFile "Digitize.tap"

The above line tells the system to open to teach file named digitize.tap. This is very
important because without opening this file system will attempt to run the lines of code as it
creates them. We just want them saving to run when we return to the main Mach2 screens..

code "(Digitize File)"
This puts out a G-code comment to the file so you'll know what it is when it is in the G-
code window

Figure 5.5 – The Check File Size button

Designing Wizards

Rev 6.11-A6 Mach2 Customisation Guide 5-5

Rem set the current location to 0,0,0 and open the file
code "M40"
code "G92X0Y0Z0"
code "F" & Feed

The above lines start the preamble with a G92 offset and set the feed rate according to what
has been entered in the DRO.

direction = 0
' first iterative loop
for y = 0 to YWidth step Stepy
 if direction = 1 then
 direction = 0
 else
 direction = 1
 end if
 for x = 0 to XWidth step Stepx
 if direction = 1 then
 code "G0X" & x & "Y" & y & "Z" & Safe
 else
 code "G0X" & XWidth - x & "Y" & y & "Z" & Safe
 end if
 code " G31 Z" & Min
 code " G0 Z" & Safe
 Next x
Next y
if direction = 1 then
 code "G0X" & XWidth & "Y" & YWidth & "Z" & Safe
else
 code "G0X" & 0 & "Y" & YWidth & "Z" & Safe
end if

All of the above lines to the calculations and write the G31 commands which will actually
do the probing in the program that you creating.

code "G0X0Y0Z" & Safe
code "G0X0Y0Z0 "
code "M30"

And finally wecomplete the program with an M30 to do a rewind.
CloseTeachFile

The above line closes the digitize teach file.
call LoadStandardLayout()
call LoadTeachFile()

In the above to lines tell the program to remove the wizard from the screen and load the
screen layout that Mach2 normally runs with, and then load the Teach file into the system
ready for cutting.

That would be the complete job but a user might want to create several digitizing jobs, and
would not want to re-enter the data each time. The wizard can be provided with a button on
its screen which tells the system to save the current settings when the wizard exits so that
next time and is called the same settings will be in all the DRO's.

To do this we simply create a button, make it run a VB Script routine Savewizard(). This
command tells the system to save all the DRO's that have been used into a file in the
wizard's folder with a .DEF extension.

This saving works as follows. When the wizard is loaded, the first 200 OEM DRO's, ticker
labels and LEDs are saved so that the wizard will not overwrite them. The next 55 DRO's
labels and LEDs if they are changed by the wizard will stay changed when the wizard exits
and control is passed back the Mavh2. If the Savewizard() script call is made then all
255 DROs, LEDs and ticker labels are stored in the .DEFS (for Defaults) file for loading
next time the wizard is called.

Designing Wizards

Mach2 Customisation Guide Rev 6.11-A6 5-6

5.3.4 A wizard that runs its own code
Now let us take a look at a bit of script which is run in the wizard itself. This will actually
move the machine when the script is activated. The digitize wizard does not use any such
code but as there are a couple things to worry about when designing that type of wizard and
we need to look at them.

Here is an example script which makes a tool move down to table, hit a switch, move back
up, so that we know the length of the tool.

Code "G28.1Z0"
While IsMoving()
Wend

The first line initiates the move and the next two lines cause the system to wait until the
movement previously command it has completed. This is very important. Because the script
runs in its own thread, synchronizing movements can be very complex. These two lines
allow you to synchronize the movement you have asked for to ensure further commands do
not happen too early. Always use the While IsMoving()/Wend loop when in any doubt.

As another more complete example:
Code "G31Z-100"
While IsMoving()
Wend

In the above lines we command a probe movement of the tool downwards from the home
switch. It will stop when the tool hits a switch. Now that it has stopped, we can set the Z
axis DRO to be zero with

SetDro(2,0)
The next two lines to move up 3 mm, which we would have previously calculated as the
deceleration distance all the tools at that speed.

Code "G91"
Code "G0Z-3"

And finally, reset the Z. DRO to zero. Our tool is now zeroed.
Code "SetDRO(2,0)"
Code "G90"

5.3.5 Other precautions
You must take particular care when writing a macro to try to not call other macros.
Unknown effects can be seen when one attempts to call a macro from a macro. The macro
interpreter also can only hold so many lines at a time, is therefore good practice to issue a
While /Wend loop every few lines of code if they command movement.

All macros in Mach2 run in their own thread. This can create problems in certain
circumstances so a designer is advised to take flow into account. This is very important
when G-code statements that modify the state of Mach2 are used. Things like feedrate
changes, spindle speed, signal changing, condition testing need to be thought out to avoid
problems if they reported too early. Take the following situation:

Code "G31Z-10”
Code "G92Z0
Code "G1Z5”

In these three lines, one would expect that the Z axis would probe downwards to a
maximum depth of -10 mm, then zero the DRO and move to +5mm. What will happen
instead though is that the Z will begin probing downwards, the G92 statement will zero the
DRO while the Z moves down, the Z will finish at an unknown negative coordinate. Then it
will lift way up to +5. This is because of the asynchronous nature of the macro interpreter.
To do this properly, you need to have a

While IsMoving()
Wend

Designing Wizards

Rev 6.11-A6 Mach2 Customisation Guide 5-7

after the code G31Z-10 statement. This will make your macro wait until the probe is done
before actually commanding a G92Z0. Subsequent versions of the Mach system will reduce
the need for this sequence but it will never do any harm to include it.

Armed with this basic introduction you can now study other Wizards. The facility is very
powerful but you do need to be very careful in testing your code. Some hints are given in
the next section.

5.4 Wizard design hints

5.4.1 Function
The function of the wizard can range from simple tasks, such as the setting up of work
offsets, to complex routines, such as automated circular pocketing or engraving. In any
case, it is very important that the function is laid out in well designed, logical steps. For
example, to make a cut, you would first have to tell the tool to rapid to the starting point,
then feed to depth, then feed to the end point, then retract the tool. The maths to calculate
the tool paths is best done initially by hand, in order to ensure that you are going to get the
results that you are looking for. If possible, try to make a list of what inputs you are going
to need so that you can easily make DROs and/or LEDs for them when you design your
screen.

5.4.2 Screen Design
A major component of any good wizard is the operator interface. So, the first step is to get
out a piece of paper and sketch a design of the screen layout. The screen should have a nice
work flow - uncluttered and intuitive. Inputs and DROs should be appropriately labelled,
and functional controls should be grouped if possible (i.e. spindle controls, coolant, units,
etc). To help the user to enter data is entered into the correct DROs, you can use bitmaps as
diagrams. The circular pocket wizard shows good examples of this technique with both line
and photographic illustrations.

5.4.3 Writing the Code
The VB Script code on buttons is the core of the wizard screens and can be made to do
many different
tasks. There is
a minimum of
three buttons
that need to
appear in every
wizard – Exit, Post G Code, and Save Settings.

The code for Exit is:
CloseTeachFile
call LoadStandardLayout()'reload the main screenset of Mach2

The code for Save Settings:
Savewizard()

Post Code is responsible for outputting the actual G-code to implement your wizard.

While the VB Script can be input directly into the button using its edit box in Screen
Designer, it is better done in Notepad or in a code editor like ConText. After initially
writing out the code the text editor, it can be put into the button by using copy (Ctrl-C) and
paste (Ctrl-V). If you use a good editor you will get the benefits of syntax highlighting
which will make your code easier to check.

We recommend using the line Options Explicit at the top of each piece of VB Script
and declaring all the variables with Dim statements. This will avoid strange bugs caused by
misspelled variable names.

Figure 5.6 – Wizard interface buttons

Designing Wizards

Mach2 Customisation Guide Rev 6.11-A6 5-8

5.4.4 Error checking
The example below shows a simple wizard that checks its data before using it.

Step One: Get the information from the wizard screen
PointX_1 = GetOEMDRO (1010) 'Get value from DRO# 1010
PointY_1 = GetOEMDRO (1011) 'Get value from DRO# 1011
PointX_2 = GetOEMDRO (1012) 'Get value from DRO# 1012
PointY_2 = GetOEMDRO (1013) 'Get value from DRO# 1013
Depth = ABS (GetOEMDRO (1014)) * -1
Rem Get value from DRO# 1014 and make it negative
Feed = GetOEMDRO (1015) 'Get value from DRO# 1015

Step Two: Error checking, Is the Info Good????
While Depth = 0
 Depth = Question ("Depth can’t be 0," & _
 "what would you like for a new Depth:")
 Call SetUserDRO(1014, Feed) ‘Set new value for DRO# 1014
Wend
While Feed <= 0
 Feed = Question ("Feed set wrong, " & _
 "what would you like for a Feed:")
 Call SetUserDRO(1015, Feed) 'Set new value for DRO# 1015
Wend

Step Three: Make a Program!
OpenTeachFile "Cutline.tap" 'Opens the Teach file
Code "G0 G49 G40 G17 G80 G50 G90 "
 'First line of code known as a safe start up block
Code “G00 X” & PointX_1 & “ Y” & PointY_1
 'Move to Point 1 at rapid
Code “G01 Z” & Depth & “ F” & (Feed / 2)
 'Plunge tool to depth at half Feed
Code ”G01 X” & PointX_2 &” Y” & PointY_2 & ” F” & Feed
 'move to Point 2 at Feed
Code "G54 G00 Z0.000” 'Rapid to Machine Z axis zero
Code "M30” 'End the Program

Step Four: Exit and load
CloseTeachFile 'Close the Teach File you have open
Call LoadTeachFile()
 'Load the file (Cutline.tap) that was just made into Mach2
Suppose the user enters data:

PointX_1 = 0.000
PointY_1 = 2.000
PointX_2 = 4.000
PointY_2 = 6.000
Depth = -0.750
Feed = 10.0

The G-code in the teach file will like the following:
G0 G49 G40 G17 G80 G50 G90
G00 X0.000 Y2.000
G01 Z-.750 F5.0
G01 X4.000 Y6.000 F10.0
G54 G00 Z0.000
M30

Designing Wizards

Rev 6.11-A6 Mach2 Customisation Guide 5-9

5.4.5 Documenting the wizard
There are 3 major pieces required to properly document the wizard – the folder name where
the wizard is stored, the description, and the author. All three pieces of information are
displayed on the “Pick wizard” dialog. The column on the left most side is the name of the
directory in which the wizard screen file resides. This directory is located in the
<Mach2>/Addons folder. It is important to name the wizard appropriately, i.e. “Circular
Pocket” as opposed to “wizard_01”. The center column holds a description of the wizard's
function. The description is added by placing a label control on your wizard screen design
and setting the text to be Desc this would be the description. The Desc is how Mach2
knows that it is a description and all of the text after the Desc is what is displayed. This
label is hidden from view when actually running the wizard screen. The right side column
displays the author’s name. Setting this is exactly like setting up the description – place a
label control on your wizard screen design and set the text to be Author your name here.
This label is also hidden from view on the running wizard screen. You should always
include an author label on your wizards so that you can receive proper credit for all of your
hard work.

5.4.6 Troubleshooting
There are a few things that can be done to help debug the code.

The most important is to have descriptive variable names. This will help in making the code
more readable. For example, instead of having an input for the Rapid Plane and calling it
“x”, name the variable Rapid_Plane – not only does it save you the trouble of having to
jot down a note to tell you that “x” is the Rapid Plane value, but it’s a lot easier to follow
that value through any equations you do with it, to pick out any possible mistakes.

Another good idea is to add a toolpath window and a code window to the wizard screen.
These allow you to view the code and toolpath, and this helps in testing because you can
change the DRO values and check for errors.

Also, be careful when using loops - they are great for doing repetitive tasks, but have the
potential to lockup the computer (endless loops)! To keep this from happening, you can add
an If statement to see if the loop is run more than an arbitrary number of times, and then
break out of the loop if it exceeds that number.

Designing Wizards

Mach2 Customisation Guide Rev 6.11-A6 5-10

Reference Tables

Rev 6.11-A6 Mach2 Customisation Guide 6-1

6. Appendix 1 – Reference tables for Codes

6.1 Keyboard shortcut codes

 HotKey DRO/Button ScanCode Fn/OEM Code
 - <minus> Decrease spindle speed 109 32/164
 ' <sQuote> Red reset button 192 21/0
 / Reset feedrate override 191 14/0
 [Reduce slow jog speed 219 32/112
] Increase slow jog speed 221 32/111
 + Increase spindle speed 107 32/163
 <Alt>1 Choose Program Run 2097 32/1
 <Alt>2 Choose MDI 2098 32/2
 <Alt>3 Choose Manual 2099 32/4
 <Alt>4 Choose Toolpath 2100 32/3
 <Alt>5 Choose Offsets 2101 32/7
 <Alt>6 Choose Settings 2102 32/6
 <Alt>7 Choose Diagnostics 2103 32/5
 <Alt>A Cycle MPG jog axes 2113 32/175
 <Alt>H Go to Home 2120 32/138
 <Alt>i Reset interpreter 2121 32/102
 <Alt>J Cycle jog step size value 2122 32/171
 <Alt>N Toggle single block execution mode 2126 4/0
 <Alt>R Cycle start 2130 0/0
 <Alt>S Stop cycle 2131 3/0
 <Alt>U Toggle inch/mm units 2165 32/106
 <Ctrl><Alt>J Jog On/Off toggle 34890 32/103
 <Ctrl>F Toggle flood coolant 32838 32/113
 <Ctrl>J Cycle Cont/Step/MPG jog modes 32842 32/245
 <Ctrl>M Toggle mist coolant 32845 32/114
 <Ctrl>O Goto zero position 32847 17/0
 <Ctrl>S Toggle joystick enable 32851 28/0
 <Ctrl>V Verify axis referencing 32854 20/0
 <Ctrl>W Rewind part program 32855 2/0
 <Ctrl>X Select X axis DRO 32856 0/0
 <Ctrl>Y Select Y axis DRO 32857 1/0
 <Ctrl>Z Goto safe Z position 32858 32/104
 <space> Pause 32 1/0
 Delete Delete block toggle 46 32/176
 End Optional stop toggle 35 32/177
 F10 Reduce feedrate 121 32/109
 F10 Zero encoder Y DRO 121 32/134
 F11 Increase feedrate 122 32/108
 F11 Zero encoder Z DRO 122 32/135
 F5 Toggle spindle CW 116 32/110
 F6 Goto tool change position 117 34/0
 F9 Zero encoder X DROs 120 32/133
Note: The shortcuts for any given special layout can be found in the CSV file which can be exported
using Mach2ScreenTweak

Reference Tables

Mach2 Customisation Guide Rev 6.11-A6 6-2

6.2 Button, LED and DRO codes

Type Function FCode IsOEM OEMCode
1 X DRO 0 No
1 Y DRO 1 No
1 Z DRO 2 No
1 A DRO 3 No
1 B DRO 4 No
1 C DRO 5 No
1 X Vel DRO 6 No
1 Y Vel DRO 7 No
1 Z Vel DRO 8 No
1 A Vel DRO 9 No
1 B Vel DRO 10 No
1 C Vel DRO 11 No
1 Jog Inc Inc DRO 12 Yes 1
1 Pulse Freq DRO 12 Yes 2
1 Slow Jog % DRO 12 Yes 3
1 X min DRO 12 Yes 4
1 Y min DRO 12 Yes 5
1 Z min DRO 12 Yes 6
1 A min DRO 12 Yes 7
1 B min DRO 12 Yes 8
1 C min DRO 12 Yes 9
1 X max DRO 12 Yes 10
1 Y max DRO 12 Yes 11
1 Z max DRO 12 Yes 12
1 A max DRO 12 Yes 13
1 B max DRO 12 Yes 14
1 C max DRO 12 Yes 15
1 X G92 Axis Off DRO 12 Yes 16
1 Y G92 Axis Off DRO 12 Yes 17
1 Z G92 Axis Off DRO 12 Yes 18
1 A G92 Axis Off DRO 12 Yes 19
1 B G92 Axis Off DRO 12 Yes 20
1 C G92 Axis Off DRO 12 Yes 21
1 Queue Depth DRO 12 Yes 22
1 Time Scale DRO 12 Yes 23
1 PWM Base DRO 12 Yes 24
1 Torch Corr Sp DRO 12 Yes 25
1 Torch Height Corr DRO 12 Yes 26
1 Torch Height Max DRO 12 Yes 27
1 CPU Load DRO 12 Yes 28
1 Enc X DRO 12 Yes 29
1 Enc Y DRO 12 Yes 30
1 Enc Z DRO 12 Yes 31
1 X axis Ref Sw DRO 12 Yes 33
1 Y axis Ref Sw DRO 12 Yes 34

Reference Tables

Rev 6.11-A6 Mach2 Customisation Guide 6-3

Type Function FCode IsOEM OEMCode
1 Z axis Ref Sw DRO 12 Yes 35
1 A axis Ref Sw DRO 12 Yes 36
1 B axis Ref Sw DRO 12 Yes 37
1 C axis Ref Sw DRO 12 Yes 38
1 True spindle DRO 12 Yes 39
1 Worst Case DRO 12 Yes 40
1 Tool X Offset DRO 12 Yes 41
1 Tool Z Offset DRO 12 Yes 42
1 Tool Dia DRO 12 Yes 43
1 Tool Tip Rad DRO 12 Yes 44
1 Touch Corr DRO 12 Yes 45
1 Fixture # DRO 12 Yes 46
1 Part X Offset DRO 12 Yes 47
1 Part Y Offset DRO 12 Yes 48
1 Part Z Offset DRO 12 Yes 49
1 Part A Offset DRO 12 Yes 50
1 Part B Offset DRO 12 Yes 51
1 Part C Offset DRO 12 Yes 52
1 CPU Spd DRO 12 Yes 53
1 Safe Z DRO 12 Yes 54
1 Overidden Feed Rate 12 Yes 55
1 Pulley DRO 12 Yes 56
1 Max Speed DRO 12 Yes 57
1 Velocity per Rev DRO 12 Yes 58
1 X Scale DRO 12 Yes 59
1 Y Scale DRO 12 Yes 60
1 Z Scale DRO 12 Yes 61
1 A Scale DRO 12 Yes 62
1 B Scale DRO 12 Yes 63
1 C Scale DRO 12 Yes 64
1 Lowest Torch Correction DRO 12 Yes 65
1 Threading Entrance Angle DRO 12 Yes 66
1 Max Entrance Points DRO 12 Yes 67
1 Rotational Time Error DRO 12 Yes 68
1 Entrance Trigger DRO 12 Yes 69
1 Time Correction Derivative DRO 12 Yes 70
1 Normal Spin Counts DRO 12 Yes 71
1 Current Spin Counts DRO 12 Yes 72
1 Spin Adder DRO 12 Yes 73
1 Spin up/down incr. 12 Yes 74
1 Stock Size DRO 12 Yes 75
1 Laser X Grid 12 Yes 76
1 Laser Y Grid 12 Yes 77
1 Repetitions DRO 12 Yes 78
1 Lower Z-Inhibit By DRO 12 Yes 79
1 Z-Inhibit DRO 12 Yes 80
1 Port Bit-test DRO (diagnostic) 12 Yes 81
1 Anti-dive limit DRO 12 Yes 82
1 X Machine Coord DRO 12 Yes 83
1 Y Machine Coord DRO 12 Yes 84
1 Z Machine Coord DRO 12 Yes 85

Reference Tables

Mach2 Customisation Guide Rev 6.11-A6 6-4

Type Function FCode IsOEM OEMCode
1 A Machine Coord DRO 12 Yes 86
1 B Machine Coord DRO 12 Yes 87
1 C Machine Coord DRO 12 Yes 88
1 Blend factor DRO 12 Yes 89
1 reserved 12 Yes 90
1 G73 Pull-off value 12 Yes 91
1 Tangential lift threshold angle 12 Yes 92
1 Tangential lift Z level 12 Yes 93
1 reserved 12 Yes 94
1 reserved 12 Yes 95
1 reserved 12 Yes 96
1 CV Feedrate 12 Yes 97
1 Feed override increment value 12 Yes 98
1 Blended Velocity DRO 13 No
1 Elapsed DRO 14 No
1 Estimate DRO 15 No
1 Curr Line no DRO 16 No
1 Spindle requested DRO 17 No
1 Feedrate DRO 18 No
1 Tool 24 No
1 Rot A diameter 25 No
1 Rot B diameter 26 No
1 Rot C diameter 27 No
1 Jog Inc DRO 28 No
1 X Fixture Orig Off DRO 30 No
1 X Fixture Off DRO 30 No
1 Y Fixture Off DRO 31 No
1 Y Fixture Orig Off DRO 31 No
1 Z Fixture Orig Off DRO 32 No
1 Z Fixture Off DRO 32 No
1 A Fixture Orig Off DRO 33 No
1 A Fixture Off DRO 33 No
1 B Fixture Off DRO 34 No
1 B Fixture Orig Off DRO 34 No
1 C Fixture Off DRO 35 No
1 C Fixture Orig Off DRO 35 No
1 Current Tool length DRO 36 No
4 Cycle start 0 No
4 Pause 1 No
4 Rewind 2 No
4 Stop 3 No
4 Single 4 No
4 Resume 5 No
4 Edit File 6 No
4 Zero All 7 No
4 Zero X 8 No

Reference Tables

Rev 6.11-A6 Mach2 Customisation Guide 6-5

Type Function FCode IsOEM OEMCode
4 Zero Y 9 No
4 Zero Z 10 No
4 Zero A 11 No
4 Zero B 12 No
4 Zero C 13 No
4 Feedrate reset 14 No
4 Estimate Job 15 No
4 Run from here 16 No
4 GotoZs 17 No
4 Coord System 18 No
4 Verify 20 No
4 Reset 21 No
4 Ref X 22 No
4 Ref Y 23 No
4 Ref Z 24 No
4 Ref A 25 No
4 Ref B 26 No
4 Ref C 27 No
4 Joystick Toggle 28 No
4 Softlimits Toggle 29 No
4 Radius Tracking Toggle 30 No
4 Jog Toggle 31 No
4 Program Run 32 Yes 1
4 MDI 32 Yes 2
4 Toolpath 32 Yes 3
4 Positioning 32 Yes 4
4 Diagnostics 32 Yes 5
4 Corrections 32 Yes 6
4 Tables 32 Yes 7
4 Inc Inc Up 32 Yes 100
4 Inc Inc Down 32 Yes 101
4 Reset Interp 32 Yes 102
4 Jog mode toggle 32 Yes 103
4 Goto Safe Z 32 Yes 104
4 Home Z then X then Y, A, B, C - set machine coords 32 Yes 105
4 Units 32 Yes 106
4 Mach coords 32 Yes 107
4 Feed raise 32 Yes 108
4 Feed lower 32 Yes 109
4 Spindle CW, reset THC height 32 Yes 110
4 Slow Jog Up 32 Yes 111
4 Slow Jog Dn 32 Yes 112
4 Flood toggle 32 Yes 113
4 Mist toggle 32 Yes 114
4 Edit G-code 32 Yes 115
4 Zero radius DRO on X 32 Yes 116
4 Zero radius DRO on Y 32 Yes 117
4 Zero radius DRO on Z 32 Yes 118

Reference Tables

Mach2 Customisation Guide Rev 6.11-A6 6-6

Type Function FCode IsOEM OEMCode
4 Software limits 32 Yes 119
4 Touch button for Tool length offset 32 Yes 120
4 Tool Tab Save 32 Yes 121
4 Fixture Tab Save 32 Yes 122
4 Torch Enable Toggle 32 Yes 123
4 Torch Cal Zero 32 Yes 124
4 Enc Load X 32 Yes 125
4 Enc To X 32 Yes 126
4 Enc Load Y 32 Yes 127
4 Enc To Y 32 Yes 128
4 Enc Load Z 32 Yes 129
4 Enc To Z 32 Yes 130
4 Tool Path Toggle 32 Yes 132
4 Zero X Encoder 32 Yes 133
4 Zero Y Encoder 32 Yes 134
4 Zero Z Encoder 32 Yes 135
4 Tool Offset Tog 32 Yes 136
4 Fixture Off 32 Yes 137
4 Go Home 32 Yes 138
4 Part X Offset Touch 32 Yes 139
4 Part Y Offset Touch 32 Yes 140
4 Part Z Offset Touch 32 Yes 141
4 Part A Offset Touch 32 Yes 142
4 Part B Offset Touch 32 Yes 143
4 Part C Offset Touch 32 Yes 144
4 Tool X Offset Touch 32 Yes 145
4 Tool Z Offset Touch 32 Yes 146
4 Joy Throttle select 32 Yes 147
4 Touch Corr Enable Toggle 32 Yes 148
4 Auto Lim Override Toggle 32 Yes 149
4 OverRide Limits 32 Yes 150
4 SS on Act4 Toggle 32 Yes 151
4 reserved 32 Yes 152
4 reserved 32 Yes 153
4 reserved 32 Yes 154
4 Units/rev - Units/min toggle 32 Yes 155
4 Set this line as next to execute 32 Yes 156
4 Jog Follow 32 Yes 157
4 Joystick ON 32 Yes 158
4 Joystick OFF 32 Yes 159
4 Regen toolpath display 32 Yes 160
4 Zero X-Z to stock as defined in DROs (Turn) 32 Yes 161
4 Coordinate mode (G90/91) 32 Yes 162
4 Raise spindle speed 32 Yes 163
4 Lower spindle speed 32 Yes 164
4 Laser Probe Enable Toggle 32 Yes 165
4 Zero laser grid at current location 32 Yes 166
4 Z inhibit toggle 32 Yes 167
4 Ignore Tool Change toggle 32 Yes 168
4 Close current file 32 Yes 169
4 Re-load last file 32 Yes 170

Reference Tables

Rev 6.11-A6 Mach2 Customisation Guide 6-7

Type Function FCode IsOEM OEMCode
4 Jog increment cycle 32 Yes 171
4 Clear error label 32 Yes 172
4 Spindle CCW toggle 32 Yes 173
4 Parallel Port Encoder3 MPG Jog Toggle 32 Yes 174
4 Cycle axis controlled by MPG 32 Yes 175
4 Block Delete "switch" toggle 32 Yes 176
4 Optional Stop "switch" toggle 32 Yes 177
4 Offline toggle 32 Yes 178
4 Display Abs Machine coordinates (i.e. macnine coords ON) 32 Yes 179
4 Display Work + G92 coordinates (i.e. Machine coords OFF) 32 Yes 180
4 Display Work coords (i.e. not with G92) 32 Yes 181
4 Home X, Home Z (Turn) 32 Yes 184
4 Select X for MPG 32 Yes 185
4 Select Y for MPG 32 Yes 186
4 Select Z for MPG 32 Yes 187
4 Select A for MPG 32 Yes 188
4 Select B for MPG 32 Yes 189
4 Select C for MPG 32 Yes 190
4 Select Jog Increment 1 32 Yes 191
4 Select Jog Increment 2 32 Yes 192
4 Select Jog Increment 3 32 Yes 193
4 Select Jog Increment 4 32 Yes 194
4 Select Jog Increment 5 32 Yes 195
4 Select Jog Increment 6 32 Yes 196
4 Select Jog Increment 7 32 Yes 197
4 Select Jog Increment 8 32 Yes 198
4 Select Jog Increment 9 32 Yes 199
4 Select Jog Increment 10 32 Yes 200
4 Feed override Off 32 Yes 201
4 Feed override Jog 32 Yes 202
4 Feed override Feed 32 Yes 203
4 Jog mode Continuous 32 Yes 204
4 Jog mode Step 32 Yes 205
4 Joystick On 32 Yes 206
4 Joystick Off 32 Yes 207
4 Clear Z tool offset (Turn) 32 Yes 208
4 Clear X tool offset (Turn) 32 Yes 209
4 Set stock correction to Zero (Turn) 32 Yes 210
4 Home X Home Z (Turn) 32 Yes 211
4 Home X (Turn) 32 Yes 212
4 Home Z (Turn) 32 Yes 213
4 Show recent G-code files list 32 Yes 214
4 Display history 32 Yes 215
4 Load G-code 32 Yes 216
4 Tool flip toggle (Turn front/rear toolposts) 32 Yes 217
4 Z-inhibit ON 32 Yes 218
4 Z-inhibit OFF 32 Yes 219
4 Port Bit-Test Set (diagnostic) 32 Yes 220
4 Anti-dive enabled toggle 32 Yes 221
4 THC Anti-dive OFF 32 Yes 222
4 THC Anti-dive ON 32 Yes 223

Reference Tables

Mach2 Customisation Guide Rev 6.11-A6 6-8

Type Function FCode IsOEM OEMCode
4 Flood ON 32 Yes 224
4 Flood OFF 32 Yes 225
4 Mist ON 32 Yes 226
4 Mist OFF 32 Yes 227
4 Load Teach file 32 Yes 228
4 Toolpath Machine/Job toggle 32 Yes 229
4 Display wizard selection window 32 Yes 230
4 Load the normal screens when wizard done 32 Yes 231
4 Simple Complex screen toggle 32 Yes 232
4 Output 4 ON 32 Yes 233
4 Output 4 OFF 32 Yes 234
4 Output 5 ON 32 Yes 235
4 Output 5 OFF 32 Yes 236
4 Output 6 ON 32 Yes 237
4 Output 6 OFF 32 Yes 238
4 Set Help context 32 Yes 239
4 Def-Ref all axes 32 Yes 240
4 Tangential toggle 32 Yes 241
4 Save XYZ to G59.254 work offset 32 Yes 242
4 do G0G53 to G59.254 offset location 32 Yes 243
4 Move to G59.254 with midpoint selection 32 Yes 244
4 Toggle Jog Mode through Cont/Step/MPG as relevant 32 Yes 245
4 Force Referenced on all axes 32 Yes 246
4 CV feed toggle 32 Yes 247
4 CV feed OFF 32 Yes 248
4 CV feed ON 32 Yes 249
4 Disable movement on axis X 32 Yes 250
4 Disable movement on axis Y 32 Yes 251
4 Disable movement on axis Z 32 Yes 252
4 Disable movement on axis A 32 Yes 253
4 Disable movement on axis B 32 Yes 254
4 Disable movement on axis C 32 Yes 255
4 Engine OFFline 32 Yes 257
4 Engine ONline 32 Yes 258
4 Select encoder jog on axis X 32 Yes 259
4 Select encoder jog on axis Y 32 Yes 260
4 Select encoder jog on axis Z 32 Yes 261
4 Select encoder jog on axis A 32 Yes 262
4 Select encoder jog on axis B 32 Yes 263
4 Select encoder jog on axis C 32 Yes 264
4 Select Step value 1 32 Yes 265
4 Select Step value 2 32 Yes 266
4 Select Step value 3 32 Yes 267
4 Select Step value 4 32 Yes 268
4 Select Step value 5 32 Yes 269
4 Select Step value 6 32 Yes 270
4 Select Step value 7 32 Yes 271
4 Select Step value 8 32 Yes 272
4 Select Step value 9 32 Yes 273
4 Select Step value 10 32 Yes 274
4 Set Jog mode STEP 32 Yes 275

Reference Tables

Rev 6.11-A6 Mach2 Customisation Guide 6-9

Type Function FCode IsOEM OEMCode
4 Set Jog mode CONT 32 Yes 276
4 Code for OEMTriggers runs the macro in SetTriggerMacro 32 Yes 277
6 Reset LED 0 No
6 Inch LED 1 No
6 MMs LED 2 No
6 Idle LED 3 No
6 Start LED 4 No
6 Pause LED 5 No
6 Tool change LED 6 No
6 X ref LED 7 No
6 Y ref LED 8 No
6 Z ref LED 9 No
6 A ref LED 10 No
6 B ref LED 11 No
6 C ref LED 12 No
6 Dwell LED 13 No
6 Joystick enable LED 14 No
6 Fixture LED 16 No
6 Active 1 LED 21 No
6 Active 2 LED 22 No
6 Active 3 LED 23 No
6 Active 4 LED 24 No
6 Digitize In LED 25 No
6 Index LED 26 No
6 Limit OV LED 27 No
6 X++ Limit LED 28 No
6 X-- Limit LED 29 No
6 X-- Home LED 30 No
6 Y++ Limit LED 31 No
6 Y-- Limit LED 32 No
6 Y-- Home LED 33 No
6 Z++ Limit LED 34 No
6 Z-- Limit LED 35 No
6 Z-- Home LED 36 No
6 A++ Limit LED 37 No
6 A-- Limit LED 38 No
6 A-- Home LED 39 No
6 B++ Limit LED 40 No
6 B-- Limit LED 41 No
6 B-- Home LED 42 No
6 C++ Limit LED 43 No
6 C-- Limit LED 44 No
6 C-- Home LED 45 No
6 Enable 1 LED 46 No

Reference Tables

Mach2 Customisation Guide Rev 6.11-A6 6-10

Type Function FCode IsOEM OEMCode
6 Enable 2 LED 47 No
6 Enable 3 LED 48 No
6 Enable 4 LED 49 No
6 Enable 5 LED 50 No
6 Enable 6 LED 51 No
6 Digitize Out LED 55 No
6 G92 LED 56 Yes 10
6 Spindle CW LED 56 Yes 11
6 Mist LED 56 Yes 12
6 Flood LED 56 Yes 13
6 Jog mode Cont LED 56 Yes 14
6 Jog mode Incr LED 56 Yes 15
6 Mach coords warn LED 56 Yes 16
6 Feed override LED 56 Yes 17
6 Estimating LED 56 Yes 18
6 Emergency LED 56 Yes 19
6 A radius corr. LED 56 Yes 20
6 B radius corr. LED 56 Yes 21
6 B radius corr. LED 56 Yes 22
6 Software limits LED 56 Yes 23
6 Torch En LED 56 Yes 24
6 True spindle Acc LED 56 Yes 25
6 True spindle Dec LED 56 Yes 26
6 Tool Path LED 56 Yes 27
6 Tool Offset on LED 56 Yes 28
6 Part Offset on LED (always in 6.11) 56 Yes 29
6 Throttle is Slow Jog LED 56 Yes 30
6 Throttle is Feedrate LED 56 Yes 31
6 reserved 56 Yes 32
6 Auto Lim override LED 56 Yes 33
6 Override Limits/home switches LED 56 Yes 34
6 SS on Act4 LED 56 Yes 35
6 THC Arc Good LED 56 Yes 36
6 Torch Up active LED 56 Yes 37
6 Torch Down active LED 56 Yes 38
6 Feed per Min 56 Yes 39
6 Feed per Rev 56 Yes 40
6 X Scale LED 56 Yes 41
6 Y Scale LED 56 Yes 42
6 Z Scale LED 56 Yes 43
6 A Scale LED 56 Yes 44
6 B Scale LED 56 Yes 45
6 C Scale LED 56 Yes 46
6 reserved 56 Yes 47
6 Abs Coordinate Mode LED 56 Yes 48
6 Incremental Coordinate Mode LED 56 Yes 49
6 Threading Sync Mode LED (Turn) 56 Yes 50
6 Laser Probe enabled LED 56 Yes 51
6 Z-Inhibit ON LED 56 Yes 52
6 Ignore Tool Change ON LED 56 Yes 53

Reference Tables

Rev 6.11-A6 Mach2 Customisation Guide 6-11

Type Function FCode IsOEM OEMCode
6 CV Mode ON LED 56 Yes 54
6 M30 Repeats Enabled LED 56 Yes 55
6 CV mode OFF LED 56 Yes 56
6 MPG Jog On LED 56 Yes 57
6 Engine NOT using enhanced mode LED 56 Yes 58
6 MPG Jogs X axis LED 56 Yes 59
6 MPG Jogs Y axis LED 56 Yes 60
6 MPG Jogs Z axis LED 56 Yes 61
6 MPG Jogs A axis LED 56 Yes 62
6 MPG Jogs B axis LED 56 Yes 63
6 MPG Jogs C axis LED 56 Yes 64
6 Block Delete On LED 56 Yes 65
6 Optional Stop On LED 56 Yes 66
6 Offline indicator LED 56 Yes 67
6 Threading feed related to true Spindle speed LED 56 Yes 68
6 Index signal awaited LED (Turn) 56 Yes 69
6 Anti-dive enabled LED 56 Yes 70
6 Spindle speed stable LED 56 Yes 71
6 IJ Mode is Absolute LED 56 Yes 72
6 IJ Mode is Incremental LED 56 Yes 73
6 G-code teaching file is open LED 56 Yes 74
6 Offset in effect on at least one axis 56 Yes 75
6 reserved 56 Yes 76
6 Output 4 Active LED 56 Yes 77
6 Output 5 Active LED 56 Yes 79
6 Output 6 Active LED 56 Yes 80
6 Pause Active LED 56 Yes 81
6 Tangential control Active LED 56 Yes 82
6 Single Step mode Active LED 56 Yes 83
6 Jogging enabled LED 56 Yes 84
6 CV feed enabled LED 56 Yes 85
6 Axis inhibited X LED 56 Yes 86
6 Axis inhibited Y LED 56 Yes 87
6 Axis inhibited Z LED 56 Yes 88
6 Axis inhibited A LED 56 Yes 89
6 Axis inhibited B LED 56 Yes 90
6 Axis inhibited C LED 56 Yes 91
6 Diameter mode active (Turn) LED 56 Yes 92
6 Timing signal active (Turn) LED 56 Yes 93

Reference Tables

Mach2 Customisation Guide Rev 6.11-A6 6-12

6.3 Signal codes

 SigName SigInput SigCode
 XLimitPlus Yes 0
 XLimitMinus Yes 1
 Xhome Yes 2
 YLimitPlus Yes 3
 YLimitMinus Yes 4
 YHome Yes 5
 ZLimitPlus Yes 6
 ZLimitMinus Yes 7
 ZHome Yes 8
 ALimitPlus Yes 9
 ALimitMinus Yes 10
 AHome Yes 11
 BLimitPlus Yes 12
 BLimitMinus Yes 13
 BHome Yes 14
 CLimitPlus Yes 15
 CLimitMinus Yes 16
 CHome Yes 17
 Activation1 Yes 18
 Activation2 Yes 19
 Activation3 Yes 20
 Activation4 Yes 21
 Digitize Yes 22
 Index Yes 23
 LimitOverride Yes 24
 Emergency Yes 25
 THCOn Yes 26
 THCOff Yes 27
 THCUp Yes 28
 THCDown Yes 29
 OEMTrigger1 Yes 29
 OEMTrigger2 Yes 30
 OEMTrigger3 Yes 31
 DigTrigger No 0
 Enable1 No 1
 Enable2 No 2
 Enable3 No 3
 Enable4 No 4
 Enable5 No 5
 Enable6 No 6
 ExtAct1 No 7
 ExtAct2 No 8
 ExtAxt3 No 9
 ChargePump No 10

Screen layout file format

Rev 6.11-A6 Mach2 Customisation Guide 7-1

7. Appendix 2 - Screen Layout files (.SET & .SSET)

7.1 Roles of Screen Designer and Mach2ScreenTweak
The screen layouts used by Mach2 are stored in files (.SET for full screens and SSET for
simplified screens). The file to use is set by the Layout menu in Mach2 and is persistent
when the program is re-loaded.

Standard Layout files are distributed with Mach2. You can modify the details of individual
DROs, buttons etc. (i.e. Controls) displayed by these using Screen Designer (see chapter 8).

You can make your own layouts by combining screens from the standard layouts and ones
of your own (created with Screen Designer) using the utility Mach2ScreenTweak. This
utility also allows you to export a layout to a comma separated variables (CSV) file so that
it can be imported into Microsoft Excel or Microsoft Access for analysis.
Mach2ScreenTweak will also import a layout in CSV format so allowing you to make
alterations using the Microsoft utilities or your own programs.

Warning: If you create an invalid layout then Mach2 may behave in unstable ways.
Support cannot be given to problems encountered when using customised screens so you
should always retain the standard layouts so that you can use them to demonstrate and
report difficulties to Support.

7.2 Using Mach2ScreenTweak

7.2.1 Introduction
Mach2ScreenTweak is a utility program aimed at OEMs, dealers and expert users of
Mach2Mill and Mach2Turn who make use of the "Screen Designer". It is designed to
complement rather that replace that program.

Mach2ScreenTweak is really concerned with manipulating the individual screens within a
Mach2 Layout. In other words it processes .SET files.

The following is a summary of its main features:

Import screen(s) from another layout (perhaps locally designed screens imported into
the standard ones)

Delete screen(s) from a layout
Promote/Demote a screen in a layout so its screen number as used in Screen Designer

corresponds to its "position" in normal use
Allocate F-key numbers to screen selection buttons and input new caption text for

these buttons after screens have been moved or added
Scale down or up the size of a screen or all screens in a layout to work with a different

resolution of display
Re-order the DROs in a group so that the arrow keys traverse them logically (in

columns or rows) rather than in the order in which they were created in Screen
Designer

Export a comma-separated-variable file with a record for each control on the screens
of a layout to analyse and document a layout.

The code is written in Visual Basic (Version 6.0) and the source is available on request for
not-for-profit use. Hopefully this will encourage others to develop and distribute screens,
utilities, filters, wizards etc. in the open way in which Mach2 and its predecessors evolved.

7.2.2 Installation
The utility is distributed as a .ZIP file including the executable Mach2ScreenTweak.exe,
this manual and the standard Microsoft Common Dialog ActiveX controls in
COMDLG32.OCX

Screen layout file format

Mach2 Customisation Guide Rev 6.11-A6 7-2

The .ZIP also includes a sample layout (TweakSamp.set) that contains 1024 resolution
screens with Caption Labels that can be used to try out appending screens from an
Additional Layout.

Mach2ScreenTweak.exe can be copied into any convenient folder and run from there via a
desktop or quick-start area shortcut.

If your system does not already have it, then you will need to copy COMDLG32.OCX into
the folder C:\Windows\System32.

The utility can be uninstalled by deleting the .EXE file and, if specially installed, the
COMDLG32.OCX

7.2.3 The main screen and its buttons
Figure 7.1 shows the main screen after loading the standard 1024.SET from Mach2Mill
Release 1.00.

You will find it worthwhile "playing" before you read on in this manual. Just avoid the Save
As operation!

The Principal Layout table shows the contents of the persistent screen and the 15 user
screens of the layout. The buttons control what is to be done with the screens in the
Principal Layout.

Figure 7.1 – ScreenTweak main screen

Screen layout file format

Rev 6.11-A6 Mach2 Customisation Guide 7-3

7.2.4 Manipulate all screens in layout

7.2.4.1 Open .SET
This prompts for a Layout file to open as the Principal Layout. You can select Mill (.SET)
or Turn (.LSET) files to be displayed in the dialog.

When opened a copy is held within the program and the .SET file is closed so it can be used
in Mach2 or Screen Designer while Mach2Tweak is in use. When a file is opened then the
other buttons will be enabled.

All changes are performed on the Principal Layout. The Additional Layout (see below) is
used as a source to import screens.

The Principal Layout contains information on colors to be used for controls which will be
saved by Mach2ScreenTweak but is not otherwise processed by it.

This button is also implemented in the File menu.

7.2.4.2 CSV Save
This will prompt for the name of a .CSV file to contain information about each control in
the Layout. The format is self-evident when studied in conjunction with the definition of
Layout file to be provided in the Mach2Mill/Turn manuals.

The .CSV file can be imported into Microsoft Excel or, probably better, Microsoft Access
for analysis and documenting the implemented controls in the standard or custom screens.

This button is also implemented in the File menu.

Notice that in the current release the code is not able to export the actual VB Script attached
to buttons. This may be upto 64 kBytes for any one button. ScreenTweak replaces it with a
descriptive message. This means that an exportedlayout is not suitable for re-import. It can
however be used for its main purpose of analysing the codes and positions of controls.

7.2.4.3 Save As
The Save As button prompts for a file in which to save the modified Layout. You may of
course save into the originally opened file but this is discouraged by the absence of a Save
button.

This button is also implemented in the File menu.

7.2.4.4 Edit All Controls
The Edit All Controls button opens the dialog for manipulation of individual controls in the
Layout. For full detail see section 4.

Not all operations are available, or meaningful, across the whole Layout and have to be
performed on individual screens.

7.2.4.5 Edit Undo
The Edit>Undo allows you to "undo" operations performed on the Principal Layout. Undo
will cause the Principal Layout to revert to its condition before the last operation or, if a
sequence of several identical ones have been performed one after the other, to its condition
before the first one of the sequence.

For example, suppose an MDI screen is moved up by three consecutive clicks on Move Up
from being screen number 6. Undo would move it back from being screen 3 to screen 6. If,
however, it was moved up 4 steps by Move Up the moved down by one Move Down Undo
would make it move from screen 3 to screen 2, i.e. where it was before the Move Down
which is the last operation and so is what is undone.

7.2.5 Manipulate selected screen
An individual screen can be selected by clicking its entry in the table. Screens are identified
by their number (as used in Screen Designer), their Screen Caption, the captions on

Screen layout file format

Mach2 Customisation Guide Rev 6.11-A6 7-4

button(s) that display them (typically on the Persistent screen) and as a last resort the
number of controls on the screen. Full details of this identification are given in section 5 of
this document.

7.2.5.1 Delete
Deletes the selected screen and moves all those below it in the list up to close the gap. Undo
will of course undo a sequence of consecutive Deletes.

7.2.5.2 Move Up/Down list
Moves the selected screen up or down the list as appropriate.

This has no real significance in normal use with Mach2, but it is very convenient that the
screens have the same "position" in use as when they are displayed in Screen Designer. If
this is not so it is difficult to remember which screen number to select in Screen Designer.
Well I can never remember the number for Mach2Mill Diagnostics!

7.2.5.3 Update Buttons
When screens are moved up and down the list then the buttons (typically on the Persistent
screen but they can be anywhere) are updated to display the correct screen by=ut their
shortcut keys (probably F-keys) and captions are not changed.

Update Buttons will alter any button that had a Function key shortcut in the original layout
to have the F-key number corresponding to its screen number. For example screen 2 would
be displayed in Mach2 on pressing F2. This is not done if the existing shortcut is not a
function key. So the MDI (M) screen from older Layouts would continue to be selected by
letter-M.

In addition Update Buttons will prompt for the new text to be on the button caption so that,
for example, if it is being changed to F9 then you can enter "Short Diags (F9)"

This function is more obvious in use than it appears when explained (I hope!)

7.2.6 The Additional Layout
An additional layout (which can be the same file as the Principal one) is opened and
summarised on the lower part of the screen. Its only role is to be a source of screens to be
appended to the Principal Layout.

A layout stored in a CSV file, such as would be exported (see above) can also be loaded.

Notice that the current release of the import and export functions do not handle fields with "
(dQuote) reliably so import should not be used.

7.2.6.1 Append to Principal Layout
An entry in the Additional Layout table is selected. When the Append to Principal Layout
button is clicked then its controls are placed on the first empty screen of the Principal
Layout. This appears like "appending" the screen from the Additional to the Principal
Layout.

There are some point to note:

• The screens in the Additional Layout are "identified" by number, label and
captions of buttons that display them in Mach2. When imported to the
Principal Layout, as "new" screens, the buttons are not likely to exist and of
course the screen number changes. You can use the count of controls as a
guide to the correct screen having been appended. If you always use Screen
Caption labels (i.e those starting with a §) in your Additional Layouts then
you will know what is happening.

• It is possible that the screen appended contains buttons that select other
screens in the Additional Layout (or indeed unusually the screen itself). These
would not have any meaning when in the context of the Principal Layout so

Screen layout file format

Rev 6.11-A6 Mach2 Customisation Guide 7-5

they are not appended with all the other controls. This "disappearance" of
controls is noted in a confirmation dialog after the append.

• Sequences of appends can be undone like any other operation on the Principal
Layout.

7.2.7 Control Manipulation
Although ScreenTweak is not a replacement for Screen Designer it does have some limited
features which manipulate controls rather than whole screens. These are displayed on the
dialog accessed by the Edit all Controls and Control Edit buttons on the main screen. The
screen is shown in figure 7.2

7.2.7.1 Re-scale controls
The controls on an individual screen or all screens of a layout can be re-scaled to fit
different resolutions of display.

Mach2ScreenTweak will try to guess the current resolution by looking at the "bottom right"
control in the selected screen or the layout. If this is wrong then you can override it by
clicking the appropriate radio button. Now choose the resolution of the display on which
you want to use the screen or layout and click Re-scale.

The following should be noticed:

• The dialog automatically closes to avoid you being tempted to repeatedly Re-
scale (getting smaller and smaller or bigger and bigger!)

• Because the font size of captions on buttons is fixed in Mach2 you will
probably find that the caption is too big at a new resolution. Screen Designer
has to be used to abbreviate captions but you have the controls reasonably
placed.
Screens with bitmap buttons do not suffer from this problem.

• Scaling down and then back up again will, of course, cause you loss of
resolution due to rounding effects.

• Mach2 from 6.11 onward, optionally, supports automatic expansion of
screens to fill high definition systems.

Figure 7.2 – Editing controls

Screen layout file format

Mach2 Customisation Guide Rev 6.11-A6 7-6

7.2.7.2 Re-order DROs
In Mach2 the arrow keys can be used to cycle through a group of DROs (e.g. all the axis
DROs). The order of this cycling is the order of original creation of the DROs in Screen
Designer and may not be logical.

You can re-order the DROs on a selected screen to run down a column or across the screen
as a row using the radio buttons to choose the logic. Multiple columns/rows can be ordered
and small errors in the placing of the DROs are ignored.

7.2.8 Screen captions and other workarounds
Screen Designer uses an admirably simple structure for Layout data. This causes some
difficulties when mechanically processing Layouts. For example there is no link, other than
the visual one, between labels like "Dwell" and the LED indicating it. Screens are only
identified by their overall appearance rather than a "caption". This can cause problems in
Mach2ScreenTweak.

7.2.8.1 Screen captions
The caption problem is overcome by use of a special "Caption Label" on screens. When you
design a screen to be "tweaked" you should place somewhere on it a label that starts with
the "curly-S" section symbol. For example you might have §Compact Diagnostics. The §
is easily typed by the sequence Alt-0167 on the numeric pad (Num Lock being ON). You
can also paste it from the Windows Character Map utility (in Accessories>System Tools).

The Caption Label can, of course, be visible if you have the space or can be off the bottom
of the screen. Hint: you can work on a bit of screen not normally seen in Mach2 by
temporarily switching off View>Toolbar and View>Status Bar in Screen Designer.

The main screens issued with Mach2 have Caption Labels which are "hidden" in normal use
below the Reset button.

7.2.8.2 Buttons identify screens
As many existing screens will not have Caption Labels, Mach2ScreenTweak looks to see
what buttons are programmed to display a screen and will use the button captions of the
first two found to help identify a screen. Notice, as mentioned above, that this is little help
on screens appended from the Additional Layout.

7.3 Layout file format
The screen layouts are stored in binary files and must not be opened with Microsoft Word,
Notepad or the like. To view a layout in "clear text" export it using Mach2ScreenTweak.

For reference, the file structure of .SET files is given here.

7.3.1 Overall file format
The file consists of
(a) a count of
controls across all
screens of the layout,
(b) a record defining
each control and (c) a
record giving the
colours to be used for
displaying controls.

This is illustrated in
figure 7.3

Int32 is a four byte
signed integer. As
usual it is stored in

Int32
ControlRec
ControlRec
ControlRec
ControlRec
ControlRec
etc.
ControlRec
ColorsRec = 10 x Int32

Count of controls in Layout = n
Information record for Control 1

... for Control 2

... for Control n
Colors for Layout

Figure 7.3 – Layout file format

Screen layout file format

Rev 6.11-A6 Mach2 Customisation Guide 7-7

the file with the least significant byte first.

The structure of ControlRec and ColorsRec is defined below. Notice that ControlRecs are
variable in length (they contain several variable length strings) and ColorsRec consists of
ten Int32s (i.e. 40 bytes)

7.3.2 ControlRec
Figure 7.4 shows the structure of
each ControlRec. The values are
integers or strings.

Integers are as defined already, some
of which indicate True/False boolean
values by being Zero = True,
nonZero = False.

Strings follow the C Language
structure of a one byte character
count (unsigned so allowing 0 to 255
characters) followed by the
characters, one per byte, using the
Windows character set. This is
illustrated in figure 7.5. Care should
be taken if you try to put a " (double-
quote) in a string as this character is
used as the delimiter in CSV files.

Note: that although strings and hence
ControlRecs are variable length they
can be decoded by knowing the
format and moving serially through
the file interpreting the character
counts of the strings. Direct access to
records in the layout file are not
possible.

Most of the
fields of the
ControlRec
are dedicated
to data for a
particular
type of
control. The values for other controls will be "undefined". The following explains the
purpose of each value. The detailed coding is to be found at the Mach Developers' Network
(MachDN) site. (See Frontispiece for current link)

7.3.2.1 Screen
The number of the screen (1 to 15) on which control will appear. Value 0 will appear on all
screens (i.e. persistent control)

7.3.2.2 Type
The coded type of each control as follows:

 Type code Control
 1 DRO
 2 Scrollbar
 3 Bitmap
 4 Conventional Button
 5 Jogball
 6 LED

Int32
Int32
Int32

Int32
Int32

Int32
Int32
Int32
Int32
Int32

Int32
Int32
Int32
Int32
Int32

C-String
C-String
C-String

C-String

C-String

Control Function
Control Type
Displayed on Screen number

HorizCode
VertCode

Color
OEM Code value
HotKey code
Flash flag
Red/Green flag

Tabbing group
PosX1
PosY1
PosX2
PosY2

Text on control
G-code text

Path of bitmap file

Label

Format code

Figure 7.4 – Structure of record for each Control

Byte8
Char8 Char8 Char8 Char8 Char8 etc. Char8 Char8 Char8

Count of characters in string n = 0 to 255

Figure 7.5 – Storage of character strings

Screen layout file format

Mach2 Customisation Guide Rev 6.11-A6 7-8

 7 Label
 8 Bitmap Button
 9 Manual Data Entry (MDI)
 10 G-code window
 11 Toolpath display

7.3.2.3 Function
The function is a code starting from 0 for each type of control defining what it displays or
does. The code numbers can be obtained by counting (from 0) the radio buttons in the
Screen Designer dialog box that sets up the relevant type of control. The following
functions are extended by OEMcodes (see below):

 Control type Function code that is
extended by OEMcode

 DRO 12
 Conventional button 32
 LED 56
 Bitmap button 32

The full list of functions is listed in Layouts on the MachDN site.

7.3.2.4 OEMCode
DROs, LEDs and conventional and bitmap buttons which have special purposes and are not
included on the radio buttons in Screen Designer are accessed via the "OEM" radio button
and an "OEM" code. This is really an extension to the Function. Public OEM codes are
listed in Layouts on the MachDN site. Hint: To manipulate these codes in a database it is
often convenient to combine Function and OEMCode by a formula such as (Function x
1000 + OEMCode) where OEMCode is set to zero if the Function does not use it.

7.3.2.5 Text
For conventional Buttons, this is the caption on the button.

7.3.2.6 GText
For Conventional and Bitmap buttons whose function is 33 this string is the G-code line to
issue.

7.3.2.7 BitMapPath
For Bitmap buttons this is the filename of the .BMP file on the user's machine. (e.g.
C:\Mach2\MyStart.bmp)

7.3.2.8 Horiz & Vert
For Jogball controls the code gives the axes to be jogged for horizontal and vertical
"movement" of the "ball". Axis coding is X = 0, Y = 1, Z = 2, A = 3, B = 4, C = 5

7.3.2.9 Label
The string displayed in a Label control. Some values like File, Error are "intelligent" and
are replaced by what they describe at runtime. Labels starting with the S mark (§) are used
as screen captions.

7.3.2.10 Color
Used for LED controls. Green = 0, Red = 1, Yellow = 2

7.3.2.11 HotKey
For Conventional and Bitmap buttons this gives the scan code of the HotKey to activate the
button (or 0 for no HotKey).

Screen layout file format

Rev 6.11-A6 Mach2 Customisation Guide 7-9

7.3.2.12 Flash Flag
LED will flash if this flag is non-zero

7.3.2.13 RedGreen Flag
LED will change colour from Red to Green when signal is active. Color value is ignored

7.3.2.14 Tabbing Group
For DROs this defines a group of DROs The DROs in
a group are selected cyclically by the up/down arrow
cursor keys. The left/right arrow keys move between
different DRO groups.

7.3.2.15 PosX1, Y1, X2, Y2
These values define the top left and bottom right
coordinates of the control (in pixels) on the screen. The
top left corner of the screen is X = 0, Y = 0. Controls
may be drawn partially or wholly off the visible screen
at the current resolution without raising an error.

7.3.3 ColorsRec
The format of the ColorsRec is given in figure 7.6. A Color32 value has its most significan
byte = 0 and the following three bytes the unsigned intensity (i.e. range 0 to 255) of the
colors Red, Green and Blue in decreasing significance. Thus Yellow (i.e. Red and Green)
would be coded using hexadecimal notation as 0x00FFFF00 i.e. decimal 16776960.

The color chooser dialog in Screen Designer displays the individual RGB values for a
control.

Color32
Color32
Color32
Color32
Color32
Color32
Color32
Color32
Color32
Color32

Background
DRO
DROSelected
MDI
MDISelected
Label
DRONumerals
MDIText
G-code
G-codeText

Figure 7.6 Colors record

Screen layout file format

Mach2 Customisation Guide Rev 6.11-A6 7-10

General utility programs

Rev 6.11-A6 Mach2 Customisation Guide 8-1

8. Appendix 3 – General utility programs

8.1 KeyGrabber

8.1.1 Overview
Chapter 8 gives a general description of the control of Mach2 including Human Interface
Devices (HIDs) and keyboard emulators.

KeyGrabber is a utility written by Les Newell, to whom very many thanks are due, which
translates signals from the keyboard, a keyboard emulator or the buttons, Point of View
control or axes control of one or more HIDs into keycodes in Mach2's input buffer. These
keycodes can then be interpreted by Mach2 as jogging hotkeys, screen button/DRO hotkeys
or to activate/deactivate simulated signals. They could be entered into DROs or the MDI
box if you want to implement a numeric keypad or the like..

KeyGrabber, unlike some general profiler programs, knows that it is running with Mach2
(actually it assumes responsibility for starting Mach2 or ScreenDesigner) and so will direct
the HID buttons and the specially defined keycodes from the keyboard emulator or, indeed,
the actual keyboard to Mach2 even if another program has the focus. Hence its name – it
grabs keycodes for Mach2's use.

Many keyboard emulators were originally developed for use by the computer gaming
community to interface the controls of an arcade style cabinet to the PC using the MAME
standard codes. Some, however, can be configured to generate other codesets. KeyGrabber
has a facility for programming the Ultimarc IPAC/2 and IPAC/4 with a set of codes
different from any that can be produced by the PC keyboard. It also identifies these codes
using the signal names of the IPAC.

KeyGrabber will implement Typematic repeating of keycodes from any of its possible
inputs. This is useful for operating screen buttons for spindle speed control, and feed and
jograte override. This Typematic hat three settings for each input. It can be set to be off, to
be at one speed or to change (typically increase) speed after a defined number of repeats.

HIDs can be configured to have up to four separate meanings to each button. This is
particularly useful on devices where the buttons are easy to label such as a membrane
keyboard like the Saitek P8000 (aka Dash/2). The definitions are defined as pages 1 to 4.
You can define arbitrary buttons on the HID to be the page selectors. Buttons such as "Fire"
and "Shift" are often convenient choices.

When Mach2 is running without KeyGrabber it not only recognises the keycodes but
interprets them according to whether the Shift Ctrl or Alt keys on the keyboard are
simultaneously depressed. These keys are called modifiers. For example the standard
layout uses Alt-R for the Cycle Start hotkey, the Ctrl key will switch Jog modes between
Inc and Cont while it is depressed and Shift will cancel a jograte override. KeyGrabber can
be used to define arbitrary HID buttons to produce the Shift Ctrl and Alt modifiers

Finally in this overview, low resolution encoders are a useful human interface to Mach2 for
implementing an MPG style axis jog dial and for rotary panel controls for speed and feed
override. KeyGrabber will interpret a pair of inputs to a keyboard emulator as quadrature A
and B signals and translate these into a keydown/keyup of a user defined keycode for each
clockwise "click" and a similar sequence for another keycode for each counterclockwise
"click". These codes can operate the incremental jog hotkeys or the hotkeys for up/down
buttons within Mach2.

Although, in principle re-mapping codes and the other functions of KeyGrabber are
straightforward, the detail can be confusing. You may find that this appendix is easier to
understand if you experiment with the software and devices as you read it.

General utility programs

Mach2 Customisation Guide Rev 6.11-A6 8-2

8.1.2 Installation

8.1.2.1 The files
The KeyGrabber software is automatically installed by the Mach2 installer. You may wish
to setup a desktop or quickstart bar shortcut to it. If you do not start the KeyGrabber
program then its installation will have no effect on your system.

8.1.2.2 Windows compatibility
You will get the best results out of KeyGrabber by making sure that your Windows has
been upgraded to include DirectX version 9. See the Microsoft website for full details of
upgrades.

8.1.2.3 Running KeyGrabber and then Mach2
KeyGrabber can be run by double-clicking the KeyGrabber.exe file, in the Mach2 folder, or
a shortcut to it. You will need to do this to set up how keys and buttons are to be
interpreted. You can then run ScreenDesigner or Mach2 and choose the Mach2 profile by
hand.

For everyday use, most Mach2 users will either use the standard Mach2Mill or Mach2Turn
shortcuts that are setup when Mach2 is installed. These can easily be adapted to run
KeyGrabber first and then automatically start Mach2 with the originally specified profile
(i.e. Mill, Turn or indeed your own custom Mach2 profile).

Right click on the shortcut, choose Properties from the menu and modify its Target property
by replacing "Mach2.exe" with "KeyGrabber.exe". Leave the text starting /p alone – this is
what specifies the Mach2 XML profile to use. See chapter 5 for further details of Mach2
profiles. You may want to use a different KeyGrabber configuration for each Mach2
profile. Details of how to do this are given below.

8.1.2.4 Shortcut Icons
If you setup a shortcut on the desktop as described above then you will find that its Icon is
the KeyGrabber smiley face. This is a useful reminder that you are using keygrabber. If you
wish you can replace the Icon in the shortcut with one from Mach2 or indeed from any
other place.

Right-click on the shortcut and choose Properties from the menu. Click Change Icon…
Use Browse to choose the program file containing the icon you wish use for the shortcut.
This is probably Mach2.exe. Then choose the icon out of the possible set in the display.
Some programs may have several others only offer one.

If you have a graphics program which will create Windows Icons then you can design your
own and use it by browsing to its .ico file rather than a .exe file.

8.1.3 Configuring KeyGrabber
When KeyGrabber runs for the first time it will create a file called Default.grab and this
name is displayed in the caption of its window.

You can use File>Save As to save your current configuration under a different name and
File>Open (or information in the shortcut Target described later) to specify that you want to
use a non-default configuration.

There are four area to configure. You may not wish to use all of them and may, of course,
not have the hardware to do so.

Keyboard Keys
Keyboard Encoders
Human Interface Devices (HID)
Misc Settings

General utility programs

Rev 6.11-A6 Mach2 Customisation Guide 8-3

The KeyGrabber window has a tab for each. Additional tabs are displayed when HID
devices are enabled.

The tabs are described in the following sections:

8.1.4 Configuring Keyboard Keys

This tab shows a table of keycodes which may be received from the Windows keyboard
port and the corresponding codes to be sent to Mach2. These codes can, of course, come
from an actual keyboard or a keyboard emulator. See figure 8.1.

Either double-click or right-click and choose Define in an entry in the Source key column.
This allows you to define the code you want to be processed. You will be presented with a
dialog asking you to Press a Key. On an emulator this corresponds to making the circuit
connected to the emulator input pin. If the code corresponds to one programmed into an
IPAC then you will be told the terminal label and pin for this input. If the code corresponds

Figure 8.1 – Configure Keyboard Keys table

Figure 8.2 – Defining special Keys

General utility programs

Mach2 Customisation Guide Rev 6.11-A6 8-4

to a key on the keyboard then you will be shown the character on the key (e.g. Q) or a
description of the key (e.g. LEFT for the left cursor arrow).

Where meaningful, a default value of the code to be sent to Mach2 will have been put into
the Translate to column. A double-click or right-click in this entry allows you to redefine it
to any translated value. Good keys are the ones on the numeric keypad, function keys or
multimedia special function keys. Any keyboard emulator code that does not have a default
but which you do not want to translate can be entered by making the circuit connected to
the emulator input pin again with the Translate To Press a Key box showing.

An alternative to pressing a "key" is to choose Special Keys. This displays the options
shown in figure 8.2. You can say that the "key" which you are defining is to be the Shift or
Ctrl modifier or one of 32 unique user key values. These are chosen so as not conflict with
other actual codes. The Alt modifier is not available from the keyboard as Windows makes
priority use of it.

When Mach2 (or Screen Designer) is running then any keycode that is not in the first
column, which will be most of them on you system, will be ignored by KeyGrabber and
sent by Windows to the application which has the focus when the keycode arrives. The
corollary of this is that any key whose code is in the list will not be seen by any application
other than Mach2 while Mach2 is running with the KeyGrabber. You will be warned when
you try to setup keys on the standard keyboard that this will happen. It does become rather
annoying but it might help you being too confused when you first "grab" A, Q, Z and M and
find that Microsoft Word cannot input Monday (ondy) or Zebra (ebr) or worse you cannot
get a password with any of these letters in it accepted!

The final Options column allows you to choose if typematic is to apply to the keycode and
if modifiers will be sent with it. Double-click or right-click and define the cell you want to
set. Figure 8.3 shows the dialog.

The parameters for Typematic which apply to all codes are defined on the Misc. Settings
tab. If you select Two stage typematic then the Translate to keycode will be sent to Mach2
at the specified First rate until Number at first rate codes have been sent. Codes will then
be sent at Second rate.

The Block modifiers check boxes are provided to allow you to specify that the state of the
corresponding modifier button/key is to be ignored (i.e. not sent to Mach2) for this Source
button. This might be used for a signal coming from a switch like a Home switch where the
same code is to be recognised irrespective of the Shift, Ctrl or Alt keys being depressed at
the time.

Figure 8.3 – Key translation options

General utility programs

Rev 6.11-A6 Mach2 Customisation Guide 8-5

Note: If you have a keyboard emulator which provides hardware key repeat (typematic) on
its inputs then KeyGrabber will ignore this.

8.1.5 Configuring Keyboard Encoders
This tab shows the configuration of up to 16 encoders
connected to keyboard emulator pins. These can be any
device that produces a quadrature output, such as MPGs,
digital pots etc.

Double-click or right-click and Define in either an A channel
or B channel entry in the table. KeyGrabber will display a
dialog showing an encoder count and two code values. See
figure 8.4.

Rotate the encoder clockwise slowly. KeyGrabber will notice
the two inputs that are changing and put their codes against
the Phase A code and Phase B code labels. If the count value
decreases then click the Reverse Direction button. If your
encoder has click detents then you might find that it counts
two for each click. If so check the Half Speed box.

Because KeyGrabber is looking for two related signals it will
get very confused if more than two change during this setup
process so make sure that you do not type on the keyboard or
have signals or noise on other pins of the keyboard emulator.

When you are happy with the way your encoder counts then click OK.

You now have to configure the entries in the Up Key and Down Key columns of the table.
Double-click (or right-click Define) the relevant cell and enter the required code (see figure
18.5).These will typically be the hotkeys that are setup in Config>Axis Hotkeys and used to
jog the Mach2 axis involved or be the hotkey codes on the buttons to increment/decrement
the feedrate or spindle speed.

Note 1: Some USB keyboard emulators are limited to a maximum of 8 keys simultaneously
pressed. Each encoder can press up to 2 keys so do not use more than 4 encoders on this
type of emulator
(3 if you are
using it for other
functions as
well). You
cannot use an
emulator which
has repeats on
these inputs.

Note 2: The
response speed
of the keyboard
system is limited
so don't expect to
connect up a
2000 cpr encoder
and spin it fast!
About 25 Hz (40
msecs for a cycle
of the A or B
inputs) seems to
work reliably on a typical Mach2 configuration. This is 10 rpm on a 32 cpr digital
potentiometer. For jogging or the like a few steps lost at speed would not really matter as
you will probably be watching the work or DROs.

Figure 8.5 – Defining Up and Down keys

Figure 8.4 – Finding the

encoder

General utility programs

Mach2 Customisation Guide Rev 6.11-A6 8-6

8.1.6 Configuring HIDs

8.1.6.1 Preparation for HIDs
Human Interface Devices (HIDs) support many different types of control. Example include
an "analogue" or proportional joystick or throttle (termed by Microsoft, slightly confusingly
for us, Axes), a Point of View (POV) pad or hat (like an 8 way digital joystick) and buttons.

If your HID has more than 32 buttons then you must have DirectX version 9 installed in
Windows.

Plug in your HID's USB interface. Windows should recognise it with a chime or, if it is the
first time you have connected, it should recognise the new device (by name) and install
drivers for it. You should not install or run any profiler that was supplied with your HID.

You should then be able to check the basic operation of your HID using the Game
Controllers option of Windows' Control Panel.

8.1.6.2 The HID Controllers tab
When you run KeyGrabber, the HID Controllers tab should show a list of all the devices
you have currently plugged in. If you double-click in the Use device? Column this will
toggle the clicked device in and out of use. Right-click or the Properties button will confirm
the configuration of the device. Each device that is "in-use" has a flashing watchdog
confirming (or otherwise) communication with it. A red signal indicates a problem.

When at least one HID is in-use, additional tabs are displayed.

HID Keys
HID Encoders

8.1.6.3 HID Keys
On this tab, see figure 8.6, use the drop-down list to choose the HID you wish to set up. The
table on the HIDs tab is unlike the Keyboard Keys tab as Windows knows how many
buttons a HID has (see Properties) and the table has one line for each HID key/button. You

select the Page you are defining by the drop-down. When Mach2 is running then Page 1
will be used for translation if no Page Select button is pressed. The other pages are selected
by the buttons configured as described below. This selection is always instantaneous (i.e. it
only applied while the button is depressed).

Figure 8.6 – After a HID button is pressed

General utility programs

Rev 6.11-A6 Mach2 Customisation Guide 8-7

Now press a button on the HID. Its line is selected. By double-clicking or right-click and
Define theTranslate to column then the keycode that this button is to Translate to can be
defined by pressing the appropriate key.

A key can be defined to select an alternative Gain for the Joystick axes. See Misc Settings
for more details.

Special keys like Shift and Ctrl and User defined keys can be set up in exactly the same way
as with the Keyboard Keys dialog but with the additional option to define a button as a HID
Page Select code. By default when you apply a page select code this will be put on all
pages. This can be overidden if required but if you do this you may make it difficult for the
user to access .

Exactly the same procedure is followed to assign codes to POV controls and HID analog
axis controls. They can be used for page selection. For details of how an axis position is
converted to the relevant entry in the table see the section on Misc Settings below.

8.1.6.4 HID encoders
This feature is not currently implemented

8.1.6.5 Misc Settings

Typematic settings are described in the section on Keyboard Keys Options. Notice that the
same delay, rates and wait count apply to all keys with Typematic enabled whether they be
on a keyboard, keyboard emulator or HID.

An Axis is a direction of analog control like a joystick or position of a throttle or steering
wheel of a game controller. Each axis generates a value in the range -1000 to +1000
depending on its position. Some controllers generate axis signals from switches (rather like
POV controls or indeed which double as POV controls). The switches will generally only
produce the maximum positive and negative values.

The magnitude of values which trigger KeyGrabber to output a keycode are set in the dialog
under Axis parameters. When the axis value numerically exceeds Threshold1 then the code
in Axisn Plus or Axisn Minus will be selected. When the value exceeds Threshold2 then the
code in Axisn Plus2 or Axisn Minus2 will be selected the other values remaining in the key-
down state. This could happen very quickly and confuse Mach2 with what appear to be
simultaneous key presses. The Delay time allows the two events to be separated. A time of
300 milliseconds is a useful general setting.

Axes can be joysticks and send "analog" values to Mach2. The sensitivity of these is set by
their Gain. This can be altered for each individual axis at setup time (see below) but "high"

Figure 8.7 – Misc Settings dialog

General utility programs

Mach2 Customisation Guide Rev 6.11-A6 8-8

and "low" gain can be chosen dynamically for all axes using a HID key. When the
configured key is pressed the Joystick Sensitivity Button Down value is used. If the key is
not pressed then the Button Up value is used. This can be used to have high speed jogging
for fast positioning with a button pressed and a very fine control when it is released.

8.1.7 Axes as joysticks
Axes which generate a range of values can very usefully be configured to jog axes and
override feedrate, jogging speeds and spindle speed. These parameters are set up on the
Joysticks tab (figure 8.8)

The dropdown selects which HID to configure. Move the control in the direction you want
to configure to highlight the appropriate row of the table.

The Controls column allows you to define the function for the axis. These should be self
explanatory except for Axis Gain. This allows you to use a axis on the HID to control how
sensitive the other axes will be.

The Gain column is used to set the relative sensitivity of each axis on the HID (e.g. how
much displacement of a joystick gives a given jogging speed). This is overidden by the gain
defined in Misc Settings if you have defined a Joystick Sensitivity button.

The Response Curve is the relationship between the displacement of the controld and the
signal sent to Mach2. The Exponential values give a small output for positions near the
center (zero) value but large values next the extremes. This can allow, for example, very
sensitive control of jogging at low speeds but the possibility of very fast jogging when the
joystick is held fully over.

Reverse allows positive values to be swapped for negative ones to cater for the way in
which the HID is designed or mounted.

8.1.8 Multiple machines and KeyGrabber Profiles (.GRAB files)
If you use more than one machine controlled by a computer the you will probably want to
configure your HID and keyboard emulator differently for each. This is done but having
several .GRAB files. As mentioned above, you can Save As a configuration in a file other
than Default.grab and can use File>Open to open a non-default configuration.

It would however be more convenient to automatically associate the correct .GRAB with its
Mach2.

This is done by including the name of the .GRAB file to be used in the Target field of the
properties of the shortcut used to run KeyGrabber. The .GRAB file name comes before /p

Figure 8.8 – Configuration of joysticks

General utility programs

Rev 6.11-A6 Mach2 Customisation Guide 8-9

which specifies the Mach2 profile to use. Thus for example if the original shortcut to run
Mach2 to control your lathe was:

C:\Mach2\Mach2 /p Mach2Turn
Then replacing it with a shortcut with a Target of:

C:\Mach2\KeyGrabber.exe Turn.grab /p Mach2Turn
Would run Mach2 with the Mach2 profile Mach2Turn.xml after setting up KeyGrabber
with the Turn.grab configuration.

Hint: If you have several shortcuts for different KeyGrabber and Mach2 profiles then you
are very likely to want to setup different icons for each of them as described above.

8.1.9 Keyboard Emulator programming
Your keyboard emulator will probably come programmed with the MAME standard
gaming keycodes and may also allow you to program a set of your own codes. In this case
you can of course use any values but given that KeyGrabber is going to translate them it is
probably best to program in a set of codes that do not clash with those that the actual
keyboard can generate. Values decimal 264 upwards are probably suitable.

KeyGrabber will automatically program the Ultimarc IPAC range of emulators with such a
range of unused keycodes using the IPAC menu. You choose the IPAC configuration and
the speed at which you wish to program. Start fast and slow down if the programming fails.

Beware: To program an IPAC you need to set the MAME/Alt jumper correctly.
Programming an IPAC will loose any existing codes stored in its "Alt" memory. The
MAME codes are not overwritten.

8.1.10 Testing and troubleshooting
The Testing menu allows you to display a dialog which will give you the code and
mnemonic for any key seen by KeyGrabber. This will test the actual keyboard, switches on
a keyboard emulator, encoders on an emulator, and the buttons, POV and axes on an
enabled HID. You can use this to check that your wiring is correct and to discover the code
that the keyboard or emulator is actually sending to KeyGrabber.

Note: For IPAC users. Notice that the IPAC supports LED outputs indicating the state of
the Num Lock, Caps Lock and Scroll Lock signals of the PC keyboard. These outputs are

Figure 8.9 – Ultimarc IPAC/2 keyboard emulator

General utility programs

Mach2 Customisation Guide Rev 6.11-A6 8-10

shared with three input terminals. These effectively cannot be used, because they are pulled
lo, if the corresponding LED is on.

Windows 2000 command prompt windows intercept keyboard messages before they reach
KeyGrabber. If you have a command prompt window or a DOS application in the
foreground then KeyGrabber will not work from the keyboard.

Record of configuration used

Rev 6.11-A6 Mach2 Customisation Guide 1

9. Revision history

Rev 6.11-A6 13 November
2004

Detailed correction of typos and grammar

Rev 6.11-A5 12 November
2004

Wizard writing sections added
Documentation of VB Script calls updated.

Rev 6.11- A3 10 November
2004

Manual split for original Mach2Mill document

Mach2 Customisation Guide Rev 6.11-A6 2

10. Index

Hint: Where there is a choice, most index entries are made using the name of a thing
(e.g. Axis drive) rather than an action (e.g. Tuning) so you will get better results

thinking about the part on which you want information. Thus looking for "Axis drives -
tuning" will give better results than looking for "Tuning - axis drives". For important

information both entries will probably appear.

If you have difficulty because you tried to look something up and the index
entry was missing, please take a moment to e-mail support@artofcnc.ca
with a note of (a) the words you were looking up and (b) where in the

manual you found the information you wanted - assuming you did!

.

.LSET file
layout .. 7-6

.SET file
layout .. 7-6

A
Acknowledgements.. 1-1
ActivateSignal - subroutine.............................. 4-9

B
Backgrounds

bitmap... 3-7
Bitmap backgrounds .. 3-7
Button

running VB Script from 3-3
Button codes.. 6-2

C
CloseTeachFile - subroutine............................. 4-9
Code – subroutine routine 4-4
Coding

VB Script .. 4-1
Coding macros... 4-1
Color scheme

setting in ScreenDesigner............................. 3-9
Control

alignment of .. 3-5
Bitmap .. 3-1
Bitmap button.. 3-1
bitmap buttons... 3-7
color scheme ... 3-9
DRO ... 3-1
DRO groups .. 3-6
G-code list... 3-1
Joystick ... 3-1
Label ... 3-1
label - intelligent.. 3-6
LED .. 3-1
locking .. 3-9
MDI .. 3-1
nudging of ... 3-2
OEM codes ... 3-4
positioning by pixel numbers 3-9
sizing be pixel count 3-9

sizing of .. 3-5
sizing to bitmap ... 3-9
spacing of .. 3-5
Toolpath .. 3-1

Copyright statement ... 1-1

D
DeActivateSignal - subroutine.......................... 4-9
Developers Network

Mach2 - link to .. i
Disclaimer of liability 1-1
DoButton - subroutine...................................... 4-5
DoOEMButton - subroutine 4-5
DRO

hotkeys.. 3-6
DRO codes .. 6-2
DROs

user defined for script I/O 4-8

E
Electrical connections into Mach2.................... 2-1
Encoder

input via keyboard emulator......................... 8-1
Errors in data

In conversational programming.................. 4-13
reporting to user using MSG, 4-13

F
File format

layout .. 7-6
Function codes

of screen controls... 4-4

G
G-code execution

in script ... 4-4
GetCoord - subroutine...................................... 4-7
GetDRO -function.. 4-5
GetLED - function ... 4-5
GetOEMDRO - function 4-5
GetOEMLED -function.................................... 4-5
GetPage - function ... 4-9
GetParam - function... 4-6
GetPortByte - function 4-10
GetVar - function... 4-6
GetXCoor - function (also for Y, Z, A, B, C).... 4-7

mailto:support@artofcnc.ca

Rev 6.11-A6 Mach2 Customisation Guide 3

Greyed out text - meaning................................ 1-1

H
HID

as source of keycodes 2-3
Hotkey available on all screens - a trick............ 3-3
Hotkey codes

how calculated... 3-2
Hotkeys

DRO ... 3-6
Hotkeys - global .. 2-5
Human Interface DeviceSee HID

I
Icons

on desktop shortcuts for Mach2 8-2
Intelligent labels .. 3-6
IPAC

limitations on use of pins 8-9
IPAC programming

by KeyGrabber .. 8-9
IsActive - function for Signal 4-9
IsFirst - function .. 4-10
IsLoading - function....................................... 4-10
IsMoving - function 4-10
IsSuchSignal - function.................................... 4-9

K
Keyboard emulators

uses for in controlling Mach2....................... 8-1
Keyboard shortcut - Screen Designer 6-1
Keycodes

processing of ... 2-3
Keygrabber

configuring for keyboard or keyboard emulator
keys .. 8-3

KeyGrabber
analog axis mapping to keycodes 8-7
configuring encoder inputs........................... 8-5
configuring HID inputs................................ 8-6
files used ... 8-2
generation of keycodes by............................ 2-3
HID Page selection 8-6
installation of... 8-2
overview ... 8-1
profiles (.GRAB files) 8-8
sending modifer keys................................... 8-4
special keys ... 8-4
troubleshooting.. 8-9
Typematic settings....................................... 8-7

Keystrokes
actions of... 2-1
and their shortcuts 2-3

KillExponent - Script subroutine 4-5

L
Label

Intelligent, Ticker formatted 3-6
Intelligent, User... 3-6

Layout
.SET file.. 3-1
.SSET file.. 3-1

LED codes... 6-2
LEDs

user defined... 4-8

License statement... 1-1
LoadRun - subroutine....................................... 4-8
LoadTeachFile - subroutine.............................. 4-8
Locking

controls ... 3-9

M
Mach Developers NetworkDN

link to.. i
Mach2 scancodes

how calculated... 3-2
Mach2ScreenTweak................... See ScreenTweak
MachDN

developers network link................................... i
Macro.......................................See alse VB Script

naming and calling....................................... 2-4
simple example code.................................... 4-2

Macros
coding ... 4-1
detailed description of an example 4-2
generating g-code sequences within 4-3
interaction with machine operator 4-3
passing parameters to................................... 4-3

Manual Pulse GeneratorSee MPG
Message - subroutine 4-7
MPG

input via keyboard emulator......................... 8-1

N
Nudging

controls into position 3-2

O
OEM codes

of screen controls.. 4-4
OpenTeachFile - subroutine 4-8

P
Param - functions... 4-7
Persistent screen - controls on 3-1
PlayWave - subroutine 4-7
Ports

foreign - access to 4-10
Profiler

generation of keycodes by............................ 2-3

Q
Quadrature encoder

as MPG ..See MPG
Question - function .. 4-7

S
Safety warning... 1-1

professional advice 1-1
SaveWizard - subroutine 4-9
Scancodes

how calculated... 3-2
Screen captions.. 7-6
Screen controls

accessing by macro code.............................. 4-4
Screen Designer

standard shortcuts .. 6-1
Screen Designer - explained............................. 3-1

Mach2 Customisation Guide Rev 6.11-A6 4

Screen Designer Controls......See Controls - Screen
Designer

ScreenTweak
Additional layout ... 7-4
appending screen to Principal layout 7-4
delete screen.. 7-4
exporting layout to CSV 7-3
functions of ... 7-1
installation... 7-1
move screen up or down list......................... 7-4
Principal layout ... 7-2
promote and demote screen.......................... 7-4
re-ordering DRO in groups 7-6
resizing screen... 7-5
Sscreen captions .. 7-6

Script
avoid infinite loops in 4-13
debugging ... 4-12
stages of execution of 4-12

Script function
GetDRO .. 4-5
GetLED... 4-5
GetOEMDRO.. 4-5
GetOEMLED .. 4-5
GetPage... 4-9
GetParam .. 4-6
GetPortByte... 4-10
GetVar .. 4-6
IsActive... 4-9
IsFirst.. 4-10
IsLoading .. 4-10
IsMoving... 4-10
IsSuchSignal ... 4-9
Param1, Param2, Param3............................. 4-7
Question.. 4-7

Script functions
Legacy .. 4-14

Script subroutine
ActivateSignal... 4-9
CloseTeachFile.. 4-9
DeActivateSignal... 4-9
DoButton... 4-5
DoOEMButton .. 4-5
GetCoord... 4-7
GetVarSetVar.. 4-6
KillExponent ... 4-5
LoadRun ... 4-8
LoadTeachFile... 4-8
Message .. 4-7
OpenTeachFile .. 4-8
PlayWave.. 4-7
SaveWizard... 4-9
SendSerial ... 4-10
SetButtonText ... 4-8
SetDRO... 4-5
SetOEMDRO .. 4-5
SetPage ... 4-9
SetParam... 4-6
SetPortByte ... 4-10
SetTicker... 4-8
SetTriggerMacro ... 4-9
SetUserLabel ... 4-8
Speak .. 4-7
SystemWaitFor.. 4-10

ToggleScreens ... 4-9
SendSerial - subroutine 4-10
SET file - contains screen layouts..................... 3-1
SetButtonText - subroutine............................... 4-8
SetDRO - subroutine.. 4-5
SetOEMDRO -subroutine 4-5
SetOEMLED - function 4-5
SetPage - subroutine .. 4-9
SetParam - subroutine 4-6
SetPortByte - subroutine 4-10
SetTicker - subroutine...................................... 4-8
SetTriggerMacro - subroutine........................... 4-9
SetUserLabel - subroutine 4-8
SetVar - subroutine .. 4-6
Shortcut - Keyboard in Screen Designer 6-1
Shortcut keys ... 2-3
Signal codes... 6-12
Signals

in Mach2 communication paths.................... 2-1
Speak - subroutine ... 4-7
SSET file - contains simple screen layouts........ 3-1
SystemWaitFor - subroutine........................... 4-10

T
Ticker

User defined .. 3-6
ToggleScreens - subroutine 4-9
Trademarks.. 1-2
Transparent bitmap buttons 3-7

U
User defined

DROs .. 4-8
LEDs... 4-8

V
VB Script

accessing screen controls from 4-4
coding ... 4-1
confusion with brackets in calls.................... 4-3
example code... 4-1
executing G-code from................................. 4-4
on buttons.. 3-3
ways to use .. 2-4

VB Script subroutine
Code.. 4-4

W
Waiting for Mach2... 4-10
Wizard

care needed with synchronisation 5-6
Digitize - tutorial ... 5-1
saving of user controls between runs 5-5
self documenting features............................. 5-9
troubleshooting.. 5-9
User DROs in .. 5-4
validating use data - an Example 5-7
While IsMoving()/Wend 5-6
writing VB Script using an external editor 5-7

Wizards
designing... 5-1
what are they ... 5-1

	1. Preface
	2. Communication routes
	2.1 Electrical connections
	2.2 Keystroke connections
	2.2.1 Keystrokes
	2.2.2 Keystrokes and Shortcuts (Hotkeys)

	2.3 The KeyGrabber and profilers
	2.4 VB Script connections
	2.4.1 VB Script program
	2.4.2 Mach2 macro

	2.5 Windows' control
	2.6 Other customisation
	2.6.1 Global hotkeys

	3. Screen Designer
	3.1 Screen Designer basics
	3.2 Try out the Designer
	3.3 Making the controls work
	3.3.1 Key scan codes
	3.3.2 Defining function by G-code or VB Script
	3.3.3 Defining function by name
	3.3.4 Defining buttons by OEM code

	3.4 Getting a tidy visual effect
	3.4.1 Alignment icons
	3.4.2 Sizing icons
	3.4.3 Spacing controls uniformly

	3.5 Properties of other types of control
	3.5.1 User LEDs and DROs
	3.5.2 Properties of Intelligent Labels
	3.5.2.1 System labels
	3.5.2.2 User Labels/Tickers

	3.5.3 DRO groups
	3.5.4 Use of Bitmaps
	3.5.4.1 Bitmap buttons
	3.5.4.2 Visual grouping with bitmaps
	3.5.4.3 Identifying controls by the background bitmap
	3.5.4.4 Dynamic changes with bitmaps

	3.6 Advanced features for setting up controls
	3.7 Colors
	3.8 Implementing two levels of screen complexity

	4. Coding VB Script programs
	4.1 A simple button script
	4.2 Sample macros
	4.2.1 A simple macro
	4.2.2 More complex macro

	4.3 A common confusion with VB Script and a hint
	4.4 The Mach2 VB Script functions and subroutines
	4.4.1 To execute G or M-codes from a script
	4.4.2 For accessing the screen controls
	4.4.3 Interrogating Mach2 internal variable
	4.4.4 Access to the machine G-code parameter block
	4.4.5 Arguments of macro call
	4.4.6 Information to and from the user
	4.4.10 Serial port
	4.4.11 Foreign ports
	4.4.12 Waiting and system features
	4.4.13 A more complicated macro example

	4.5 Script Snags and Hints
	4.5.1 What Windows/Mach2 does with your macro
	4.5.2 Script error reporting
	4.5.3 Stuck in a rut?
	4.5.4 Reporting errors to users

	4.6 Legacy/System VB Script Functions

	5. Designing wizards
	5.1 What is a wizard?
	5.2 A wizard's working in a nutshell
	5.3 Worked example – the Digitize wizard explained
	5.3.1 The first step
	5.3.2 Making the wizard work
	5.3.3 Making the wizard write a part program
	5.3.4 A wizard that runs its own code
	5.3.5 Other precautions

	5.4 Wizard design hints
	Function
	5.4.1
	Screen Design
	5.4.2
	5.4.3 Writing the Code
	5.4.4 Error checking
	5.4.5 Documenting the wizard
	5.4.6 Troubleshooting

	6. Appendix 1 – Reference tables for Codes
	6.1 Keyboard shortcut codes
	6.2 Button, LED and DRO codes
	6.3 Signal codes

	7. Appendix 2 - Screen Layout files (.SET & .SSET)
	7.1 Roles of Screen Designer and Mach2ScreenTweak
	7.2 Using Mach2ScreenTweak
	7.2.1 Introduction
	7.2.2 Installation
	7.2.3 The main screen and its buttons
	7.2.4 Manipulate all screens in layout
	7.2.4.1 Open .SET
	7.2.4.2 CSV Save
	7.2.4.3 Save As
	7.2.4.4 Edit All Controls
	7.2.4.5 Edit Undo

	7.2.5 Manipulate selected screen
	7.2.5.1 Delete
	7.2.5.2 Move Up/Down list
	7.2.5.3 Update Buttons

	7.2.6 The Additional Layout
	7.2.6.1 Append to Principal Layout

	7.2.7 Control Manipulation
	7.2.7.1 Re-scale controls
	7.2.7.2 Re-order DROs

	7.2.8 Screen captions and other workarounds
	7.2.8.1 Screen captions
	7.2.8.2 Buttons identify screens

	7.3 Layout file format
	7.3.1 Overall file format
	7.3.2 ControlRec
	7.3.2.1 Screen
	7.3.2.2 Type
	7.3.2.3 Function
	7.3.2.4 OEMCode
	7.3.2.5 Text
	7.3.2.6 GText
	7.3.2.7 BitMapPath
	7.3.2.8 Horiz & Vert
	7.3.2.9 Label
	7.3.2.10 Color
	7.3.2.11 HotKey
	7.3.2.12 Flash Flag
	7.3.2.13 RedGreen Flag
	7.3.2.14 Tabbing Group
	7.3.2.15 PosX1, Y1, X2, Y2

	7.3.3 ColorsRec

	8. Appendix 3 – General utility programs
	8.1 KeyGrabber
	8.1.1 Overview
	8.1.2 Installation
	8.1.2.1 The files
	8.1.2.2 Windows compatibility
	8.1.2.3 Running KeyGrabber and then Mach2
	8.1.2.4 Shortcut Icons

	8.1.3 Configuring KeyGrabber
	8.1.4 Configuring Keyboard Keys
	8.1.5 Configuring Keyboard Encoders
	8.1.6 Configuring HIDs
	8.1.6.1 Preparation for HIDs
	8.1.6.2 The HID Controllers tab
	8.1.6.3 HID Keys
	8.1.6.4 HID encoders
	8.1.6.5 Misc Settings

	8.1.7 Axes as joysticks
	8.1.8 Multiple machines and KeyGrabber Profiles (.GRAB files)
	8.1.9 Keyboard Emulator programming
	8.1.10 Testing and troubleshooting

	9. Revision history
	10. Index

