PennEngineering®

FASTENERS FOR USE IN STAINLESS STEEL SHEETS

BULLETIN

SS

FASTENERS FOR USE IN STAINLESS STEEL SHEETS

One of the very basics of self-clinching is that the fastener must be harder than the host sheet. Only then will the fastener perform as intended. This is particularly challenging when installing fasteners into stainless steel sheets.

Therefore we have developed this line of specially hardened stainless steel fasteners. When pressed in they become an integral part of the sheet. They allow the use of stainless steel sheet to satisfy applications, which require lighter, stronger designs that must perform in challenging environments. Effectively eliminate welding and reduce loose hardware.

PEM® Type SP nuts (page SS-3) provide strong load-bearing threads in stainless steel sheets as thin as .030"/0.8mm.

Type SO4 and BSO4 standoffs (pages SS-4 and SS-5) provide a permanently mounted fastener that can be used for stacking or spacing components to or from stainless steel panels.

Type FH4 and FHP self-clinching, flush-head studs (page SS-6) can be mounted in stainless steel sheets as thin as .040"/1mm.

Type TP4 self-clinching pins (page SS-7) are specifically designed for installation into stainless steel sheets as thin as .040"/1 mm.

Type PFC4 panel fasteners (page SS-8) provide "tool only" access to your stainless steel assemblies.

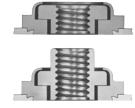
PEM® non-locking Type A4 and self-locking Type LA4 self-clinching floating nuts (page SS-9) will permit up to .030"/0.76mm total adjustment for mating hole misalignment in stainless steel sheets.

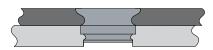
Type SFP SpotFast® fasteners (page SS-10) are ideal for flush-mount attachment applications in stainless steel sheets as thin as .030"/0.8mm.

Fasteners made from precipitation hardened grade stainless are particularly useful in applications such as outdoor equipment, medical devices and chemical and food processing equipment or anywhere corrosive element exposure is possible.

Type SP nuts with single ring (See page SS-3)

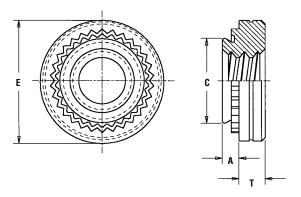
Type SO4 and BSO4 Standoffs (See pages SS-4 and SS-5)


Type FH4 and FHP studs (See page SS-6)


Type TP4 Pins (See page SS-7)

Type PFC4 Panel Fasteners (See page SS-8)

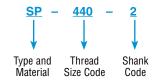
Type A4 and LA4 floating nuts (See page SS-9)



Type SFP SpotFast® Fastener (See page SS-10)

TYPE SP™ PEM 300® SELF-CLINCHING NUTS

- · After installation, reverse side of sheet remains flush and smooth.
- For use in sheets of HRB 90 or less.
- Corrosion resistance similar to 300 series stainless steel.

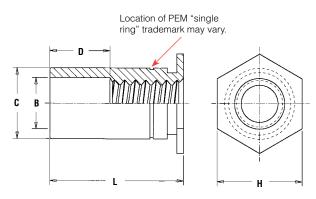

All dimensions are in inches.

	Thread Size	Туре	Thread Code	Shank Code	A (Shank) Max.	Sheet Thickness	Hole Size In Sheet +.003000 (2)	C Max.	E ±.010	T ±.010	Min. Dist. Hole C/L To Edge (1)
	.112-40			0	.030	.030039					
	(#4-40)	SP	440	1	.038	.040055	.166	.165	.250	.070	.19
	(#4-40)			2	.054	.056 Min.					
	.138-32			0	.030	.030039					
	(#6-32)	SP	632	1	.038	.040055	.1875	.187	.280	.070	.22
ш	(#0-32)			2	.054	.056 Min.					
正	.164-32			0	.030	.030039					
I N	.164-32 (#8-32)	SP	832	1	.038	.040055	.213	.212	.310	.090	.27
-	(#0-32)			2	.054	.056 Min.					
	100.20			0	.030	.030039					
	.190-32 (#10-32)	SP	032	1	.038	.040055	.250	.249	.340	.090	.28
	(#10-32)			2	.054	.056 Min.					
	.250-20 (1/4-20)	SP	0420	1	.054	.056 Min.	.344	.343	.440	.170	.34
	.313-18 (5/16-18)	SP	0518	1	.054	.056 Min.	.413	.412	.500	.230	.38

All dimensions are in millimeters.

	Thread Size x Pitch	Туре	Thread Code	Shank Code	A (Shank) Max.	Sheet Thickness	Hole Size In Sheet +0.08 (2)	C Max.	E ±0.25	T ±0.25	Min. Dist. Hole C/L To Edge (1)
	M3 x 0.5	SP	MO	0	0.77	0.8 - 1	4.00	4.2	6.3	1.5	4.8
	IVIS X U.S	5P	M3	1	0.97	1.01 - 1.39	4.22	4.2	0.3	1.5	4.0
2				2	1.38	1.4 Min.					
~				0	0.77	0.8 - 1					
ΕT	M4 x 0.7	SP	M4	1	0.97	1.01 - 1.39	5.41	5.39	7.9	2	6.9
M				2	1.38	1.4 Min.					
				0	0.77	0.8 - 1					
	M5 x 0.8	SP	M5	1	0.97	1.01 - 1.39	6.35	6.33	8.7	2	7.1
				2	1.38	1.4 Min.					
	M6 x 1	SP	M6	1	1.38	1.4 Min.	8.75	8.73	11.1	4.1	8.6
	M8 x 1.25	SP	M8	1	1.38	1.4 Min.	10.5	10.47	12.65	5.47	9.7

⁽¹⁾ To minimize sheet distortion and maximize product performance, use a centerline-to-edge value greater or equal to the value specified.


⁽²⁾ Hole punch diameter must be maintained at +.001" / .025mm over mounting hole diameter. Hole punch should be kept sharp to minimize local work hardening around hole. Fasteners should be installed in the punch side of the hole.

TYPE SO4™ THRU-HOLE THREADED STANDOFFS

- · Installed with heads flush with one surface of the mounting sheet.
- Available unthreaded for spacing multi-panel assemblies.
- · For use in sheets of HRB 88 or less.

GENERAL DIMENSIONAL DATA

All dimensions are in inches.

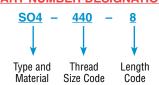
	Thread Code	Min. Sheet Thickness	Hole Size In Sheet +.003 000	B Counter- Bore Dia. ±.005	C +.000 005	H Nom.	Min. Dist. Hole C/L To Edge(1)
ED	440	.040	.166	.125	.165	.187	.23
盂	6440	.040	.213	.125	.212	.250	.28
N	632	.040	.213	.156	.212	.250	.28
	8632	.050	.281	.156	.280	.312	.33
	832	.050	.281	.188	.280	.312	.33
	032	.050	.281	.203	.280	.312	.33
					A11 -11	!	

All dimensions are in millimeters.

	Thread Code	Min. Sheet Thickness	Hole Size In Sheet +0.08	B Counter- Bore Dia. ±0.13	C -0.13	H Nom.	Min. Dist. Hole C/L To Edge(1)
ш	M3	1.02	4.22	3.25	4.2	4.8	6
H	3.5M3	1.02	5.41	3.25	5.39	6.4	7.1
Σ	M3.5	1.02	5.41	3.9	5.39	6.4	7.1
	M4	1.27	7.14	4.8	7.12	7.9	8.4
	M5	1.27	7.14	5.35	7.12	7.9	8.4

Clinching profile may vary.

THREAD SIZE AND LENGTH SELECTION DATA

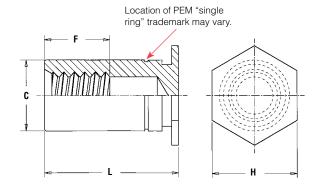

All dimensions are in inches.

	Thread	Туре	Thread					Len	gth "L"	+.002 -	.005 (Le	ngth Co	de in 32	nds of a	n inch)				
	Size	турс	Code	.125	.187	.250	.312	.375	.437	.500	.562	.625	.687	.750	.812	.875	.937	1.00	1.062
2	.112-40 (#4-40)	S04	440 6440 ⁽²⁾	4	6	8	10	12	14	16	18	20	22	24	NA	NA	NA	NA	NA
H	.138-32 (#6-32)	S04	632 8632 ⁽²⁾	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
=	.164-32 (#8-32)	S04	832	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
	.190-32 (#10-32)	304	032	4	U	0	10	12	14	10	10	20	22	24	20	20	30	32	34
		D Dimension ±.010		·	No	ne			.18	87	•		.3	12			.43	37	

All dimensions are in millimeters.

	Thread Size x Pitch	Туре	Thread Code						gth "L" +(h Code in						
TRIC	M3 x 0.5	S04	M3 3.5M3 ⁽²⁾	3	4	6	8	10	12	14	16	18	NA	NA	NA
M	M3.5 x 0.6 M4 x 0.7 M5 x 0.8	S04	M3.5 M4 M5	3	4	6	8	10	12	14	16	18	20	22	25
		D Dimension ±0.25			No	one			4			8		1	1

- (1) To minimize sheet distortion and maximize product performance, use a centerline-to-edge value greater or equal to the value specified.
- (2) Standoffs with thread codes 6440, 8632, and 3.5M3 offer greater wall thickness for thread sizes 440, 632, and M3 respectively. NA Not Available.



TYPE BSO4™ BLIND THREADED STANDOFFS

- · Ideal for stacking or spacing.
- Installed with heads flush with one surface of the mounting sheet.
- · Outer sheet surface is not only flush, but closed as well.
- · For use in sheets of HRB 88 or less.

GENERAL DIMENSIONAL DATA

All dimensions are in inches.

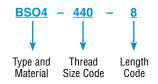
		Thread Code	Min. Sheet Thickness	Hole Size In Sheet +.003 000	C +.000 005	H Nom.	Min. Dist. Hole C/L To Edge(1)
	ЕБ	440	.040	.166	.165	.187	.23
ı	Œ.	6440	.040	.213	.212	.250	.28
		632	.040	.213	.212	.250	.28
ľ	_	8632	.050	.281	.280	.312	.33
		832	.050	.281	.280	.312	.33
		032	.050	.281	.280	.312	.33

All dimensions are in millimeters.

	Thread Code	Min. Sheet Thickness	Hole Size In Sheet +0.08	C -0.13	H Nom.	Min. Dist. Hole C/L To Edge(1)
ပ	М3	1.02	4.22	4.2	4.8	6
H B	3.5M3	1.02	5.41	5.39	6.4	7.1
Σ	M3.5	1.02	5.41	5.39	6.4	7.1
	M4	1.27	7.14	7.12	7.9	8.4
	M5	1.27	7.14	7.12	7.9	8.4

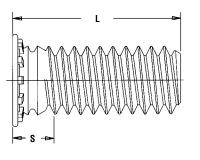
Clinching profile may vary.

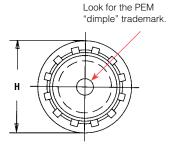
THREAD SIZE AND LENGTH SELECTION DATA


All dimensions are in inches.

	Thread	Туре	Thread				Length	"L" +.00	2005 (Length Co	de in 32r	nds of an	inch)			
	Size	туро	Code	.312	.375	.437	.500	.562	.625	.687	.750	.812	.875	.937	1.00	1.062
D	.112-40 (#4-40)	BSO4	440 6440 ⁽²⁾	10	12	14	16	18	20	22	24	26	28	30	32	34
NIFIE	.138-32 (#6-32)	BSO4	632 8632 ⁽²⁾	10	12	14	16	18	20	22	24	26	28	30	32	34
Π	.164-32 (#8-32)	BSO4	832	10	12	14	16	18	20	22	24	26	28	30	32	34
	.190-32 (#10-32)	D304	032	10	12	14	10	10	20	22	24	20	20	30	32	J4
	•	F Dimension Min.	•	.1	56	.187		.250		·			.375			

All dimensions are in millimeters.


		Thread Size x Pitch	Туре	Thread Code						+0.05 -0.1 in millimet				
2	ב	M3 x 0.5	BS04	M3 3.5M3 ⁽²⁾	6	8	10	12	14	16	18	20	22	25
L		M3.5 x 0.6 M4 x 0.7 M5 x 0.8	BSO4	M3.5 M4 M5	6	8	10	12	14	16	18	20	22	25
			F Dimension Min.		3.2	4	1	5	6	.5		9	.5	

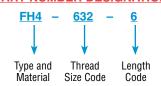

- (1) To minimize sheet distortion and maximize product performance, use a centerline-to-edge value greater or equal to the value specified.
- (2) Standoffs with thread codes 6440, 8632, and 3.5M3 offer greater wall thickness for thread sizes 440, 632, and M3 respectively.

TYPE FH4™ AND FHP™ FLUSH-HEAD STUDS

- Permanent installation into stainless steel sheets as thin as .040" / 1 mm.
- For use in sheets of HRB 92 or less.

unthreaded length

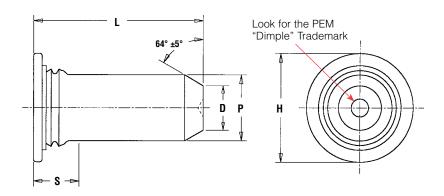
All dimensions are in inches.


	Thread	Тур)e	Thread Code						e "L" ±.0 [.] 16ths of a					Sheet Thick-	Hole Size in Sheet	Max. Hole in	H . 015	S	Min. Dist. Hole C/L
	Size			coue	.250	.312	.375	.500	.625	.750	.875	1.00	1.25	1.50	ness	+.003 000	Attach. Parts	±.015	Max.	to Edge
G 2		FH4	FHP	440	4	5	6	8	10	12 ^{NS}	14 ^{NS}	16 ^{NS}	NA	NA	.040095	.112	.135	.176	.085	.219
H	.138-32	FH4	FHP	632	4	5	6	8	10	12	14	16	20	24 ^{NS}	.040095	.138	.160	.206	.090	.250
=	.164-32 (#8-32)	FH4	FHP	832	4	5	6	8	10	12	14	16	20	24 ^{NS}	.040095	.164	.185	.237	.090	.281
	.190-32 (#10-32)	FH4	FHP	032	NA	5 ^{NS}	6	8	10	12	14	16	20	24	.040095	.190	.210	.256	.100	.281
	.250-20 (1/4-20)	FH4	NA	0420	NA	NA	6 ^{NS}	8	10	12	14	16	20	24	.062117	.250	.270	.337	.135	.312

All dimensions are in millimeters.

RIC	Thread Size x Pitch	Тур	ie	Thread Code				L (Lenç	ength Code i	de "L" ±0 n millime	.4 iters)				Sheet Thick- ness	Hole Size in Sheet +0.08	Max. Hole in Attach. parts	H ±0.4	S Max.	Min. Dist. Hole C/L to Edge
ET	M3 x 0.5	FH4	FHP	М3	6 ^{NS}	8	10	12	15	18	20 ^{NS}	25 ^{NS}	NA	NA	1 - 2.4	3	3.6	4.6	2.1	5.6
Σ	M4 x 0.7	FH4	FHP	M4	6 ^{NS}	8	10	12	15	18	20	25	30 ^{NS}	35 ^{NS}	1 - 2.4	4	4.6	5.9	2.4	7.2
	M5 x 0.8	FH4	FHP	M5	NA	8 ^{NS}	10	12	15	18	20	25	30 ^{NS}	35 ^{NS}	1 - 2.4	5	5.6	6.5	2.7	7.2
	M6 x 1	FH4	NA	M6	NA	NA	10	12	15	18	20	25	30	35	1.6 - 3	6	6.6	8.2	3	7.9

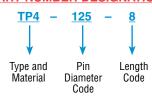
NS Not Stocked, available on special order.


NA Not Available.

TYPE TP4™ SELF-CLINCHING PINS

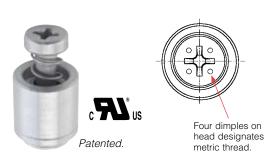
- Flush-mounted.
- Satisfies a wide range of positioning, pivot, and alignment applications.
- Chamfered end makes mating hole location easy.

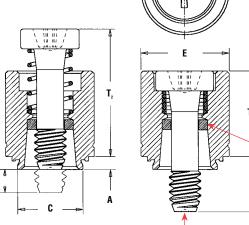
All dimensions are in inches.

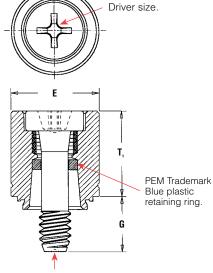

	Pin Diameter	Туре	Pin Diameter			th Code "L" ± ode in 16ths o			Min. Sheet	Hole Size in Sheet	D	Н	S Max.	Min. Distance
9	P ±.002	Stainless Steel	Code	.375	.500	.625	.750	1.00	Thickness +	+.003000	±.006	±.015	(1)	Hole C/L to Edge
Ī	.125	TP4	125	6	8	10	12	NA	.040	.144	.090	.205	.090	.250
5	.187	TP4	187	6	8	10	12	16	.040	.205	.132	.270	.090	.280
	.250	TP4	250	NA	8	10	12	16	.040	.272	.177	.335	.090	.310

All dimensions are in millimeters.

၁	Pin Diameter P ±0.05	Type Stainless Steel	Pin Diameter Code			yth Code "L" ± Code in millir			Min. Sheet Thickness	Hole Size in Sheet +0.08	D ±0.15	H ±0.4	S Max. (1)	Min. Distance Hole C/L to Edge
T B	3	TP4	3mm	8	10	12	16	NA	1	3.5	2.05	5.2	2.29	6.4
N	4	TP4	4mm	8	10	12	16	NA	1	4.5	2.82	6.12	2.29	7.1
	5	TP4	5mm	NA	10	12	16	20	1	5.5	3.53	7.19	2.29	7.6
	6	TP4	6mm	NA	NA	12	16	20	1	6.5	4.24	8.13	2.29	7.9


(1) Pin diameter may exceed max. in this region.


NA Not Available.

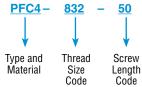


TYPE PFC4™ PANEL FASTENERS

- Meets UL 1950 "service area access" requirements.
- Assorted screw lengths for most applications.
- · For use in sheets of HRB 88 or less.

PEM "dimple" trademark on end of screw.

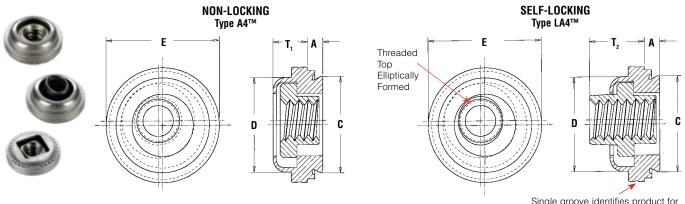
All dimensions are in inches.


	Thread Size	Туре	Thread Code	Screw Length Code	A (Shank) Max.	Min. Sheet Thickness	Hole Size In Sheet + .003 000	C Max.	E ± .010	G ± .016	P ±.025	T, Max.	T ₂ Nom.	Driver Size	Min. Dist. Hole C/L To Edge (1)
	.112-40	PFC4	440	40	.060	.060	.265	.264	.344	.250	.000	.370	.540	#1	.25
	(#4-40)	1104	770	62	.000	.000	.200	.204	.044	.375	.125	.070	.540	// 1	.20
ED	400.00			40						.250	.000				
正	.138-32 (#6-32)	PFC4	632	62	.060	.060	.281	.280	.375	.375	.125	.380	.540	#2	.28
Ξ	(#0-32)			84 ^{NS}						.500	.250				
	101.00			50						.312	.000				
	.164-32 (#8-32)	PFC4	832	72	.060	.060	.312	.311	.406	.437	.125	.480	.705	#2	.31
	(#0-32)			94						.562	.250				
	100.00			50						.312	.000				
	.190-32 (#10-32)	PFC4	032	72	.060	.060	.344	.343	.437	.437	.125	.490	.705	#2	.34
	(#10-32)			94						.562	.250				

All dimensions are in millimeters.

	Thread Size x Pitch	Туре	Thread Code	Screw Length Code	A (Shank) Max.	Min. Sheet Thickness	Hole Size In Sheet + 0.08	C Max.	E ± 0.25	G ± 0.4	P ±0.64	T, Max.	T ₂ Nom.	Driver Size	Min. Dist Hole C/L To Edge (1)
ပ	M3 x 0.5	PFC4	M3	40	1.53	1.53	6.73	6.71	8.74	6.4	0	9.4	13.72	#1	6.35
1 =	IVIO X U.S	PFU4	IVIO	62 ^{NS}	1.00	1.55	0.73	0.71	0.74	9.5	3.2	9.4	13.72	#1	0.33
H				50						7.9	0				
Σ	M4 x 0.7	PFC4	M4	72 ^{NS}	1.53	1.53	7.92	7.9	10.31	11.1	3.2	12.19	17.91	#2	7.87
				94 ^{NS}						14.3	6.4				
				50						7.9	0				
	M5 x 0.8	PFC4	M5	72	1.53	1.53	8.74	8.72	11.1	11.1	3.2	12.45	17.91	#2	8.63
				94 ^{NS}						14.3	6.4				

(1) To minimize sheet distortion and maximize product performance, use a centerline-to-edge value greater or equal to the value specified. NS Not Stocked, available on special order.


PART NUMBER DESIGNATION

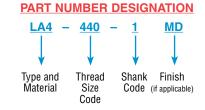
SS-8 PennEngineering • www.pemnet.com

TYPE A4™ AND LA4™ FLOATING SELF-CLINCHING FASTENERS

- Speeds assembly by compensating for mating hole misalignment.
- Permanent installation into stainless steel sheets as thin as .038" / 0.97 mm and greater.
- Provides high torque-out and pushout resistance in stainless panels.

Float - .015" / 0.38 mm minimum, in all directions from center, .030" / 0.76 mm total.

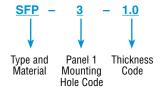
Single groove identifies product for installation into stainless steel sheets.

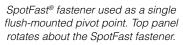

All dimensions are in inches.

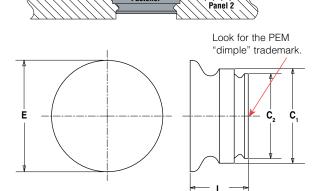
		Ту	pe		a			Hole	C	_	_	_	_	Min. Dist.
	Thread Size	Non-Locking	Self-Locking	Thread Code	Shank Code	A (Shank) Max.	Min. Sheet Thickness	Size in Sheet + .003 –.000	Max.	D Max.	± .015	I ₁ Max.	Max.	Hole C/L To Edge
GE		A4	LA4	440	1	.038	.038	.290	.289	.290	.360	.130	.190	.30
I N		A4	LA4	632	1	.038	.038	.328	.327	.335	.390	.130	.200	.32
	.164-32 (#8-32)	A4	LA4	832	1	.038	.038	.368	.367	.365	.440	.130	.210	.34
	.190-32 (#10-32)	A4	LA4	032	1	.038	.038	.406	.405	.405	.470	.170	.270	.36

All dimensions are in millimeters.

		Туј	pe	-	o			Hole	_	_	_	_	_	Min. Dist.
ပ	Thread Size x Pitch	Non-Locking	Self-Locking	Thread Code	Shank Code	A (Shank) Max.	Min. Sheet Thickness	Size in Sheet + 0.08	C Max.	D Max.	± 0.38	I ₁ Max.	I ₂ Max.	Hole C/L To Edge
TRI	M3 x 0.5	A4	LA4	М3	1	0.97	0.97	7.37	7.35	7.37	9.14	3.31	4.83	7.62
ME	M4 x 0.7	A4	LA4	M4	1	0.97	0.97	9.35	9.33	9.28	11.18	3.31	5.34	8.64
	M5 x 0.8	A4	LA4	M5	1	0.97	0.97	10.31	10.29	10.29	11.94	4.32	6.86	9.14


Double squares are a registered trademark Always look for the square insert in a square retainer to be sure you are getting PEM brand fasteners and the best in self-clinching performance. Bottom view (same for both type fasteners)


TYPE SFP™ SPOTFAST® FASTENERS


- Allows permanent joining of two metal sections.
- Installs smooth with top sheet and flush or sub-flush with the bottom sheet.
- Can be used as single flush-mounted pivot point.

PART NUMBER DESIGNATION

SpotFast

Fastener

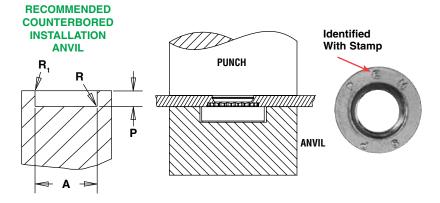
Panel 1

Type and Size	Thickness Code				ng Hole Bmm /	Pan Thick Mi (1	ness n.	Pan Mountii +0.08 +.003"	ng Hole mm /	C Ma		C Ma	7 ₂ 3X.	I Ma	_	M	L ax.	Hole	. Dist e C/L Edge
		mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.	mm	in.
SFP-3	1.0	1	.039	3	.118	1	.039	2.5	.098	2.98	.117	2.48	.097	3.76	.148	1.9	.075	2.54	0.1
SFP-3	1.2	1.2	.047	3	.118	1.2	.047	2.5	.098	2.98	.117	2.48	.097	3.76	.148	2.31	.091	2.54	0.1
SFP-3	1.6	1.6	.063	3	.118	1.6	.063	2.5	.098	2.98	.117	2.48	.097	3.76	.148	3.12	.123	2.54	0.1
SFP-5	1.0	1	.039	5	.197	1	.039	4.5	.177	4.98	.196	4.47	.176	5.56	.219	1.9	.075	3.56	0.14
SFP-5	1.2	1.2	.047	5	.197	1.2	.047	4.5	.177	4.98	.196	4.47	.176	5.56	.219	2.31	.091	3.56	0.14
SFP-5	1.6	1.6	.063	5	.197	1.6	.063	4.5	.177	4.98	.196	4.47	.176	5.56	.219	3.12	.123	3.56	0.14

⁽¹⁾ Fastener will provide flush application at minimum sheet thickness.

MATERIAL AND FINISH SPECIFICATIONS

		Threads			Fastener N	laterials		Fini	ish	For Use i	n Sheet Ha	irdness ⁽¹⁾		
Туре	Internal, ANSI B1.1 2B/ANSI/ ASME B1.13M, 6H	External, ANSI B1.1 2A/ANSI/ ASME B1.13M, 6g	Self-locking, Internal ANSI B1.1, 3B/ ANSI/ASME B1.13M, 6H			300 Series Stainless Steel	A286 Stainless	Passivated and/or Tested per ASTM A380	Black Dry-film Lubricant	HRB 92 / HB 202 or less	HRB 90 / HB 192 or less	HRB 88 / HB 183 or less	Corrosion Resistance	Magnetic
SP Stamped	•						•	•			•		Excellent	No
SP Grooved	•			•				•			•		Excellent	Yes
S04	•				•			•				•	Fair	Yes
BS04	•				•			•				•	Fair	Yes
FH4		•			•			•		•			Fair	Yes
FHP		•					•	•		•			Excellent	No
TP4					•			•		•			Fair	Yes
PFC4 (Retainer) (Screw) (Spring)		•			•	•		•				•	- Fair	Yes
A4	•				• (retainer)	• (insert)		•				•	Fair	Yes
LA4			•		• (retainer)	• (insert)		• (retainer)	• (insert)			•	Fair	Yes
SFP				•				•				•	Excellent	Yes
Part numbe	r codes for fi	nishes	_	_			•	None	MD					


⁽¹⁾ HRB - Hardness Rockwell "B" Scale. HB - Hardness Brinell.

Type SP(1) - Identified With Stamp

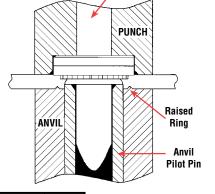
- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place fastener into the recommended counterbored anvil hole and place the mounting hole over the shank of the fastener as shown in diagram.
- 3. With punch and anvil surfaces parallel, apply squeezing force until the head of the nut comes into contact with the sheet material.

		1	Anvil Dime	nsions (in.)		
Q	Thread Code	A ±.002	P +.000 001	R Max.	R ₁ +.005	Anvil Part No.
ш	440	.255	.064	.010	.005	8012821
巫	632	.286	.064	.010	.005	8012822
Ξ	832	.317	.082	.010	.005	8012823
	032	.348	.082	.010	.005	8012824
	0420	.443	.163	.010	.005	8012825
	0518	.505	.230	.010	.005	8015359

		A	nvil Dimer	sions (mm))	
ပ	Thread Code	A ±0.05	P -0.03	R Max.	R ₁ +0.13	Anvil Part No.
_	M3	6.48	1.63	0.25	0.13	8012821
T B	M3.5	7.26	1.63	0.25	0.13	8012822
ш	M4	8.05	2.08	0.25	0.13	8012823
Σ	M5	8.84	2.08	0.25	0.13	8012824
	M6	11.25	4.14	0.25	0.13	8012825
	M8	12.83	5.41	0.25	0.13	8015360

(1) To meet the published performance data, we recommend using the installation punch and anvil shown. Deviations from recommended installation tooling may result in sheet distortion and reduced performance.

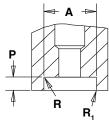
NOTE: Variations in hole preparation, installation tooling, installation force, and sheet material type, thickness, and hardness will affect both performance and tooling life.


Type SP⁽¹⁾ - Identified With Single Ring

A special punch with a pilot pin to align the nut and a special anvil with a pilot pin to align the sheet and a raised ring is required to create a proper installation. The raised ring acts as a second displacer of the stainless sheet material, thereby ensuring proper installation.

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place sheet on raised ring anvil.
- 3. Place fastener in hole.
- 4. With punch and anvil surfaces parallel, apply squeezing force until the head of the nut comes into contact with the sheet material.

Identified with single ring



Punch Pilot Pin

		P	unch Dime	ensions (i	n.)	
G ≡	Thread Code	A ±.002	P ±.001	R Max.	R ₁ +.005	Punch Part No.
₩.	440	.255	.066	.010	.005	8002691
Ξ	632	.286	.066	.010	.005	8002692
UNIFIE	832	.317	.089	.010	.005	8002693
	032	.348	.089	.010	.005	8002694
	0420	_	_	_	_	(3)

		Pu	nch Dimen	sions (m	m)	
2	Thread Code	A ±0.05	P ±0.03	R Max.	R ₁ +0.13	Punch Part No.
E	M3	6.48	1.42	0.25	0.13	8002695
METRIC	M3.5	7.26	1.42	0.25	0.13	8002696
Ξ	M4	8.05	1.93	0.25	0.13	8002697
	M5	8.84	1.93	0.25	0.13	8002698
	M6	_		_		(3)

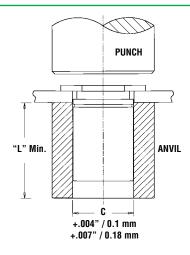
			Anvil Dimensions (in.)						
E D	Thread Code	A ₁ ±.002	B Nom.	P ₁ (2) +.001000	R ₂ Max.	Anvil Part No.			
E	440	.199	.261	.009	.003	8002687			
	632	.218	.280	.009	.003	8002688			
UNIFIE	832	.243	.305	.009	.003	8002689			
	032	.288	.350	.009	.003	8002690			
	0420		_			(3)			

		A				
RIC	Thread Code	A, ±0.05	B Nom.	P ₁ (2) +0.03	R ₂ Max.	Anvil Part No.
<u>د</u>	M3	5.05	6.63	.23	.08	8002687
MET	M3.5	5.54	7.11	.23	.08	8002688
Ξ	M4	6.17	7.75	.23	.08	8002689
	M5	7.34	7.75	.23	.08	8002690
	M6	_	_		_	(3)

	TALLATION ANVIL
	→ B →
120°_	$A_1 \Rightarrow$
*	

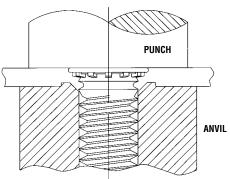
Sharp. No burrs

RECOMMENDED


0		0		0002000	
7.34	7.75	.23	.08	8002690	
ı			_	(3)	
unch a	and an	vil shov	vn. De	eviations	from recommended

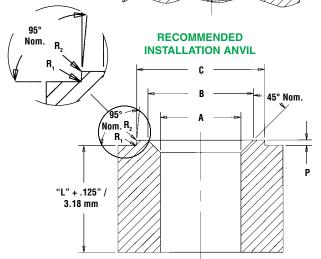
- (1) To meet the published performance data, we recommend using the installation pu installation tooling may result in sheet distortion and reduced performance.
- (2) We recommend replacing installation anvil when the height of the "P1" dimension is reduced to .005" / 0.13mm due to wear. Reductions in performance may occur as the height of the protrusion wears.
- (3) Special installation tooling for #0420 and M6 thread sizes is not required.

NOTE: Variations in hole preparation, installation tooling, installation force, and sheet material type, thickness, and hardness will affect both performance and tooling life.


Types SO4 and BSO4

- 1. Prepare properly sized round mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert standoff through mounting hole of sheet and into anvil as shown in drawing.
- 3. With punch and anvil surfaces parallel, apply only enough squeezing force to embed the standoff's head flush in the sheet.

Type FH4 and FHP


- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place fastener into the anvil hole and place the mounting hole over the shank of the fastener.
- 3. With punch and anvil surfaces parallel, apply squeezing force until head of fastener is flush with sheet. A special anvil with a raised ring is required to create a proper installation. The raised ring acts as a second displacer of the stainless sheet material, thereby ensuring that the annular groove of the stud is filled.

Anvil Dimensions (1)

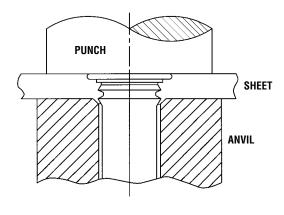
	Thread	read Anvil Dimensions (in.)							
Q	Code	A +.003000	B ±.002	C ±.002	P ±.001	R₁ Max.	R₂ Max.	Anvil Part No.	
Ξ	440	.113	.144	.174	.010	.003	.005	8001645	
H	632	.140	.170	.200	.010	.003	.005	8001644	
N D	832	.166	.202	.236	.010	.003	.005	8001643	
	032	.191	.235	.275	.010	.003	.005	8001642	
	0420	.252	.324	.360	.020	.003	.005	8002535	

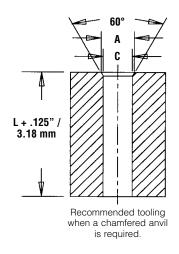
	Thread		Anvil					
	Code	A +0.08	B ±0.05	C ±0.05	P ±.025	R₁ Max.	R₂ Max.	Part No.
RIC	M3	3.05	3.81	4.57	0.25	0.08	0.13	8001678
MET	M4	4.04	4.95	5.82	0.25	0.08	0.13	8001677
_	M5	5.08	6.15	7.16	0.25	0.08	0.13	8001676
	M6	6.05	7.87	8.79	0.51	0.08	0.13	8002536

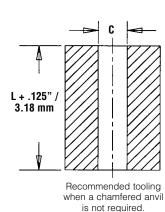
(1) We recommend replacing installation anvil when the height of the "P" dimension is reduced to .005" / 0.13 mm due to wear. Reductions in performance may occur as the height of the protrusion wears. Variations in hole preparation, installation force, and sheet material type, thickness, and hardness will affect both performance and tooling life.

Type TP4

- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Insert pin through mounting hole of sheet and into anvil hole.
- 3. With punch and anvil surfaces parallel, apply squeezing force to embed the pin's head flush in the sheet.

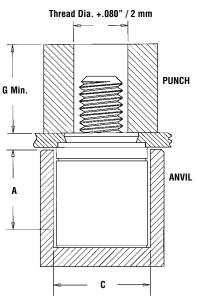

All dimensions are in inches.


	Tuno	Pin Dia. Code	rin Dia. Code Test Sheet Thickness		nensions
	Туре	FIII DIa. Coue	1621 OHEEL HIICKHE22	A ±.002	C ±.002
UNIFIED	TD4	105	.040060	.160	100
=	TP4	125	Over .060	(1)	.130
Ę	TD4	107	.040065	.220	100
5	TP4	187	Over .065	(1)	.192
	TP4	250	.040075	.285	.255
	174	230	Over .075	(1)	.200


(1) Chamfered anvil not required.

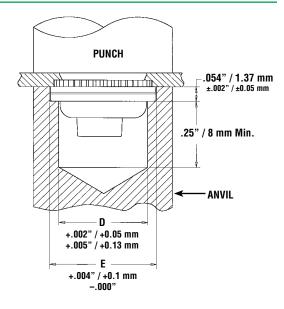
All dimensions are in millimeters.

	Tuno	Din Dio Codo	Pin Dia, Code Test Sheet Thickness		nensions
	Туре	FIII DIa. Coue	1621 OHEEL HIICKHESS	A ±0.05	C ±0.05
	TD4	2mm	1 - 1.7	3.88	3.11
ပ	TP4	3mm	Over 1.7	(1)	3.11
ETRIC	TP4	4mm	1 - 1.7	4.88	4.11
ET	114	4111111	Over 1.7		4.11
Σ	TP4	5mm	1 - 1.8	5.89	5.13
	1174	Jillill	Over 1.8	(1)	3.13
	TP4	6mm	1 - 1.9	6.89	6.12
	174	OIIIIII	Over 1.9	(1)	0.12


Type PFC4

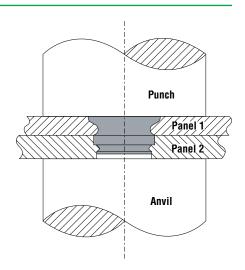
- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place fastener into the anvil hole and place the mounting hole over the shank of the fastener.
- 3. With punch and anvil surfaces parallel, apply squeezing force until the shoulder of the retainer comes in contact with the sheet material.

Anvil Dimensions


		Anvil Dimensions (in.)			
ED	Thread Code	A ±.002	C ±.002	Anvil Part Number	Punch Part Number
ᇤ	440	.345	.358	975200027	975200060
Z	632	.345	.390	975201243	975200061
_	832	.435	.421	975200029	975200062
	032	.435	.452	975201244	975200064

		Anvil Dimen	sions (mm)		
RIC	Thread Code	A ±0.05	C ±0.05	Anvil Part Number	Punch Part Number
ΕŢ	M3	8.76	9.09	975200027	975200060
Σ	M4	11.05	10.69	975200029	975200062
	M5	11.05	11.48	975201244	975200064

Type A4 and LA4


- 1. Prepare properly sized mounting hole in sheet. Do not perform any secondary operations such as deburring.
- 2. Place fastener into the anvil hole and place the mounting hole over the shank of the fastener.
- 3. With punch and anvil surfaces parallel, apply sufficient squeezing force until the flange contacts the sheet material.

Type SFP

- 1. Prepare properly sized mounting hole in both panels. Do not perform any secondary operations such as deburring.
- 2. Place Panel 2 with smaller mounting hole on anvil and align Panel 1 mounting hole with the mounting hole of Panel 2. Place the smaller diameter end of the fastener through the mounting holes as shown in the drawing to the right.
- 3. With punch and anvil surfaces parallel, apply squeezing force until the fastener is flush with the top of Panel 1.

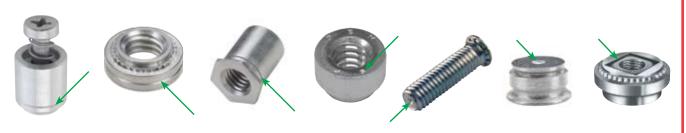
NOTE: To use as a flush-mounted pivot point, for best results, install SpotFast fastener into Panel 1 first, then place Panel 2 over fastener and squeeze again.

PERFORMANCE DATA(1)

			Max. Rec.	Test Sheet I	Material – 30	0 Series Stai	nless Steel
	Part Number	Max. Nut Tightening Torque (in. lbs.)	Tightening Torque For Mating Screw (in. lbs.)	Install- ation (lbs.)	Pushout (lbs.)	Torque- out (in. lbs.)	Pull Thru (lbs.)
	SP-440-0			8000	130	14	
	SP-440-1			9000	165	17	
	SP-440-2			10000	290	18	
	SP-632-0			8500	140	18	
	SP-632-1			9500	170	24	
	SP-632-2			10500	340	28	
	SP-832-0			9000	145	30	
	SP-832-1			10000	180	37	
	SP-832-2			11000	360	45	
	SP-032-0			9500	180	35	
	SP-032-1			10500	230	45	
	SP-032-2			11500	400	60	
	SP-0420-1			13500	450	150	
	SP-0518-1			14800	470	170	
	S04/BS04-440		4.75	5500	360	17	600
	S04/BS04-6440		4.75	9500	647	17	680
	S04/BS04-632		8.75	9500	647	30	680
	S04/BS04-8632		8.75	10500	900	30	1392
ED	S04/BS04-832		18	10500	900	53	1517
ᇤ	S04/BS04-032		32	10500	900	71	1368
Ξ	FH4-440-L	6		9000	450	16	800
	FH4-632-L	11		9500	540	27	1350
	FH4-832-L	21		11200	780	58	1800
	FH4-032-L	33		12000	1050	95	2250
	FH4-0420-L	70		23000	1600	156	3900
	FHP-632-L	11		9500	670	19.5	940
	FHP-832-L	21		11200	785	37.5	1415
	TP4-125			8000	350		
	TP4-187			12000	570		
	TP4-250			14000	650		
	PFC4-440			9100	350		
	PFC4-632			10300	400		
	PFC4-832			10800	450		
	PFC4-032			11800	550		
	A4/LA4-440			9000	200 (2)	85	
	A4/LA4-632			10000	200 (2)	85	
	A4/LA4-832			12000	200 (2)	85	
	A4/LA4-032			13000	250 (2)	125	
	SFP-3-1.0			3000	140		
	SFP-3-1.2			4500	186		
	SFP-3-1.6			5000	340		
	SFP-5-1.0			4000	222		
	SFP-5-1.2			6000	260		
	SFP-5-1.6			7500	701		

Part Number Max. Nut Tightening Torque For Mating Screw (N∘m) Installation (kN) Torque out (N∘m) Torque for Mating Screw (N∘m) Installation (N∘m) Pushout (N∘m) Torque out (N∘m) SP-M3-0 — — 35.6 575 1.5 SP-M3-1 — 40 725 1.9 SP-M3-2 — 44.5 1290 2.0 SP-M4-0 — 40 645 3.3 SP-M4-1 — 44.5 800 4.1 SP-M4-2 — 49 1600 5.0 SP-M5-0 — 42.3 800 3.9 SP-M5-1 — 46.7 1025 5.0	### Pull Thru (N) ### (N) ##
SP-M3-1 — 40 725 1.9 SP-M3-2 — 44.5 1290 2.0 SP-M4-0 — 40 645 3.3 SP-M4-1 — 44.5 800 4.1 SP-M4-2 — 49 1600 5.0 SP-M5-0 — 42.3 800 3.9 SP-M5-1 — 46.7 1025 5.0	92
SP-M3-2 — 44.5 1290 2.0 SP-M4-0 — 40 645 3.3 SP-M4-1 — 44.5 800 4.1 SP-M4-2 — 49 1600 5.0 SP-M5-0 — 42.3 800 3.9 SP-M5-1 — 46.7 1025 5.0	03 —— 88 —— 18 —— 08 ——
SP-M4-0 — 40 645 3.3 SP-M4-1 — 44.5 800 4.1 SP-M4-2 — 49 1600 5.0 SP-M5-0 — 42.3 800 3.9 SP-M5-1 — 46.7 1025 5.0	38 ————————————————————————————————————
SP-M4-1 — 44.5 800 4.1 SP-M4-2 — 49 1600 5.0 SP-M5-0 — 42.3 800 3.9 SP-M5-1 — 46.7 1025 5.0	08 —— 05 ——
SP-M4-2 — 49 1600 5.0 SP-M5-0 — 42.3 800 3.9 SP-M5-1 — 46.7 1025 5.0	08 —— 95 ——
SP-M5-0 — 42.3 800 3.9 SP-M5-1 — 46.7 1025 5.0	95 —
SP-M5-1 — 46.7 1025 5.0	
	18 ——
00.450	
SP-M5-2 — 51.2 1775 6.7	77 —
SP-M6-1 — 60 2000 17	7 —
SP-M8-1 — 66 2100 19	
SO4/BSO4-M3 — 0.55 24.5 1493 2.3	36 2650
S04/BS04-3.5M3 — 0.55 42.3 2877 2.3	3025
SO4/BSO4-M3.5 — 0.91 42.3 2877 3.0	06 3025
∪ S04/BS04-M4 — 2 46.7 4003 6.3	84 6458
© S04/BS04-M5 — 3.6 46.7 4003 8.8	39 6226
FH4-M3-L .9 — 40 2220 1.8	8 3500
► FH4-M4-L 2.1 — 50 3210 6.8	5 8000
FH4-M5-L 4.3 — 53 3575 10.	.7 10000
FH4-M6-L 7.2 — 71 4200 15.	.9 14900
FHP-M5-L 1.3 — 53 3890 7.3	35 7320
	_
	_
	_
	_
PFC4-M3 — 40.5 1557 —	_
PFC4-M4 — 48 2002 —	_
PFC4-M5 — 52.5 2447 —	_
A4/LA4-M3 — 40 890 9.6	6 —
A4/LA4-M4 — 53 890 9.6	6 —
A4/LA4-M5 — 57 1100 14.	.1 —
SFP-3-1.0 — 13.5 620 —	
SFP-3-1.2 — 20 830 —	_
SFP-3-1.6 — 22 1500 —	
SFP-5-1.0 — 18 990 —	_
SFP-5-1.2 — 27 1158 —	_
SFP-5-1.6 — — 33 3117 —	

⁽¹⁾ The values reported are averages when all installation specifications and procedures are followed. Variations in mounting hole size, sheet material and installation force will affect this data. Performance testing of this product in your application is recommended. We will be happy to provide samples for this purpose.


INSTALLATION INTO STAINLESS STEEL SHEETS DO'S AND DON'TS

"Do's"

- **DO** select the proper fastener material to meet corrosion requirements.
- DO make certain that hole punch is kept sharp to minimize work hardening around hole.
- **DO** provide mounting hole of specified size for each fastener.
- DO make certain that shank (or pilot) is within hole before applying installation force.
- **DO** apply squeezing force between parallel surfaces.
- **DO** utilize recommended installation tooling when installing fasteners.
- DO install fastener in punch side of hole
- **DO** apply sufficient force to totally embed clinching ring around entire circumference and to bring shoulder squarely in contact with sheet. For some fasteners, installation will be complete when the head is flush with the panel surface.

"Don'ts"

- DON'T attempt to install a 300 series stainless steel fastener into a stainless steel sheet.
- **DON'T** deburr mounting holes on either side of sheet before installing fasteners deburring will remove metal required for clinching fastener into sheet.
- **DON'T** install fastener closer to edge of sheet than minimum edge distance unless a special fixture is used to restrict bulging of sheet edge.
- DON'T install fastener near bends or other highly cold worked areas where sheet hardness may be greater than the limit for the fastener.
- **DON'T** over-squeeze. It will crush the head, distort threads, and buckle the sheet. Be certain to determine optimum installation force by test prior to production runs.
- **DON'T** attempt to insert fastener with a hammer blow under any circumstances. A hammer blow won't permit the sheet metal to flow and develop an interlock with the fastener's contour.
- **DON'T** install screw in the head side of fastener. Install from opposite side so that the fastener load is toward sheet. The clinching force is designed only to hold the fastener during handling and to resist torque during assembly.

To be sure that you are getting genuine PEM® brand self-clinching fasteners, look for the "single ring", "dimple", "double squares" or "SP" stamp trademark. On actual parts, location of ring on fastener may be different than shown in photo.

RoHS compliance information can be found on our website.

Specifications subject to change without notice. Check our website for the most current version of this bulletin.

PennEngineering®

