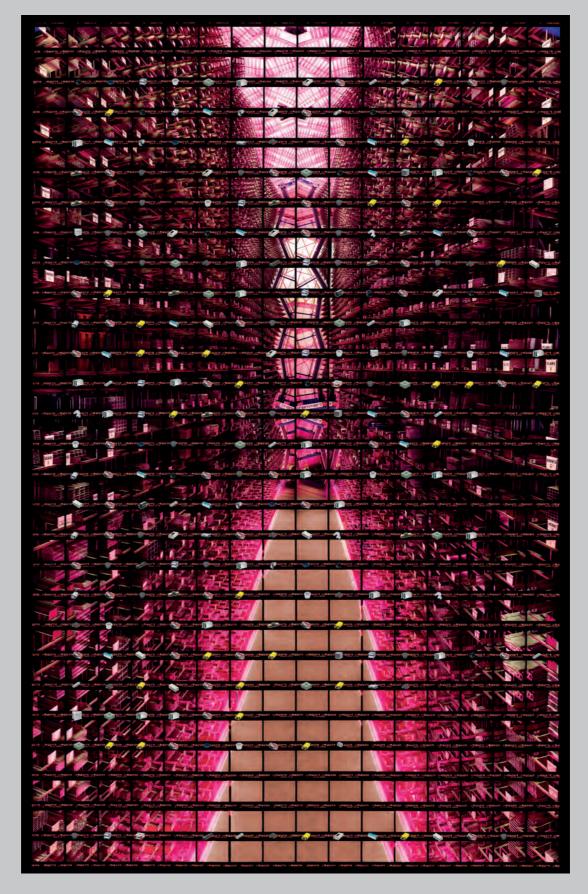
fischerelektronik ->=

to cool to protect to connect

f.cool.e 15/16 **Extruded heatsinks LED heatsinks Cooling aggregates**

The information given in this catalogue were established and examined carefully. Nevertheless, mistakes or printing errors, and especially technical modifications and updating and improvement of our products, cannot be excluded. All trade marks are recognised even if they are not specifically identified or mentioned. No identification does not imply that a product or trademark is not registered. No part of this catalogue may be reproduced or distributed without prior written consent of Fischer Elektronik. All data contained in this catalogue, in texts, illustrations, documents and descriptions are subject to copyright and the provisions of DIN ISO 16016. All rights reserved.


© Copyright Fischer Elektronik 1969 ... 2014

Fischer Elektronik GmbH & Co. KG

P.O. Box 1590 D-58465 Lüdenscheid

House Address

Nottebohmstr. 28 D-58511 Lüdenscheid Fon: +49 (0) 23 51 4 35-0 Fax: sales +49 (0) 23 51 4 57 54 purchasing +49 (0) 23 51 45 94 33 exports +49 (0) 23 51 43 51 85 info@fischerelektronik.de www.fischerelektronik.de

Quotations for Fischer Elektronik 3

C-print on Alu Dibond 65,5 x 98 cm

from: Thomas Kellner www.thomaskellner.com

Downloaded from Arrow.com.

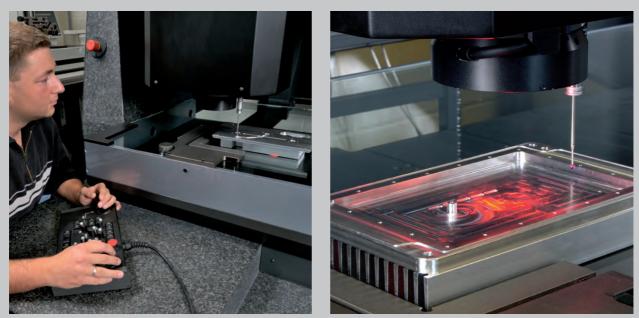
A	A 1 _ A 140				
В	B 1 _ B 62		A REAL PROPERTY OF		
С	C 1 - C 22				Partie and
D	D 1 _ D 36				
E	E 1 E 52				
F	F 1 _ F 28			Contraction of the second seco	
G	G 1 _ G 84				
н	H 1 _ H 12	Canadana and Canadana	Consideration of the second se	Salutinulli	
ı	1 _ 28				
К	K 1 _ K 28				
L	L 1 _ L 10				(Cas
м	M 1 _ M 56				
N	N 1 – N 80 ded from Arrow.cc	m.			

Extruded profiles: extruded heatsinks, extruded heatsinks with solder pins, fin coolers, fluid coolers, high-performance heatsinks	A 1 _ A 140	A
Heatsinks for processors and LED: heatsinks and fan coolers for universal PGA/BGA, DIL, PLCC, Intel Pentium Xeon, Intel Pentium IV, heatsinks for LED	B 1 _ B 62	В
Board level heatsinks: finger-shaped heatsinks, heatsinks for transistors in plastic case, attachable heatsinks, small heatsinks, copper heatsinks for D PAK and others	C 1 _ C 22	c
Cooling aggregates: miniature cooling aggregates, heatsink cooling aggregates, high capacity cooling aggregates, multi module cooling aggregates, hollow-fin aggregates	D 1 _ D 36	D
Accessories for electronic components: mounting parts for heatsinks, thermal transfer compound, thermally conductive material, aluminium oxide and mica wafers, silicone washers, guide rails, solder stop plug, clip fastening for mounting rail	E 1 _ E 50	E
Sockets: IC-sockets for DIL, PLCC, sockets for transistors, LED displays, crystal oscillators and connector-sleeves	F 1 _ F 28	F
PCB connectors and accessories: male and female headers, grid spacing 2.54, 2.00 and 1.27 mm, high precision contact strips, jumpers	G 1 _ G 84	G
IDC connectors: design DIL, single and double row female headers, lockable connectors, ribbon cable	H 1 _ H 12	н
D-Sub connectors: male and female headers, connectors with mounting angle, connectors for ribbon cable, SMD and mixed layout, D-Sub shells, cut-out covers	1 _ 28	ı
Brackets: brackets for PC and PCI with or without fixing tab, retainer for ISA versions	K 1 _ K 32	к
Optoelectronics: LED-holders for front panel assembly, LED-holder without LED, LED-holder with mounted LED, light pipes for SMDs	L 1 _ L 10	L
Cases: desk consoles, shell cases, extruded assembled cases, combination cases, tube cases, miniature aluminium cases, design cases, cooling cases, ventilation frames, feet and bushings, special front panels, sheet constructions	M 1 _ M 56	N
19" Extension systems: plug-in chassis, subracks, bench cases, system cases, insert modules, part front panels, rack handles, PC-board holder, extender cards	N 1 _ N 80	N

Dri, m. ppp ori, m. pp ori, m. pp<							
ALM 3050 E-38 DR 143 V0 E-40 RC 233 220 C.8 F 54 120 E-27 ALM 4070 E-38 DR 130 V0 E-40 RC 234 SAL 1 C.4 E-51 100 E-27 ALM 5040 E-39 DR 130 V0 E-40 RC 234 SAL 1 C.4 E-51 20 E-27 ALM TE 04 DIN E-39 DR 711 V0 E-40 RC 234 SAL 1 C.4 F-85 50 E-27 ALM TE 04 DIN E-39 DR 712 V0 E-40 RC 235 SAL 1 C.4 F-85 570 E-28 ALM TE 05 DIN E-39 DR 712 V0 E-40 RC 235 SAL 1 C.4 F-85 70 E-28 ALM TE 05 DIN E-39 DR 720 V0 E-40 RC 235 SAL 1 C.4 F-16 F-16 E-29 ALP 2350 C-38 DR 720 V0 E-40 RC 235 SAL 1 C.4 F-16 F-16 E-29 ALM 527 C-31 DR 730 V0 E-40 RC 235 SAL 20 C.1 F-16 F-16 E-29 ALM 527 DR 730 V0 E-40 RC 235 SAL 20 C.14 F-11 E-29 ALM 527 DR 730	art. no.		art. no.	art. no.		art. no.	
ABM 4070 C 38 DR 15 V0 E 40 R 234 SA L1 C 4 F 5 A 130 C 27 ABM 1060 C 38 DR 710 V0 E 40 R 234 SA L2 C 4 F 5 A 130 C 27 ABM 17 60 DR 712 V0 E 40 R 234 SA L2 C 4 F 5 S 5 40 F 78 ABM 17 60 DR 712 V0 E 40 R 235 ML 1 C 4 F 5 S 5 40 F 78 ABM 17 60 D 7 712 V0 E 40 R 235 SA L1 C 4 F 5 S 5 60 F 78 ABM 17 60 DIN E 39 D 7 712 V0 E 40 R 235 SA L1 C 4 F 5 S 5 60 E 79 ABM 2000 E 38 D 7 73 V0 E 40 R 237 SA 220 H C 14 F 5 F 10 E 79 ABF 3060 E 38 D 7 73 V0 E 40 R 237 SA 220 H C 14 F 5 F 11 E 29 AHG X2 R 21 V0 E 40 R 237 SA 220 H C 14 F 5 F 13 E 29 AHG X20 D 7 73 V0 E 40 R 23 SA 22 H C 14 F 5 F 11 E 17 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
ABM 3080 F-30							
ABM TE 04 E.35 DR 710 V0 E.40 R X33 SA L3 C.4 FS 85 S0 E.58 ABM TE 06 E.35 DR 712 V0 E.40 R X33 SM L1 C.4 FS 85 S0 E.58 ABM TE 06 E.35 DR 712 V0 E.40 R X33 SM L1 C.4 FS 85 S0 E.58 ABM TE 06 DIN E.57 DR 713 V0 E.40 R X33 SA L2 C.4 FS 100 E.57 ABM TE 06 DIN E.57 DR 713 V0 E.40 R X33 SA L2 C.4 FS 107 E.57 ABP 3060 E.38 DR 720 V0 E.40 R X33 SA C20 U C.14 FS 117 E.27 AHG K 20 E.31 DR 730 V0 E.40 R X33 SA 20 U C.14 FS 11 E.57 AHG K 20 E.31 DR 730 V0 E.40 R X33 SA 20 U C.14 FS 11 E.57 AHG X 20 C.81 DR 730 V0 E.40 R X33 SA 20 U C.14 FS 11 E.57 AHG X20 DR 730 V0 E.40 R X33 SA 20							
ALM TE GA DIN E39 DR 711 VO F40 RC335 SL 14 C 14 F5 85 50 E58 ALM TE GA DIN E39 DR 713 VO E40 RC335 ML 12 C 14 F5 85 50 E58 ALM TE GA DIN E39 DR 713 VO E40 RC335 ML 12 C 14 F5 85 70 E38 ALM TE GA DIN E39 DR 713 VO E40 RC335 SL 12 C 14 F5 86 70 E39 ALP 2050 E38 DR 720 VO E40 RC335 SL 20 C 14 F5 8F 70 E39 ALP 2060 E38 DR 730 VO E40 RC335 SL 20 C 14 F5 8F 70 E39 ALH 6 X27 E31 DR 730 VO E40 RC335 SL 1 C 14 F5 8F 70 E39 ALH 6 X27 E31 DR 730 VO E40 RC335 SL 1 C 14 F5 8F 70 E39 ALH 6 X27 DR 710 VO E40 RC345 SA 220 H C 14 F5 8F 70 E39 ALH 6 X39 DR 711 VO E40 RC345 SA 220 H C 11<							
ABM TE 06 E 39 DR 712 V0 E 40 PK 235 ML 1 C 4 FS 55 70 E 78 ABM TE 06 E 39 DR 714 V0 E 40 PK 235 ML 12 C 4 FS 55 70 E 78 ABM TE 06 E 39 DR 714 V0 E 40 PK 235 SA L 12 C 4 FS 151 P E 78 ABM TE 06 E 38 DR 729 V0 E 40 FK 235 SA L 2 C 7 FS 151 P E 78 ABP 3506 E 38 DR 729 V0 E 40 FK 235 SA 220 V C 16 FS 151 P E 79 AHG K 27 E 31 DR 739 V0 E 40 FK 235 SA 220 V C 16 FS 11 P E 79 AHG K 27 E 31 DR 759 V0 E 40 FK 235 SA 11 C 8 FS 11 P E 79 AHG V 14 E 31 DR 759 V0 E 40 FK 245 SA 220 V C 14 FS 17 P E 77 AHG V17 E 31 DR 781 V0 E 40 FK 245 SA 220 V C 14 FS 17 P E 77 AHM 320 D 78 11 V0 E 40							
Alam Te Go DIN E 37 De 71 3 V0 E 40 PK 238 SA L1 C 41 PS 710 E 23 Alam Te Go DIN E 39 De 715 V0 E 40 PK 235 SA L1 C 41 PS 100 E 27 Alam Te Go DIN E 39 De 715 V0 E 40 PK 235 SA L1 C 41 PS 100 E 27 Alam Te Go DIN E 39 De 735 V0 E 40 PK 237 SA 220 C 11 PS 10 E 27 Alap 2400 E 33 De 735 V0 E 40 PK 237 SA 220 C 14 PS P11 E 27 Alle K 28 E 31 De 735 V0 E 40 PK 237 SA 220 V C 14 PS P11 E 27 Alle K 28 E 31 De 735 V0 E 40 PK 237 SA 220 V C 14 PS P11 E 27 Alle G 1 PK 237 SA 220 V C 14 PS P13 E 27 PS P13 E 27 Alle G 1 PK 237 SA 220 V C 14 PS P11 E 27 Alle G 1 PK 233 SA 210 V E 40 PK 232 SA 220 V C 14 PS P13							
ABM TE 08 E 29 DB 71 V0 F 40 FK 235 SA L2 C 4 F5 100 E 27 ABP 2500 E 30 DP 720 V0 E 40 PK 235 SA L2 C 4 PS 100 E 20 ABP 2500 E 30 DP 725 V0 E 40 PK 235 CB 220 C 10 PS 100 E 20 AHG K27 E 31 DP 725 V0 E 40 PK 237 SA 220 V C 14 PS 10 E 27 AHG K27 E 31 DP 725 V0 E 40 PK 237 SA 220 V C 14 PS 10 E 27 AHG K27 E 31 DP 726 V0 E 40 PK 237 SA 220 V C 14 PS 11 E 27 AHG V17 E 31 DP 726 V0 E 40 PK 238 SA 221 C 14 PS 110 E 27 AKK 127 A 123 DP 812 V0 E 40 PK 243 SA 220 C 14 PS 110 E 27 AKK 127 A 123 DP 812 V0 E 40 PK 243 SA 220 C 14 PS 110 E 27 AKK 127 A 123 DP 813 V0 E 40							
ABM TEOB DIN E39 DP 715 VO F 40 PK 235 OAC C 64 PS 109 F 77 ABP 2500 E 30 DP 725 VO E 40 PK 235 CAC C 7 PS 151 P E 26 ABP 3600 E 30 DP 725 VO E 40 PK 237 SA 220 H C 14 PS PF 00 E 29 ABP 4600 E 30 DP 720 VO E 40 PK 237 SA 220 H C 14 PS PF 10 E 29 AHG 17 E 31 DP 720 VO E 40 PK 237 SA 220 V C 14 PS PF 11 E 29 AHG 17 E 31 DP 730 VO E 40 PK 237 SA 220 V C 14 PS PF 13 E 29 AHG 17 E 31 DP 750 VO E 40 PK 230 SA 220 V C 14 PS PT 0 E 29 AHG 17 A 31 DP 750 VO E 40 PK 240 SA 220 V C 14 PS PT 10 E 29 AHG 170 A 120 DP 811 VO E 40 PK 240 SA 220 V C 14 PS PT 10 E 29 AGS 3 P E 17 DP 815 VO E 40 PK 242 SA 220 V C 14 PS PT 16 E 29 AGS 3							
ABP 2550 E 30 DP 725 V0 F 40 PK 236 CB C 70 PS 18 P 0 F 26 ABP 4660 E 38 DP 725 V0 E 40 PK 235 CB C 70 PS 18 P 0 E 29 ABP 4660 E 38 DP 735 V0 E 40 PK 237 SA 220 V C 14 PS PF 0 E 29 AHC K 27 E 31 DP 735 V0 E 40 PK 237 SA 220 V C 14 PS PF 11 E 29 AHC K 127 E 31 DP 760 V0 E 40 PK 237 SA 220 V C 14 PS PF 11 E 29 AHG Y 14 E 31 DP 760 V0 E 40 PK 230 SA 32 C 61 PS P 10 E 29 AHM 320 E 39 DR 811 V0 E 40 PK 240 SA 220 V C 14 PS P 10 E 29 AKK 137 A 125 DR 813 V0 E 40 PK 240 SA 220 V C 14 PS P 10 E 29 ACK 191 A 125 DR 813 V0 E 40 PK 243 SA 220 V C 14 PS P 11 E 29 ACS 3 P 2 E 17 DR 830 V0							
ABP 3060 E 30 DP 225 V0 E 40 PK 325 A20 H C 14 FS BF 00 E 59 AH A 827 E 31 DP 735 V0 E 40 PK 327 SA 220 H C 14 FS BF 10 E 79 AH A K 27 E 31 DP 735 V0 E 40 PK 327 SA 220 V C 14 FS BF 10 E 79 AH A K 27 E 31 DP 735 V0 E 40 PK 327 SA 220 V C 14 FS BF 10 E 79 AH A K 20 F 30 DP 730 V0 E 40 PK 323 SA 11 C 14 FS BF 10 E 79 AH X 320 E 39 DP 811 V0 E 40 PK 320 SA 220 V C 14 FS BF 10 E 29 AHK 137 A 12 DP 813 V0 E 40 PK 320 SA 220 V C 14 FS BF 113 E 19 ACK 137 A 12 DP 813 V0 E 40 PK 320 SA 220 V C 14 FS BF 113 E 19 ACK 137 A 12 DP 813 V0 E 40 PK 320 SA 220 V C 14 FS BF 113 E 19 ACS 18 E 17 DP 835 V0							
ABP 4080 E 30 DR 73 SV 00 E 40 PK 327 SA 220 C 14 PS B7 07 E 29 AHG K 22 E 31 DR 73 SV 00 E 40 PK 327 SA 220 C 14 PS B7 11 E 20 AHG K 28 E 31 DR 73 SV 00 E 40 PK 327 SA 220 V C 14 PS B7 13 E 20 AHG V 14 E 31 DR 73 SV 00 E 40 PK 327 SA 220 V C 14 PS B7 13 E 20 AHG X 20 E 31 DR 73 SV 00 E 40 PK 323 SA 220 V C 14 PS B7 10 E 29 AHM 320 E 39 DR 811 V0 E 40 PK 324 SA 220 V C 14 PS B7 10 E 29 AKK 191 A 12S DR 813 V0 E 40 PK 324 SA 220 V C 14 PS B7 13 E 29 AGS 3 P 2 E 17 DR 813 V0 E 40 PK 324 SA 220 V C 14 PS B7 13 E 29 AGS 3 P 2 E 17 DR 83 V0 E 40 PK 324 SA 220 V C 14 PS B7 13 E 29 AGS 3 P 2 E 17 <							
AHG K 27 E31 DR 735 V0 E40 FK 237 5A 220 V C [14] FS #F 10 E29 AHG K 28 E31 DR 749 V0 E40 FK 237 5A 220 VL C [14] FS #F 13 E29 AHG V 14 E31 DR 750 V0 E40 FK 237 5A 220 VL C [14] FS #F 10 E29 AHG V 14 E31 DR 750 V0 E40 FK 238 5A 220 VL C [14] FS #F 10 E29 AHG V 14 E31 DR 750 V0 E40 FK 238 5A 220 VL C [13] FS #F 10 E29 AHK 191 A 125 DR 812 V0 E40 FK 240 5A 220 VL C [14] FS #T 10 E29 AGS 3 E17 DR 814 V0 E40 FK 242 5A 220 VL C [14] FS #T 11 E29 AGS 3 P 2 E17 DR 820 V0 E40 FK 242 5A 220 VL C [14] FS #T 15 E29 AGS 3 P 2 E17 DR 820 V0 E40 FK 242 5A 220 VL C [14] FS #T 11 E29 AGS 3 P 11 DR 820 V0 E40 FK 242 5A 220 VL C [14] FS #T 11 E 29 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
AHG K 28 E 31 DR 749 V0 E 40 FK 237 5A 220 V C 141 FS F1 1 E 29 AHG K 71 E 31 DR 739 V0 E 40 FK 238 5A 21 C 141 FS F1 5 E 29 AHG V 14 E 31 DR 739 V0 E 40 FK 238 5A 22 C 141 FS F1 5 E 29 AHM 4320 E 30 DR 810 V0 E 40 FK 248 5A 220 C 13 FS F1 60 E 23 AHM 4330 E 32 DR 810 V0 E 40 FK 240 5A 220 V1 C 141 FS F1 10 E 59 AGS 3 A 125 DR 813 V0 E 40 FK 240 5A 220 V1 C 141 FS F1 15 E 29 AGS 3 P 2 E 17 DR 815 V0 E 40 FK 242 5A 220 V1 C 141 FS F1 15 E 29 AGS 3 P 2 E 17 DR 835 V0 E 40 FK 242 5A 220 V1 C 141 FS F1 15 E 29 AGS 3 P 2 E 17 DR 835 V0 E 40 FK 242 5A 220 V C 141 FS F1 16 E 29 AGS 3 P 2 E 17 DR 835 V0 E 40 FK 244 01 247 C 12 FS F1 5 E 10 E 20							
AHG V14 E31 DR 730 V0 E40 K 237 5A 220 VL C14 FS BF 13 E29 AHG V17 E31 DR 750 V0 E40 K 238 5A 22 C6 FS BF 19 E29 AHM 3200 E39 DR 810 V0 E40 FK 240 5A 220 H0 C14 FS BF 10 E29 AHM 3200 E39 DR 811 V0 E40 FK 240 5A 220 H0 C14 FS BF 10 E29 AKK 137 A125 DR 813 V0 E40 FK 240 5A 220 VL C14 FS BT 10 E29 AKK 137 A125 DR 813 V0 E40 FK 240 5A 220 VL C14 FS BT 15 E29 AOS 3 P 2 E17 DR 830 V0 E40 FK 242 5A 220 VL C14 FS BT 15 E29 AOS 3 P 2 E17 DR 830 V0 E40 FK 242 5A 220 VL C14 FS BT 15 E29 AOS 3 P 2 E17 DR 830 V0 E40 FK 242 5A 220 VL C14 FS BT 16 E29 AOS 3 P 2 E17 DR 830 V0 E40 FK 242 5A 220 VL C14 FS BT 16 E30 AOS 212 A1							
AHG VI 14 E31 DR 750 V0 E40 FK 238 SA 11 C4 FS BF 15 E29 AHM 3200 E33 DR 810 V0 F40 FK 236 SA 22 C4 FS BF 20 E39 AHM 3200 E33 DR 811 V0 F40 FK 240 SA 220 O C13 FS BT 06 E39 AKK 127 A125 DR 811 V0 E40 FK 240 SA 220 O C14 FS BT 06 E39 AKK 137 A125 DR 812 V0 E40 FK 240 SA 220 V C14 FS BT 13 E39 AGS 3P E17 DR 815 V0 E40 FK 242 SA 220 V C14 FS BT 16 E39 AGS 3P 2 E17 DR 835 V0 E40 FK 242 SA 220 V C14 FS BT 16 E39 AGS 3S P 31 E17 DR 835 V0 E40 FK 242 SA 220 V C14 FS BT 16 E39 AGS 3S A E17 DR 835 V0 E40 FK 243 M1247 H C12 FS F27 E30 AGS 3S A E17 DR 835 V0 E40 FK 244 M1247 V C12 FS P105 E30 AGS 3S A E17							
AHG 170 E31 DB 700 V0 E40 FK 239 SA 32 C.6 FS BF 19 E29 AHM 3300 E39 DB 811 V0 E40 FK 240 SA 220 O C14 FS BT 08 E29 AKK 127 A125 DB 813 V0 E40 FK 240 SA 220 V C14 FS BT 108 E29 AKK 191 A125 DB 813 V0 E40 FK 240 SA 220 V C14 FS BT 10 E29 ACS 3 E17 DB 813 V0 E40 FK 240 SA 220 V C14 FS BT 11 E29 ACS 3 P2 E17 DB 830 V0 E40 FK 242 SA 220 V C14 FS BT 16 E99 ACS 5 E17 DB 830 V0 E40 FK 243 M1247 V C12 FS BT 20 E97 ACS 54 E17 DB 830 V0 E40 FK 244 M1247 O C12 FS FS 29 E50 ACS 54 E17 DB 830 V0 E40 FK 244 08 D2 PAK C21 FS E5 29 E50 ACS 53 E17 DB 830 V0 E40 FK 244 08 D2 PAK C21 FS E5 10 E30 ACS 230 ACS 230 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
AHM 3260 E 39 DR 810 V0 E 40 FK 240 SA 220 H C 14 FS BF 20 E 29 AKK 137 A 123 DR 811 V0 E 40 FK 240 SA 220 V C 14 FS BT 106 E 29 AKK 191 A 123 DR 813 V0 E 40 FK 240 SA 220 V C 14 FS BT 10 E 29 AGS 3 E 17 DR 814 V0 E 40 FK 242 SA 220 C C 14 FS BT 11 E 29 AGS 3 P E 17 DR 810 V0 E 40 FK 242 SA 220 C C 14 FS BT 15 E 29 AGS 3 P 31 E 17 DR 820 V0 E 40 FK 242 SA 220 C C 14 FS BT 16 E 29 AGS 3 P 31 E 17 DR 820 V0 E 40 FK 243 SA 220 V C 14 FS BT 70 E 29 AGS 3 P 31 E 17 DR 820 V0 E 40 FK 244 SA 220 V C 12 FS E 70 E 29 AGS 3 P 31 E 17 DR 850 V0 E 40 FK 244 SA 220 V C 12 FS E 70 E 50 E 50 AGS 312 Z 7 E 17 DR 850 V0 E 40 FK 244 180 D PAK C 21 FS E 10 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
AHM 4380 E39 DB 811 V0 E 40 FK 240 SA 220 C C11 FS BT 06 E 29 AKK 127 A125 DB 813 V0 E 40 FK 240 SA 220 V C14 FS BT 10 E 29 ACK 33 E 17 DB 813 V0 E 40 FK 241 SA 216 V C11 FS BT 11 E 29 ACS 3 P E 17 DB 815 V0 E 40 FK 242 SA 220 V C14 FS BT 15 E 29 ACS 3 P 2 E 17 DB 825 V0 E 40 FK 242 SA 220 V C14 FS BT 16 E 29 ACS 3 E 17 DB 825 V0 E 40 FK 242 SA 220 V C14 FS BT 10 E 29 ACS 18 E 17 DB 835 V0 E 40 FK 243 M1247 H C12 FS BT 20 E 20 ACS 30 E 17 DB 845 V0 E 40 FK 244 M1327 MK C12 FS E 10 6 E 50 ACS 18 E 17 DB 845 V0 E 40 FK 244 M1327 MK C12 FS E 10 E 50							
AKK 197 A 12 DB 812 V0 E 40 FK 240 SA 220 V C 14 FS BT 08 E 79 ACS 3 E 17 DB 813 V0 E 40 FK 241 SA 218 V C 14 FS BT 10 E 29 ACS 3 E 17 DB 813 V0 E 40 FK 242 SA 220 V C 14 FS BT 13 E 29 ACS 3 P 2 E 17 DB 820 V0 E 40 FK 242 SA 220 V C 14 FS BT 16 E 29 ACS 3 P 2 E 17 DB 820 V0 E 40 FK 242 SA 220 V C 14 FS BT 16 E 29 ACS 5 E 17 DB 830 V0 E 40 FK 242 SA 220 V C 14 FS BT 16 E 29 ACS 64 E 17 DB 830 V0 E 40 FK 244 SA 220 V. C 14 FS BT 10 E 50 AOS 64 E 17 DB 860 V0 E 40 FK 244 08 D3 PAK C 21 FS LP 10 E 50 AOS 127 E 17 DB 860 V0 E 40 FK 244 13 D3 PAK C 21 FS LP 10 E 50 AOS 212 24 E 17 FK 201 SA C 2 FK 244 13 D3 PAK C 21 FS LP 10 E 50							
AKK 191 A 125 D R 813 V0 E 40 FK 240 5A 220 VL C14 FS BT 10 E 29 AOS 3 D R 815 V0 E 40 FK 241 5A 218 V C11 FS BT 13 E 29 AOS 3 P 2 E 17 D R 815 V0 E 40 FK 242 5A 220 U C14 FS BT 15 E 29 AOS 3 P 5L E 17 D R 825 V0 E 40 FK 242 5A 220 U C14 FS BT 16 E 29 AOS 18 E 17 D R 835 V0 E 40 FK 242 5A 220 V C14 FS BT 19 E 29 AOS 18 E 17 D R 835 V0 E 40 FK 243 M 1247 C 12 FS F2 P E 20 AOS 32 E 17 D R 845 V0 E 40 FK 243 M 1247 C 12 FS F2 P E 30 AOS 32 AOS 17 D R 845 V0 E 40 FK 244 80 D PAK C 21 FS P0 00 E 30 AOS 32 D R 445 V0 E 40 FK 244 80 D PAK C 21 FS P1 0 E 30 AOS 20 3 E 17 FK 201 SA 3 C 2 FK 244 13 D PAK C 21 FS P1 0 E 30 AOS 220 3 E 17							
AOS 3 E17 DR 814 V0 E40 FK 241 5A 218 V C11 FS BT 13 E29 AOS 3 P E17 DR 815 V0 E40 FK 242 SA 220 V C14 FS BT 13 E29 AOS 3 P 2 E17 DR 825 V0 E40 FK 242 SA 220 V C14 FS BT 16 E29 AOS 5 E17 DR 835 V0 E40 FK 242 SA 220 VL C14 FS BT 16 E29 AOS 5 E17 DR 835 V0 E40 FK 242 SA 220 VL C14 FS BT 20 E29 AOS 56 E17 DR 840 V0 E40 FK 243 M1247 V C12 FS P0 FS FS 20 AOS 56 AOS 53 E17 DR 840 V0 E40 FK 243 M1247 V C12 FS P0 FS FS 10 E30 AOS 512 T DR 840 V0 E40 FK 244 80 D2 PAK C21 FS P10 E30 AOS 218 247 T DR 850 V0 E40 FK 244 80 D2 PAK C21 FS P11 E30 AOS 218 247 E17 FK 201							
AOS 3 P E17 DR 815 V0 E40 FK 242 SA 220 H C14 FS BT 15 E29 AOS 3 P SL E17 DR 825 V0 E40 FK 242 SA 220 V C14 FS BT 15 E29 AOS 5 E17 DR 825 V0 E40 FK 242 SA 220 V C14 FS BT 19 E29 AOS 18 E17 DR 835 V0 E40 FK 242 SA 220 V C14 FS BT 19 E29 AOS 53 E17 DR 845 V0 E40 FK 243 M1247 V C12 FS F3 2P E20 AOS 66 E17 DR 845 V0 E40 FK 243 M1247 V C12 FS F3 2P E30 AOS 51 E47 DR 845 V0 E40 FK 244 08 D2 PAK C21 FS IP 07 E30 AOS 18 2471 E17 DR 800 V0 E40 FK 244 08 D2 PAK C21 FS IP 16 E30 AOS 220 E17 FK 201 SA C C2 FK 244 13 D2 PAK C21 FS IP 15 E30 AOS 220 SL E17 FK 201 SA C C2 FK 244 13 D2 PAK C21 FS IP 16 E30 AOS 220 SL E							
AOS 3 P 2 E 17 DR 820 V0 E 40 FK 242 SA 220 V C 14 FS BT 15 E 29 AOS 5 S E 17 DR 830 V0 E 40 FK 242 SA 220 VL C 14 FS BT 16 E 29 AOS 5 S E 17 DR 830 V0 E 40 FK 242 SA 220 VL C 14 FS BT 16 E 29 AOS 50 E 17 DR 830 V0 E 40 FK 243 M1247 V C 12 FS F3 P E 20 AOS 60 E 17 DR 840 V0 E 40 FK 243 M1247 V C 12 FS F3 P E 30 AOS 60 E 17 DR 850 V0 E 40 FK 244 08 D2 PAK C 21 FS IP 05 E 30 AOS 127 F 17 DR 850 V0 E 40 FK 244 08 D2 PAK C 21 FS IP 10 E 30 AOS 218 2471 E 17 FK 201 SA C 2 FK 244 13 D2 PAK C 21 FS IP 11 E 30 AOS 220 4 E 17 FK 201 SA C 2 FK 244 13 D2 PAK C 21 FS IP 13 E 30 AOS 220 4 E 17 FK 201 SA C 2 FK 244 13 D2 PAK C 21 FS IP 13 E 30 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
AOS 5 E17 DR 825 V0 E40 FK 242 5A 220 VL C14 FS BT 16 E29 AOS 18 E17 DR 835 V0 E40 FK 242 5A 220 VL C14 FS BT 19 E29 AOS 18 E17 DR 845 V0 E40 FK 243 M1247 V C12 FS F32 P E20 AOS 66 E17 DR 845 V0 E40 FK 243 M1247 V C12 FS LP 05 E30 AOS 53 E17 DR 845 V0 E40 FK 244 08 D2 PAK C21 FS LP 06 E30 AOS 18 247 E17 DR 860 V0 E40 FK 244 08 D2 PAK C21 FS LP 10 E30 AOS 218 247 1 E17 FK 201 SA C2 FK 244 13 D2 PAK C21 FS LP 11 E30 AOS 220 3 E17 FK 201 SA C C2 FK 244 13 D2 PAK C21 FS LP 15 E30 AOS 220 3 E17 FK 201 SA C C2 FK 244 M1 D2 PAK C21 FS LP 15 E30 AOS 220 3 E17 FK 202 SA C C2 FK 245 M1247 V C12 FS LP 17 E30 AOS 218 24							
AOS 5E17DR 830 V0E40FK 242 SA 220 VLC14FS BT 19E29AOS 18E17DR 830 V0E40FK 243 M1 247 VC12FS BT 20E29AOS 66E17DR 840 V0E40FK 243 M1 247 VC12FS LP 05E30AOS 63E17DR 860 V0E40FK 243 M1 247 VC12FS LP 07E30AOS 73E17DR 860 V0E40FK 244 08 D PAKC21FS LP 08E30AOS 218 247 1E17ELS 3A88FK 244 08 D PAKC21FS LP 10E30AOS 220 3E17FK 201 SA 3C2FK 244 13 D PAKC21FS LP 11E30AOS 220 3E17FK 201 SA 3C2FK 244 13 D PAKC21FS LP 15E30AOS 220 4E17FK 201 SA 3C2FK 244 13 D PAKC21FS LP 16E30AOS 220 51E17FK 201 SA 3C2FK 244 13 D PAKC21FS LP 16E30AOS 220 51E17FK 202 SA CBC2FK 245 M1 247 VC12FS LP 16E30AOS 247E17FK 202 SA CBC2FK 247 220C7FS LP 23E30E30AOS 5P 1E18FK 200 SA LC2FK 247 220C7FS LP 30E30E30AOS 5P 2E18FK 200 SA LC2FK 249 SA 220C5FS 50 2E29AOS FP 3E18FK 200 SA LC2FK 249 SA 220C5FS 50 2E29AOS FP 4E18 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
AOS 18 E17 DR 835 V0 E40 FK 243 MI 247 H C12 FS F3 20 E30 AOS 32 E17 DR 849 V0 E40 FK 243 MI 247 V C12 FS F3 20 E30 AOS 33 E17 DR 850 V0 E40 FK 243 MI 247 V C12 FS LP 05 E30 AOS 31 E17 DR 850 V0 E40 FK 244 08 D3 PAK C21 FS LP 10 E30 AOS 318 347 E17 ELS3 A88 FK 244 08 D3 PAK C21 FS LP 11 E30 AOS 218 347 E17 FK 201 SA C2 FK 244 13 D2 PAK C21 FS LP 11 E30 AOS 220 3 E17 FK 201 SA C8 C2 FK 243 M1 247 V C12 FS LP 15 E30 AOS 220 3 E17 FK 203 SA C8 C2 FK 245 M1 247 V C12 FS LP 15 E30 AOS 220 SL E17 FK 203 SA L C2 FK 243 M1 247 V C12 FS LP 25 E30 AOS P3 E18 FK 200 SA L C2							
ACS 32 E17 DR 840 V0 E40 FK 243 MI 247 V C12 FSLP 95 E30 ACS 66 E17 DR 845 V0 E40 FK 243 MI 247 V C12 FSLP 95 F30 ACS 63 E17 DR 860 V0 E40 FK 243 MI 247 V C12 FSLP 90 F30 ACS 218 247 E17 DR 860 V0 E40 FK 244 08 D PAK C21 FSLP 10 E30 ACS 218 247 E17 FN1 E44 FK 244 30 D PAK C21 FSLP 11 E30 ACS 220 3 E17 FK 201 SA 3 C2 FK 244 13 D PAK C21 FSLP 15 E30 ACS 220 4 E17 FK 201 SA CB C2 FK 245 MI 247 V C12 FSLP 15 E30 ACS 20 4 E17 FK 202 SA 3 C2 FK 245 MI 247 V C12 FSLP 16 E30 ACS 20 4 E17 FK 202 SA 3 C2 FK 245 MI 247 V C12 FSLP 17 E30 ACS 20 5 A1 C2 FK 245 MI 247 V C12							
AOS 93E17DR 850 V0E40FK 244 08 D2 PAKC 21FS LP 07E30AOS 127E17DR 860 V0E40FK 244 08 D3 PAKC 21FS LP 07E30AOS 218 247E17FN 1EK4FK 244 08 D PAKC 21FS LP 10E30AOS 220 3E17FK 201 SAC 2FK 244 13 D3 PAKC 21FS LP 13E30AOS 220 3E17FK 201 SAC 2FK 244 13 D3 PAKC 21FS LP 15E30AOS 220 4E17FK 201 SAC 2FK 244 13 D3 PAKC 21FS LP 15E30AOS 220 4E17FK 201 SAC 2FK 244 31 D4KC 21FS LP 16E30AOS 220 4E17FK 202 SAC 2FK 245 M1 247 VC 12FS LP 16E30AOS 247E17FK 202 SAC 2FK 245 M1 247 VC 12FS LP 30E 30AOS P1E18FK 202 SA CBC 2FK 247 SA 220C 11FS 506 2E 29AOS P1E18FK 202 SA LC 2FK 249 SA 220C 11FS 506 2E 29AOS P3E18FK 205 SA LC 2FK 249 SA 220C 11FS 506 2E 29AOS P4E18FK 206 SA LC 2FK 250 08 LF PAKC 22FS 510 2E 29AOS P5E18FK 207 SA LC 2FK 251 08 LF PAKC 22FS 510 2E 29AOS P6E18FK 210 SA CBC 6FK 252 SA 220 VC 15FS 16 2E 29AOS P7 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
AOS 127 E17 E13 A 88 FK 244 08 D3 PAK C 21 FS IP 08 E 30 AOS 218 247 E17 FIS 1 E14 FK 244 08 DA PAK C 21 FS IP 10 E 30 AOS 218 247 E17 FK 215A C 2 FK 244 13 D2 PAK C 21 FS IP 13 E 30 AOS 220 3 E17 FK 201 SA 3 C 2 FK 244 13 D PAK C 21 FS IP 15 E 30 AOS 220 4 E17 FK 201 SA 3 C 2 FK 244 M1 247 C 12 FS IP 16 E 30 AOS 220 4 E17 FK 202 SA 3 C 2 FK 245 M1 247 C 12 FS IP 17 E 30 AOS 247 E17 FK 202 SA 3 C 2 FK 245 M1 247 C 12 FS IP 22 E 30 AOS P 1 E 18 FK 205 SA L C 2 FK 247 S0 2 C 7 FS 16 0 2 E 29 AOS P 1 E 18 FK 205 SA L C 2 FK 250 0 0 LF PAK C 22 FS 10 2 E 29 AOS P 4 E 18 FK 2							
ACS 218 247 E17 ELS3 A88 FK 244 08 D PAK C 21 FS LP 10 E 30 AOS 218 247 E17 FK 201 SA C 2 FK 244 13 D3 PAK C 21 FS LP 13 E 30 AOS 220 3 E17 FK 201 SA C 2 FK 244 13 D3 PAK C 21 FS LP 15 E 30 AOS 220 4 E17 FK 201 SA GB C 2 FK 245 M1 247 0 C 12 FS LP 15 E 30 AOS 220 4 E17 FK 202 SA GB C 2 FK 245 M1 247 0 C 12 FS LP 16 E 30 AOS 247 E 17 FK 202 SA CB C 2 FK 243 M247 0 C 12 FS LP 30 E 30 AOS P 1 E 18 FK 202 SA L C 2 FK 243 M247 0 C 11 FS b 06 2 E 29 AOS P 3 E 18 FK 206 SA L C 2 FK 249 SA 220 C 11 FS b 06 2 E 29 AOS P 4 E 18 FK 206 SA L C 2 FK 251 06 L FPAK C 22 FS S 112 2 E 29 AOS P 5 E 18 FK							
ADS 218 2471 EI 7 FK 201 SA C 24 FK 244 13 D2 PAK C 21 FS LP 11 E 30 AOS 220 3 EI 7 FK 201 SA 3 C 2 FK 244 13 D3 PAK C 21 FS LP 15 E 30 AOS 220 4 EI 7 FK 201 SA 3 C 2 FK 244 13 D3 PAK C 21 FS LP 15 E 30 AOS 220 4 E1 7 FK 202 SA C 2 FK 245 M1 247 O C 12 FS LP 15 E 30 AOS 220 SL E1 7 FK 202 SA 3 C 2 FK 245 M1 247 O C 12 FS LP 15 E 30 AOS P1 E18 FK 202 SA 2 C 2 FK 247 SM 247 O C 7 FS LP 30 E 30 AOS P 1 E18 FK 205 SA L C 2 FK 248 SA 220 C 11 FS 5 06 2 E 29 AOS P 4 E18 FK 205 SA L C 2 FK 250 06 LF PAK C 22 FS 5 10 2 E 29 AOS P 4 E18 FK 210 50 C FK 225 10 0 LF PAK C 22 FS 5 11 2 E 29 AOS P 5 E18 FK 211 53 C <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
AOS 220 E 17 FK 201 SA C 2 FK 244 13 D PAK C 21 FS LP 13 E 30 AOS 220 3 E 17 FK 201 SA CB C 2 FK 244 13 D PAK C 21 FS LP 15 E 30 AOS 220 4 E 17 FK 201 SA CB C 2 FK 245 MI 247 V C 12 FS LP 17 E 30 AOS 247 E 17 FK 202 SA CB C 2 FK 245 MI 247 V C 12 FS LP 17 E 30 AOS P1 E 18 FK 202 SA CB C 2 FK 244 SA 220 C 17 FS 16 0 2 E 29 AOS P1 E 18 FK 205 SA L C 2 FK 248 SA 220 C 5 FS 5 07 2 E 29 AOS P3 E 18 FK 205 SA L C 2 FK 250 06 LF PAK C 22 FS 5 10 2 E 29 AOS P4 E 18 FK 205 SA L C 2 FK 251 02 E 29 AOS P 5 112 E 29 AOS P4 E 18 FK 210 SA CB C 6 FK 251 01 LF PAK C 22 FS 5 12 2 E 29 AOS P 6 E 18 FK 21							
AOS 220 3 E17 FK 201 SA 3 C 2 FK 244 13 D PAK C 21 FS LP 15 E 30 AOS 220 4 E17 FK 201 SA GB C 2 FK 245 MI 247 H C 12 FS LP 16 E 30 AOS 220 SL E17 FK 202 SA 3 C 2 FK 245 MI 247 V C 12 FS LP 17 E 30 AOS 247 E17 FK 202 SA CB C 2 FK 244 SM 1247 V C 12 FS LP 12 E 30 AOS P1 E18 FK 202 SA CB C 2 FK 248 SA 220 C 11 FS 50 6 2 E 29 AOS P3 E18 FK 206 SA L C 2 FK 230 06 LF PAK C 22 FS 51 0 2 E 29 AOS P4 E18 FK 208 SA L C 2 FK 250 10 LF PAK C 22 FS 51 0 2 E 29 AOS P5 E18 FK 210 SA CB C 6 FK 250 10 LF PAK C 22 FS 51 2 E 29 AOS P6 E18 FK 213 SA 32 C 6 FK 252 N 220 L C 25 FS 51 2 E 29 AOS P7 E18 FK 213							
AOS 220 4 E 17 FK 201 SA CB C 2 FK 245 M 247 H C 12 FS LP 16 E 30 AOS 220 4 E 17 FK 202 SA C 2 FK 245 M 1247 V C 12 FS LP 17 E 30 AOS 247 E 17 FK 202 SA 3 C 2 FK 245 M 1247 V C 12 FS LP 17 E 30 AOS P 1 E 18 FK 205 SA L C 2 FK 244 SA 220 C 1 FS 56 0 2 E 29 AOS P 3 E 18 FK 205 SA L C 2 FK 240 SA 220 C 5 FS 50 7 2 E 29 AOS P 3 E 18 FK 205 SA L C 2 FK 250 00 LF PAK C 22 FS 5 10 2 E 29 AOS P 4 E 18 FK 209 SA 32 C 6 FK 251 00 LF PAK C 22 FS 5 11 2 E 29 AOS P 5 E 18 FK 211 32 C 7 FK 251 00 LF PAK C 22 FS 5 13 2 E 29 AOS P 6 E 18 FK 213 SA 32 C 6 FK 252 N 20 O C 15 FS 5 13 2 E 29 AOS P 9 E 18 FK							
AOS 220 SL E17 FK 202 SA C 2 FK 245 M1 247 O C 12 FS LP 17 E 30 AOS 247 E17 FK 202 SA C 2 FK 245 M1 247 O C 12 FS LP 30 E 30 AOS P1 E18 FK 202 SA CB C 2 FK 247 220 C 11 FS LP 30 E 30 AOS P1 E18 FK 205 SA L C 2 FK 249 SA 220 C 11 FS 50 72 E 29 AOS P3 E18 FK 205 SA L C 2 FK 250 08 LF PAK C 22 FS 50 82 E 29 AOS P4 E18 FK 205 SA L C 2 FK 250 08 LF PAK C 22 FS 51 10 2 E 29 AOS P5 E18 FK 210 SA CB C 6 FK 251 06 LF PAK C 22 FS 51 12 E 29 AOS P6 E18 FK 211 SA CB C 6 FK 251 06 LF PAK C 22 FS 51 32 E 29 AOS P7 E18 FK 211 SA 22 C 7 FK 251 06 LF PAK C 22 FS 51 32 E 29 AOS P3 E18 FK 212 SA 32 C 7 FK 251 06 LF PAK C 22 FS 51 32 E 29 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
AOS 247 E17 FK 202 SA 3 C2 FK 245 M 247 V C12 FS LP 22 E 30 AOS P1 E18 FK 202 SA CB C2 FK 244 SA 220 C1 FS LP 30 E 30 AOS P1 E18 FK 205 SA L C2 FK 244 SA 220 C1 FS 506 2 E 29 AOS P3 E18 FK 205 SA L C2 FK 250 66 LF PAK C22 FS 508 2 E 29 AOS P3 E18 FK 205 SA L C2 FK 250 66 LF PAK C22 FS 510 2 E 29 AOS P4 E18 FK 205 SA 2 C6 FK 250 10 LF PAK C22 FS 511 2 E 29 AOS P4 E18 FK 211 SA CB C6 FK 251 10 LF PAK C22 FS 513 2 E 29 AOS P4 E18 FK 211 SA 32 C6 FK 252 SA 220 H C15 FS 516 2 E 29 AOS P3 E18 FK 214 SA CB C6 FK 252 SA 220 V C15 FS 510 2 E 29 AOS P1 E18 FK 214 SA CB C6							
AOS P 1 E 18 FK 202 SA CB C 2 FK 247 220 C 7 FS LP 30 E 30 AOS P 1.1 E 18 FK 205 SA L C 2 FK 248 SA 220 C 11 FS 5 06 2 E 29 AOS P 3 E 18 FK 205 SA L C 2 FK 249 SA 220 C 5 FS 5 07 2 E 29 AOS P 3 E 18 FK 205 SA L C 2 FK 250 08 LF PAK C 22 FS 5 10 2 E 29 AOS P 4 E 18 FK 205 SA L C 2 FK 250 08 LF PAK C 22 FS 5 11 2 E 29 AOS P 5 E 18 FK 210 SA CB C 6 FK 251 06 LF PAK C 22 FS 5 11 2 E 29 AOS P 6 E 18 FK 211 32 C 7 FK 251 08 LF PAK C 22 FS 5 13 2 E 29 AOS P 7 E 18 FK 212 33 C 6 FK 252 SA 220 O C 15 FS 5 19 3 E 29 AOS P 9 E 18 FK 216 SA CB C 7 FK 252 SA 220 O C 15 FS 5 10 2 E 29 AOS P 10 E 18 FK 216 CB C 7 FK 252 SA 220 VL C 15 FS 5 21 3 E 29							
AOS P 1.1 E 18 FK 205 SA L C 2 FK 248 SA 220 C 11 FS 50 6 2 E 29 AOS P 2 E 18 FK 206 SA L C 2 FK 249 SA 220 C 5 FS 5 07 2 E 29 AOS P 3 E 18 FK 207 SA L C 2 FK 250 06 L F PAK C 22 FS 5 10 2 E 29 AOS P 5 E 18 FK 209 SA 32 C 6 FK 250 10 L F PAK C 22 FS 5 11 2 E 29 AOS P 6 E 18 FK 210 SA CB C 6 FK 251 06 L F PAK C 22 FS 5 12 2 E 29 AOS P 7 E 18 FK 211 32 C 7 FK 251 10 L F PAK C 22 FS 5 15 2 E 29 AOS P 7 E 18 FK 212 CB C 7 FK 251 10 L F PAK C 22 FS 5 16 2 E 29 AOS P 10 E 18 FK 213 SA 32 C 6 FK 252 SA 220 V C 15 FS 5 10 2 E 29 AOS P 10 E 18 FK 216 SB C 7 FK 252 SA 220 V C 15 FS 5 20 3 E 29 CLP 151 E 26 FK 216 SB C 7 FK 252 SA 220 V C 15 FS 5 21 2 E 29							
AOS P 2 E 18 FK 206 SA L C 2 FK 249 SA 220 C 5 FS 5 07 2 E 29 AOS P 3 E 18 FK 207 SA L C 2 FK 250 06 LF PAK C 22 FS 5 10 2 E 29 AOS P 4 E 18 FK 209 SA 32 C 6 FK 250 08 LF PAK C 22 FS 5 10 2 E 29 AOS P 5 E 18 FK 209 SA 32 C 6 FK 251 08 LF PAK C 22 FS 5 11 2 E 29 AOS P 6 E 18 FK 210 SA CB C 6 FK 251 08 LF PAK C 22 FS 5 12 2 E 29 AOS P 7 E 18 FK 211 32 C 7 FK 251 08 LF PAK C 22 FS 5 15 2 E 29 AOS P 0 E 18 FK 213 SA 32 C 6 FK 252 SA 220 H C 15 FS 5 16 2 E 29 AOS P 10 E 18 FK 215 3A CB C 6 FK 252 SA 220 V C 15 FS 5 20 3 E 29 DR 071 VO E 40 FK 216 CB C 7 FK 253 A 220 VL C 15 FS 5 20 3 E 29 DR 072 VO E 40 FK 219 CB 1 C 9 FK 254 SA 3 C 2 FS U 06 E 30							
AOS P 3 E 18 FK 200 SA L C 2 FK 250 OB LF PAK C 22 FS 5 0B 2 E 29 AOS P 4 E 18 FK 200 SA L C 2 FK 250 OB LF PAK C 22 FS 5 10 2 E 29 AOS P 5 E 18 FK 200 SA 32 C 6 FK 251 OD LF PAK C 22 FS 5 11 2 E 29 AOS P 6 E 18 FK 210 SA CB C 6 FK 251 OD LF PAK C 22 FS 5 13 2 E 29 AOS P 7 E 18 FK 211 GB C 7 FK 251 OB LF PAK C 22 FS 5 15 2 E 29 AOS P 7 E 18 FK 212 CB C 7 FK 251 AD LF PAK C 22 FS 5 15 2 E 29 AOS P 10 E 18 FK 213 SA 32 C 6 FK 252 SA 220 V C 15 FS 5 19 3 E 29 DR 071 VO E 40 FK 215 32 C 7 FK 252 SA 220 V C 15 FS 5 20 3 E 29 DR 073 VO E 40 FK 219 CB 1 C 9 FK 255 SA 21 C FS 10 2 E 29 DR 075 VO E 40 FK 219 CB 3 C 9 FK 255 SA 220 C 16 FS 10 1 E 30							
AOS P 4 E18 FK 208 SA L C 2 FK 250 08 LF PAK C 22 FS 5 10 2 E 29 AOS P 5 E18 FK 209 SA 32 C 6 FK 250 10 LF PAK C 22 FS 5 11 2 E 29 AOS P 6 E18 FK 211 S3 C 7 FK 251 08 LF PAK C 22 FS 5 13 2 E 29 AOS P 7 E18 FK 211 S3 C 7 FK 251 10 LF PAK C 22 FS 5 15 2 E 29 AOS P 8 E18 FK 213 SA 32 C 6 FK 252 SA 220 H C 15 FS 5 19 3 E 29 AOS P 9 E18 FK 216 SB C 7 FK 252 SA 220 V C 15 FS 5 20 3 E 29 AOS P 10 E18 FK 216 CB C 7 FK 252 SA 220 V C 15 FS 5 21 3 E 29 DR 071 V0 E40 FK 216 CB C 7 FK 252 SA 220 V C 15 FS 5 21 3 E 29 DR 071 V0 E40 FK 216 CB C 7 FK 252 SA 220 V C 16 FS 21 3 E 29 DR 071 V0 E40 FK 216 CB C 7 FK 255 C 16 FS 11 1 E 30 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>							
AOS P 5 E 18 FK 209 SA 32 C 6 FK 250 10 LF PAK C 22 FS S 11 2 E 29 AOS P 6 E 18 FK 210 SA CB C 6 FK 251 06 LF PAK C 22 FS S 12 2 E 29 AOS P 7 E 18 FK 211 32 C 7 FK 251 10 LF PAK C 22 FS S 15 2 E 29 AOS P 8 E 18 FK 212 CB C 7 FK 251 10 LF PAK C 22 FS S 15 2 E 29 AOS P 9 E 18 FK 212 SA 32 C 6 FK 252 SA 220 H C 15 FS S 16 2 E 29 AOS P 10 E 18 FK 215 32 C 7 FK 252 SA 220 V C 15 FS S 21 3 E 29 DR 071 V0 E 40 FK 215 32 C 7 FK 252 SA 220 V C 15 FS S 21 3 E 29 DR 072 V0 E 40 FK 215 32 C 3 FK 255 C 16 FS U 11 E 30 DR 074 V0 E 40 FK 219 CB 1 C 9 FK 255 C 16 FS U 11 E 30 DR 075 V0 E 40 FK 219 CB 2 C 9 FK 255 C 16 G BM 3050 E 37							
AOS P 6 E 18 FK 210 SA CB C 6 FK 251 06 LF PAK C 22 FS S 12 2 E 29 AOS P 7 E 18 FK 211 32 C 7 FK 251 08 LF PAK C 22 FS S 13 2 E 29 AOS P 8 E 18 FK 212 CB C 7 FK 251 08 LF PAK C 22 FS S 15 2 E 29 AOS P 9 E 18 FK 213 SA 32 C 6 FK 252 SA 220 H C 15 FS S 16 2 E 29 AOS P 10 E 18 FK 214 SA CB C 6 FK 252 SA 220 V C 15 FS S 12 2 E 29 DR 071 V0 E 40 FK 216 CB C 7 FK 252 SA 220 VL C 15 FS S 21 2 E 29 DR 072 V0 E 40 FK 217 SA CB 2 C 3 FK 253 SA 220 VL C 15 FS S 21 3 E 29 DR 074 V0 E 40 FK 219 CB 1 C 9 FK 255 C 16 FS U 11 E 30 DR 075 V0 E 40 FK 219 CB 2 C 9 FK 255 C 16 G BM 3050 E 37 DR 075 V0 E 40 FK 220 SA 220 C 10 FK 258 SA 220 C 10 G BM 3050 E 37 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
AOS P 7 E 18 FK 211 32 C 7 FK 251 08 LF PAK C 22 FS 51 32 E 29 AOS P 8 E 18 FK 212 CB C 7 FK 251 10 LF PAK C 22 FS 51 52 E 29 AOS P 9 E 18 FK 212 SA 32 C 6 FK 252 SA 220 0 C 15 FS 5 19 3 E 29 AOS P 10 E 18 FK 214 SA CB C 6 FK 252 SA 220 V C 15 FS 5 19 3 E 29 CLIP 151 E 26 FK 215 32 C 7 FK 252 SA 220 V C 15 FS 5 20 3 E 29 DR 071 V0 E 40 FK 217 SA CB C 2 C 3 FK 253 SA 220 V C 15 FS 5 21 2 E 29 DR 072 V0 E 40 FK 219 CB 1 C 9 FK 253 SA 220 V C 16 FS U 11 E 30 DR 075 V0 E 40 FK 219 CB 1 C 9 FK 255 C 16 FS U 11 E 30 DR 077 V0 E 40 FK 219 CB 2 C 9 FK 255 C 16 GBM 3050 E 37 DR 077 V0 E 40 FK 222 THF C 7 FK 318 SA C 2 GBM 4070 E 37 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
AOS P 8 E18 FK 212 CB C 7 FK 251 10 LF PAK C 22 FS 5 15 2 E 29 AOS P 9 E18 FK 213 SA 32 C 6 FK 252 SA 220 H C 15 FS 5 16 2 E 29 AOS P 10 E18 FK 213 SA 32 C 6 FK 252 SA 220 H C 15 FS 5 16 2 E 29 CLIP 151 E26 FK 215 GB C 7 FK 252 SA 220 V C 15 FS 5 20 3 E 29 DR 071 V0 E40 FK 216 CB C 7 FK 252 SA 220 VL C 15 FS 5 21 2 E 29 DR 072 V0 E40 FK 217 SA CB 2 C 3 FK 255 S C 16 FS 5 11 3 E 29 DR 073 V0 E 40 FK 219 CB 1 C 9 FK 255 C 16 FS 0 11 E 30 DR 075 V0 E 40 FK 219 CB 3 C 9 FK 255 C 16 GBM 2550 E 37 DR 075 V0 E 40 FK 220 SA 220 C 10 FK 258 SA 220 C 10 GBM 3050 E 37 DR 075 V0 E 40 FK 222 SA 220 C 10 GBM 3050 E 37 DR 075 V0 E 40 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
AOS P 9 E 18 FK 213 SA 32 C 6 FK 252 SA 220 H C 15 FS S 16 2 E 29 AOS P 10 E 18 FK 214 SA CB C 6 FK 252 SA 220 V C 15 FS S 19 3 E 29 DR 071 V0 E 40 FK 216 CB C 7 FK 252 SA 220 VL C 15 FS S 20 3 E 29 DR 071 V0 E 40 FK 216 CB C 7 FK 252 SA 220 VL C 15 FS S 21 3 E 29 DR 072 V0 E 40 FK 217 SA CB 2 C 3 FK 253 C 16 FS 21 3 E 29 DR 073 V0 E 40 FK 219 CB 1 C 9 FK 255 C 16 FS U 11 E 30 DR 075 V0 E 40 FK 219 CB 2 C 9 FK 256 C 22 FS U 20 E 30 DR 075 V0 E 40 FK 219 CB 3 C 9 FK 257 C 16 GBM 3050 E 37 DR 078 V0 E 40 FK 222 SA 220 C 10 FK 258 SA 220 C 10 GBM 3050 E 37 DR 078 V0 E 40 FK 222 SA C 3 FL 0,55 A 128 GBP 4080 E 37 DR 082 V0 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
AOS P 10 E18 FK 214 SA CB C 6 FK 252 SA 220 O C 15 FS 5 19 3 E 29 CLIP 151 E 26 FK 215 32 C 7 FK 252 SA 220 V C 15 FS 5 20 3 E 29 DR 071 V0 E 40 FK 216 G B C 7 FK 252 SA 220 VL C 15 FS 5 21 3 E 29 DR 072 V0 E 40 FK 217 SA CB 2 C 3 FK 253 C 16 FS 21 3 E 29 DR 074 V0 E 40 FK 219 CB 1 C 9 FK 255 C 16 FS U 11 E 30 DR 074 V0 E 40 FK 219 CB 2 C 9 FK 256 C 12 FS U 10 E 30 DR 076 V0 E 40 FK 219 CB 3 C 9 FK 257 C 16 GBM 2550 E 37 DR 077 V0 E 40 FK 222 C C 7 FK 318 SA C 2 GBM 4070 E 37 DR 078 V0 E 40 FK 222 THF C 7 FK 318 SA 3 C 2 GBM 4070 E 37 DR 081 V0 E 40 FK 223 SA 3 C 3 FL 1,1 A 128 GBP 4060 E 37 DR 082 V0 E 40							
CLIP 151 E 26 FK 215 32 C 7 FK 252 SA 220 V C 15 FS S 20 3 E 29 DR 071 V0 E 40 FK 216 CB C 7 FK 252 SA 220 VL C 15 FS S 21 2 E 29 DR 072 V0 E 40 FK 217 SA CB 2 C 3 FK 253 SA 220 VL C 16 FS S 21 3 E 29 DR 073 V0 E 40 FK 218 32 C 8 FK 253 SA 3 C 2 FS U 06 E 30 DR 075 V0 E 40 FK 219 CB 1 C 9 FK 255 C 16 FS U 11 E 30 DR 075 V0 E 40 FK 219 CB 2 C 9 FK 257 C 16 GBM 2550 E 37 DR 077 V0 E 40 FK 220 SA 220 C 10 FK 258 SA 220 C 10 GBM 3050 E 37 DR 078 V0 E 40 FK 222 SA C 7 FK 318 SA C 2 GBM 4070 E 37 DR 078 V0 E 40 FK 223 SA C 3 FL 0,55 A 128 GBP 3060 E 37 DR 078 V0 E 40 FK 223 SA CB C 3 FL 1,1 A 128 GBP 4080 E 37 DR 082 V0 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
DR 071 V0 E 40 FK 216 CB C 7 FK 252 SA 220 VL C 15 FS S 21 2 E 29 DR 072 V0 E 40 FK 217 SA CB 2 C 3 FK 253 C 16 FS S 21 3 E 29 DR 073 V0 E 40 FK 218 32 C 8 FK 253 C 16 FS S 21 3 E 29 DR 073 V0 E 40 FK 219 CB 1 C 9 FK 255 C 16 FS U 11 E 30 DR 075 V0 E 40 FK 219 CB 2 C 9 FK 255 C 16 GBM 2550 E 37 DR 076 V0 E 40 FK 219 CB 3 C 9 FK 257 C 16 GBM 3050 E 37 DR 077 V0 E 40 FK 220 SA 220 C 10 FK 288 SA 220 C 10 GBM 3050 E 37 DR 078 V0 E 40 FK 223 SA C 3 FL 1 A 138 SA C 2 GBM 4070 E 37 DR 081 V0 E 40 FK 223 SA 3 C 3 FL 1 A 128 GBP 3060 E 37 DR 083 V0 E 40 FK 224 218 1 C 11 FLK 180 G 300 A 131 GEL E 15 <							
DR 072 V0 E 40 FK 217 SA CB 2 C 3 FK 253 C 16 FS S 21 3 E 29 DR 073 V0 E 40 FK 218 32 C 8 FK 255 C 16 FS U 06 E 30 DR 074 V0 E 40 FK 219 CB 1 C 9 FK 255 C 16 FS U 11 E 30 DR 075 V0 E 40 FK 219 CB 2 C 9 FK 255 C 16 GBM 2550 E 37 DR 076 V0 E 40 FK 220 SA 220 C 10 FK 258 SA 220 C 10 GBM 3050 E 37 DR 077 V0 E 40 FK 222 THF C 7 FK 318 SA C 2 GBM 4070 E 37 DR 078 V0 E 40 FK 223 SA C 3 FL 0,55 A 128 GBP 3060 E 37 DR 079 V0 E 40 FK 223 SA 2CB C 3 FLK 180 A 131 GEL E 12 DR 082 V0 E 40 FK 224 218 1 C 11 FLK 180 A 131 GEL E 12 DR 083 V0 E 40 FK 224 218 2 C 11 FLK 180 G 300 A 132 GEL 27 S E 13 D							
DR 073 V0 E 40 FK 218 32 C 8 FK 254 SA 3 C 2 FS U 06 E 30 DR 074 V0 E 40 FK 219 CB 1 C 9 FK 255 C 16 FS U 11 E 30 DR 075 V0 E 40 FK 219 CB 2 C 9 FK 256 C 22 FS U 20 E 30 DR 076 V0 E 40 FK 219 CB 3 C 9 FK 257 C 16 GBM 2550 E 37 DR 076 V0 E 40 FK 220 SA 220 C 10 FK 258 SA 220 C 10 GBM 3050 E 37 DR 078 V0 E 40 FK 222 THF C 7 FK 318 SA 3 C 2 GBM 4070 E 37 DR 081 V0 E 40 FK 223 SA 3 C 3 FL 1,1 A 128 GBP 4080 E 37 DR 082 V0 E 40 FK 223 SA 3 C 3 FL 1,1 A 128 GBP 4080 E 37 DR 083 V0 E 40 FK 224 218 2 C 11 FLK 180 G 300 A 131 GEL 27 S E 15 DR 084 V0 E 40 FK 224 220 2<							
DR 074 V0 E 40 FK 219 CB 1 C 9 FK 255 C 16 FS U 11 E 30 DR 075 V0 E 40 FK 219 CB 2 C 9 FK 256 C 22 FS U 20 E 30 DR 075 V0 E 40 FK 219 CB 3 C 9 FK 257 C 16 GBM 2550 E 37 DR 077 V0 E 40 FK 220 SA 220 C 10 FK 258 SA 220 C 10 GBM 3050 E 37 DR 078 V0 E 40 FK 222 C 7 FK 318 SA C 2 GBM 4070 E 37 DR 079 V0 E 40 FK 223 SA C 3 FL 0,55 A 128 GBP 3060 E 37 DR 081 V0 E 40 FK 223 SA 3 C 3 FL 1,1 A 128 GBP 4080 E 37 DR 082 V0 E 40 FK 224 218 1 C 11 FLK180 A 131 GEL E 12 DR 085 V0 E 40 FK 224 218 1 C 11 FLK180 G 300 A 132 GEL 27 S E 15 DR 085 V0 E 40 FK 224 218 2 C 11 FLK180 G 500 A 132 GEL 28 E 13 DR 085 V							
DR 075 V0 E 40 FK 219 CB 2 C 9 FK 256 C 22 FS U 20 E 30 DR 076 V0 E 40 FK 219 CB 3 C 9 FK 257 C 16 GBM 2550 E 37 DR 077 V0 E 40 FK 220 SA 220 C 10 FK 258 SA 220 C 10 GBM 3050 E 37 DR 078 V0 E 40 FK 222 C 7 FK 318 SA C 2 GBM 4070 E 37 DR 079 V0 E 40 FK 222 THF C 7 FK 318 SA 3 C 2 GBM 5080 E 37 DR 081 V0 E 40 FK 223 SA C 3 FL 1,1 A 128 GBP 4080 E 37 DR 082 V0 E 40 FK 223 SA 3 C 3 FL 1,1 A 128 GBP 4080 E 37 DR 083 V0 E 40 FK 223 SA CB C 3 FLK 180 A 131 GEL E 12 DR 085 V0 E 40 FK 224 218 1 C 11 FLK 180 G 300 A 132 GEL 27 S E 13 DR 085 V0 E 40 FK 224 220 1							
DR 076 V0 E 40 FK 219 CB 3 C 9 FK 257 C 16 GBM 2550 E 37 DR 077 V0 E 40 FK 220 SA 220 C 10 FK 258 SA 220 C 10 GBM 3050 E 37 DR 078 V0 E 40 FK 222 C 7 FK 318 SA C 2 GBM 4070 E 37 DR 079 V0 E 40 FK 223 SA C 3 FL 0,55 A 128 GBP 3060 E 37 DR 081 V0 E 40 FK 223 SA C 3 FL 1,1 A 128 GBP 4060 E 37 DR 081 V0 E 40 FK 223 SA 3 C 3 FL 1,1 A 128 GBP 4060 E 37 DR 082 V0 E 40 FK 223 SA CB C 3 FLK 180 A 131 GEL E 12 DR 084 V0 E 40 FK 224 218 1 C 11 FLK 180 G 300 A 132 GEL 27 S E 15 DR 085 V0 E 40 FK 224 220 2 C 11 FLK 140 G 300 A 132 GEL 28 G E 14 DR 087 V0 E 40 FK 224 220 2							
DR 077 V0 E 40 FK 220 SA 220 C10 FK 258 SA 220 C10 GBM 3050 E 37 DR 078 V0 E 40 FK 222 C7 FK 318 SA C 2 GBM 4070 E 37 DR 079 V0 E 40 FK 222 THF C7 FK 318 SA 3 C 2 GBM 5080 E 37 DR 081 V0 E 40 FK 223 SA C 3 FL 0,55 A 128 GBP 3060 E 37 DR 082 V0 E 40 FK 223 SA CB C 3 FL 1,1 A 128 GBP 4080 E 37 DR 083 V0 E 40 FK 223 SA CB C 3 FLK 180 A 131 GEL E 12 DR 083 V0 E 40 FK 224 218 1 C 11 FLK 180 G 200 A 132 GEL G E 15 DR 085 V0 E 40 FK 224 218 2 C 11 FLK 180 G 500 A 132 GEL 27 S E 15 DR 085 V0 E 40 FK 224 220 1 C 11 FLK 180 G 500 A 132 GEL 27 S E 13 DR 085 V0 E 40 FK 224 220 2 C 11 FLK 140 G 300 A 132 GEL 45 E 14 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
DR 078 V0 E 40 FK 222 C 7 FK 318 SA C 2 GBM 4070 E 37 DR 079 V0 E 40 FK 222 THF C 7 FK 318 SA 3 C 2 GBM 5080 E 37 DR 081 V0 E 40 FK 223 SA C 3 FL 0,55 A 128 GBP 3060 E 37 DR 082 V0 E 40 FK 223 SA 3 C 3 FL 1,1 A 128 GBP 4080 E 37 DR 083 V0 E 40 FK 223 SA CB C 3 FLKI 80 A 131 GEL E 12 DR 084 V0 E 40 FK 224 218 1 C 11 FLKI 80 G 200 A 132 GEL 27 S E 15 DR 085 V0 E 40 FK 224 218 2 C 11 FLKI 80 G 500 A 132 GEL 27 S E 15 DR 085 V0 E 40 FK 224 220 2 C 11 FLKI 80 G 500 A 132 GEL 28 G E 13 DR 085 V0 E 40 FK 224 220 2 C 11 FLKI 80 G 300 A 132 GEL 28 G E 14 DR 085 V0 E 40 FK 224 220 2 C 11 FLKU 140 A 133 GEL 28 G E 14<							
DR 079 V0 E 40 FK 222 THF C 7 FK 318 SA 3 C 2 GBM 5080 E 37 DR 081 V0 E 40 FK 223 SA C 3 FL 0,55 A 128 GBP 3060 E 37 DR 082 V0 E 40 FK 223 SA 3 C 3 FL 1,1 A 128 GBP 4080 E 37 DR 082 V0 E 40 FK 223 SA GB C 3 FLK 180 A 131 GEL E 12 DR 083 V0 E 40 FK 224 218 1 C 11 FLK 180 G 200 A 132 GEL 27 S E 15 DR 085 V0 E 40 FK 224 218 2 C 11 FLK 180 G 500 A 132 GEL 27 S E 15 DR 085 V0 E 40 FK 224 220 1 C 11 FLK 180 G 500 A 132 GEL 28 E 13 DR 086 V0 E 40 FK 224 220 2 C 11 FLK 180 G 200 A 132 GEL 45 E 14 DR 087 V0 E 40 FK 224 220 2 C 11 FLK 140 G 200 A 132 GEL 45 E 14 DR 088 V0 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
DR 081 V0 E 40 FK 223 SA C 3 FL 0,55 A 128 GBP 3060 E 37 DR 082 V0 E 40 FK 223 SA 3 C 3 FL 1,1 A 128 GBP 4080 E 37 DR 083 V0 E 40 FK 223 SA CB C 3 FLKI 80 A 131 GEL E 12 DR 084 V0 E 40 FK 224 218 1 C 11 FLKI 80 G 300 A 132 GEL 27 S E 15 DR 085 V0 E 40 FK 224 218 2 C 11 FLKI 80 G 300 A 132 GEL 27 S E 15 DR 086 V0 E 40 FK 224 220 1 C 11 FLKI 80 G 500 A 132 GEL 28 E 13 DR 087 V0 E 40 FK 224 220 2 C 11 FLKR 1 A 133 GEL 28 G E 13 DR 088 V0 E 40 FK 224 220 2 C 11 FLKU 140 A 131 GEL 45 E 14 DR 089 V0 E 40 FK 224 2 C 5 FLKU 140 G 200 A 132 GEL 45 E 14 DR 105 V0 E 40							
DR 082 V0 E 40 FK 223 SA 3 C 3 FL 1,1 A 128 GBP 4080 E 37 DR 083 V0 E 40 FK 223 SA CB C 3 FLKI 80 A 131 GEL E 12 DR 084 V0 E 40 FK 224 218 1 C 11 FLKI 80 G 200 A 132 GEL G E 12 DR 085 V0 E 40 FK 224 218 2 C 11 FLKI 80 G 300 A 132 GEL 27 S E 15 DR 086 V0 E 40 FK 224 220 1 C 11 FLKI 80 G 500 A 132 GEL 28 E 13 DR 087 V0 E 40 FK 224 220 2 C 11 FLKR 1 A 133 GEL 28 G E 13 DR 087 V0 E 40 FK 224 220 2 C 11 FLKR 1 A 133 GEL 45 E 14 DR 088 V0 E 40 FK 224 P SIP C 10 FLKU 140 G 200 A 131 GEL 45 E 14 DR 089 V0 E 40 FK 225 SA L 2 C 5 FLKU 140 G 300 A 132 GEL 60 E 15 DR 105 V0 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
DR 083 V0 E 40 FK 223 SA CB C 3 FLK 180 A 131 GEL E 12 DR 084 V0 E 40 FK 224 218 1 C 11 FLK 180 G 200 A 132 GEL G E 15 DR 085 V0 E 40 FK 224 218 2 C 11 FLK 180 G 300 A 132 GEL 27 S E 15 DR 086 V0 E 40 FK 224 220 1 C 11 FLK 180 G 500 A 132 GEL 28 E 13 DR 087 V0 E 40 FK 224 220 2 C 11 FLK 1 A 133 GEL 28 G E 13 DR 087 V0 E 40 FK 224 220 2 C 11 FLK 1 A 133 GEL 45 E 14 DR 088 V0 E 40 FK 224 P SIP C 10 FLK 140 G 200 A 131 GEL 45 E 14 DR 089 V0 E 40 FK 225 SA L 1 C 5 FLK U 140 G 300 A 132 GEL 60 E 15 DR 105 V0 E 40 FK 227 SA L 1 C 8 FLKU 140 G 300 A 132 GEL 60 G E 15 DR 115 V0 E 40 FK 228 SA L 1 C 5 FS 6 065 E 27				-			
DR 084 V0 E 40 FK 224 218 1 C 11 FLKI 80 G 200 A 132 GEL G DR 085 V0 E 40 FK 224 218 2 C 11 FLKI 80 G 300 A 132 GEL 27 S E 15 DR 086 V0 E 40 FK 224 220 1 C 11 FLKI 80 G 500 A 132 GEL 28 E 13 DR 087 V0 E 40 FK 224 220 2 C 11 FLKI 80 G 200 A 132 GEL 28 E 13 DR 087 V0 E 40 FK 224 220 2 C 11 FLKI 140 A 131 GEL 28 G E 14 DR 088 V0 E 40 FK 224 P SIP C 10 FLKU 140 A 131 GEL 45 E 14 DR 089 V0 E 40 FK 225 SA L 1 C 5 FLKU 140 G 300 A 132 GEL 60 E 14 DR 105 V0 E 40 FK 225 SA L 1 C 5 FLKU 140 G 300 A 132 GEL 60 E 15 DR 110 V0 E 40 FK 228 SA L 1 C 5 FS 6 065 E 27 GEL F 15 E 11 DR 120 V0				-			
DR 085 V0 E 40 FK 224 218 2 C 11 FLKI 80 G 300 A 132 GEL 27 S E 15 DR 086 V0 E 40 FK 224 220 1 C 11 FLKI 80 G 500 A 132 GEL 28 E 13 DR 087 V0 E 40 FK 224 220 2 C 11 FLKI 80 G 500 A 132 GEL 28 E 13 DR 087 V0 E 40 FK 224 220 2 C 11 FLKI 1 A 133 GEL 28 G E 14 DR 088 V0 E 40 FK 224 P SIP C 10 FLKU 140 A 131 GEL 45 E 14 DR 089 V0 E 40 FK 225 SA L 1 C 5 FLKU 140 G 300 A 132 GEL 60 E 15 DR 105 V0 E 40 FK 225 SA L 2 C 5 FLKU 140 G 500 A 132 GEL 60 E 15 DR 110 V0 E 40 FK 227 SA L 1 C 5 FS 6 050 E 27 GEL F 15 E 11 DR 120 V0 E 40 FK 229 SA L 1 C 5 FS 6 070 E 27 GEL F 15 G E 11 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>LIZ</th></th<>							LIZ
DR 086 V0 E 40 FK 224 220 1 C 11 FLK 180 G 500 A 132 GEL 28 E 13 DR 087 V0 E 40 FK 224 220 2 C 11 FLK 1 A 133 GEL 28 G E 14 DR 088 V0 E 40 FK 224 P SIP C 10 FLK 1 40 A 131 GEL 45 E 14 DR 089 V0 E 40 FK 225 SA L 1 C 5 FLKU 140 G 200 A 132 GEL 45 G E 14 DR 089 V0 E 40 FK 225 SA L 1 C 5 FLKU 140 G 300 A 132 GEL 45 G E 15 DR 105 V0 E 40 FK 225 SA L 2 C 5 FLKU 140 G 500 A 132 GEL 60 G E 15 DR 110 V0 E 40 FK 228 SA L 1 C 5 FS 6 045 E 27 GEL F 15 E 11 DR 120 V0 E 40 FK 229 SA L 1 C 5 FS 6 070 E 27 GEL F 15 G E 11 DR 125 V0 E 40 FK 230 SA L 1 C 5 FS 6 080 E 27 GS 3 E 19							F 15
DR 087 V0 E 40 FK 224 220 2 C 11 FLKR 1 A 133 GEL 28 G DR 088 V0 E 40 FK 224 P SIP C 10 FLKU 140 A 131 GEL 45 E 14 DR 089 V0 E 40 FK 225 SA L 1 C 5 FLKU 140 G 200 A 132 GEL 45 G E 14 DR 105 V0 E 40 FK 225 SA L 2 C 5 FLKU 140 G 300 A 132 GEL 60 G E 15 DR 110 V0 E 40 FK 227 SA L 1 C 8 FLKU 140 G 500 A 132 GEL 60 G E 15 DR 115 V0 E 40 FK 228 SA L 1 C 5 FS 6 065 E 27 GEL F 15 E 11 DR 120 V0 E 40 FK 229 SA L 1 C 5 FS 6 070 E 27 GEL F 15 G E 11 DR 125 V0 E 40 FK 230 SA L 1 C 5 FS 6 080 E 27 GS 3 E 19							
DR 088 V0 E 40 FK 224 P SIP C 10 FLKU 140 A 131 GEL 45 E 14 DR 089 V0 E 40 FK 225 SA L 1 C 5 FLKU 140 G 200 A 132 GEL 45 G E 14 DR 105 V0 E 40 FK 225 SA L 2 C 5 FLKU 140 G 300 A 132 GEL 60 E 15 DR 110 V0 E 40 FK 227 SA L 1 C 8 FLKU 140 G 500 A 132 GEL 60 G E 15 DR 115 V0 E 40 FK 228 SA L 1 C 5 FS 6 065 E 27 GEL F 15 E 11 DR 120 V0 E 40 FK 229 SA L 1 C 5 FS 6 070 E 27 GEL F 15 G E 11 DR 125 V0 E 40 FK 230 SA L 1 C 5 FS 6 080 E 27 GS 3 E 19							E IS
DR 089 V0 E 40 FK 225 SA L 1 C 5 FLKU 140 G 200 A 132 GEL 45 G DR 105 V0 E 40 FK 225 SA L 2 C 5 FLKU 140 G 300 A 132 GEL 60 E 15 DR 110 V0 E 40 FK 227 SA L 1 C 8 FLKU 140 G 500 A 132 GEL 60 G E 15 DR 115 V0 E 40 FK 228 SA L 1 C 5 FS 6 065 E 27 GEL F 15 E 11 DR 120 V0 E 40 FK 229 SA L 1 C 5 FS 6 070 E 27 GEL F 15 G E 11 DR 125 V0 E 40 FK 230 SA L 1 C 5 FS 6 080 E 27 GS 3 E 19							E 14
DR 105 V0 E 40 FK 225 SA L 2 C 5 FLKU 140 G 300 A 132 GEL 60 E 15 DR 110 V0 E 40 FK 227 SA L 1 C 8 FLKU 140 G 500 A 132 GEL 60 G E 15 DR 115 V0 E 40 FK 228 SA L 1 C 5 FS 6 065 E 27 GEL F 15 E 11 DR 120 V0 E 40 FK 229 SA L 1 C 5 FS 6 070 E 27 GEL F 15 G E 11 DR 125 V0 E 40 FK 230 SA L 1 C 5 FS 6 080 E 27 GS 3 E 19							C 14
DR 110 V0 E 40 FK 227 SA L 1 C 8 FLKU 140 G 500 A 132 GEL 60 G DR 115 V0 E 40 FK 228 SA L 1 C 5 FS 6 065 E 27 GEL F 15 E 11 DR 120 V0 E 40 FK 229 SA L 1 C 5 FS 6 070 E 27 GEL F 15 G E 11 DR 125 V0 E 40 FK 230 SA L 1 C 5 FS 6 080 E 27 GS 3 E 19							F 16
DR 115 V0 E 40 FK 228 SA L 1 C 5 FS 6 065 E 27 GEL F 15 E 11 DR 120 V0 E 40 FK 229 SA L 1 C 5 FS 6 070 E 27 GEL F 15 G E 11 DR 125 V0 E 40 FK 230 SA L 1 C 5 FS 6 080 E 27 GS 3 E 19							E 15
DR 120 V0 E 40 FK 229 SA L 1 C 5 FS 6 070 E 27 GEL F 15 G DR 125 V0 E 40 FK 230 SA L 1 C 5 FS 6 080 E 27 GS 3 E 19							E 11
DR 125 VO E 40 FK 230 SA L 1 C 5 FS 6 080 E 27 GS 3 E 19							
							E 10
UN 130 YO L 40 FN 231 JA 220 CO F3 0 UYU E 27 US 3 M E 19							
	DR 130 VU	L 40	TR 231 JA 220	13 0 070	E Z/	63 3 F	E 19

art. no.	page	art. no.	page	art. no.	page	art. no.	page
GS 3 P SL	E 19	ICK LED R 23,5 x 14 G	B 35	ICK \$ 10 x 10 x 12,5	B 21	ICK SMD K 10 SA	B 54
GS 32 P	E 19	ICK LED R 27 x 10	B 35	ICK \$ 10 x 10 x 18,5	B 22	ICK SMD K 13	B 54
GS 66 P	E 19	ICK LED R 27 x 10 G	B 35	ICK S 14 x 14 x 6,5	B 22	ICK SMD K 17	B 54
GS 218	E 19	ICK LED R 28 x 15	B 35	ICK S 14 x 14 x 10	B 22	ICK SMD K 19	B 54
GS 220 4	E 19	ICK LED R 28 x 15 G	B 36	ICK S 14 x 14 x 12,5	B 22	ICK SMD K 21	B 54
GS 220 C	E 19	ICK LED R 29 x 11,5	B 36	ICK S 14 x 14 x 18,5	B 22	ICK SMD M 8 SA	B 54
GS 220 P	E 19	ICK LED R 29 x 11,5 G	B 36	ICK S 17 x 17 x 15	B 22	ICK SMD M 10 SA	B 54
IB 1	E 52	ICK LED R 32 x 14	B 36	ICK S 17 x 17 x 20	B 23	ICK SMD M 17 MI	B 54
IB 2	E 52	ICK LED R 32 x 14 G	B 36	ICK S 18 x 18 x 6,5	B 23	ICK SMD M 19 SA	B 54
IB 3	E 52	ICK LED R 33 x 10	B 36	ICK S 18 x 18 x 10	B 23	ICK SMD M 21 SA	B 54
IB 4	E 52	ICK LED R 33 x 10 G	B 36	ICK S 22 x 22 x 10	B 23	ICK SMD N 8	B 55
IB 5	E 52	ICK LED R 33 x 16,5	B 37	ICK S 22 x 22 x 18,5	B 23	ICK SMD N 10	B 55
IB 6	E 52	ICK LED R 33 x 16,5 G	B 37	ICK S 25 x 25 x 6,5	B 23	ICK SMD N 17	B 55
IB 7	E 52	ICK LED R 35 x 10	B 37	ICK S 25 x 25 x 12,5	B 24	ICK SMD N 19	B 55
IB 8	E 52	ICK LED R 35 x 10 G	B 37	ICK S 25 x 25 x 18,5	B 24	ICK SMD N 21	B 55
IB 9	E 52	ICK LED R 36 x 12	B 37	ICK S 29 x 29 x 10	B 24	ICK SMD N 26	B 55
IB 10	E 52	ICK LED R 36 x 12 G	B 37	ICK S 29 x 29 x 20	B 24	ICK S R 28,5 x 6,5	B 29
IB 11	E 52	ICK LED R 40 x 10	B 37	ICK S 29 x 29 x 30	B 24	ICK S R 28,5 x 10	B 29
IB 12	E 52	ICK LED R 40 x 10 G	B 38	ICK S 32 x 32 x 10	B 24	ICK S R 28,5 x 12,5	B 29
IB 13	E 52	ICK LED R 40 x 27	B 38	ICK S 32 x 32 x 20	B 25	ICK S R 28,5 x 18,5	B 29
IB 14	E 52	ICK LED R 40 x 27 G	B 38	ICK S 36 x 36 x 10	B 25	ICK S R 32,5 x 10	B 29
IB 15	E 52	ICK LED R 45,7 x 16,5	B 38	ICK S 36 x 36 x 15	B 25	ICK S R 32,5 x 20	B 29
IB 16	E 52	ICK LED R 45,7 x 16,5 G	B 38	ICK 5 36 x 36 x 15	B 25	ICK S R 32,5 x 20	B 29 B 30
IB 17	E 52	ICK LED R 45,7 x 16,5 G	B 30	ICK 5 36 x 36 x 20	Б 25 В 25	ICK S R 32,5 x 30	В 30 В 30
IB 17 IB 18	E 52 E 52		В 39 В 39		в 25 В 25	-	В 30 В 30
IB 18 IBT 1	E 52 E 52	ICK LED R 50,8 x 16,5 G ICK LED R 50 x 10	B 39 B 38	ICK S 40 x 40 x 10 ICK S 40 x 40 x 20	B 25 B 26	ICK S R 32,5 x 50 ICK S R 36,5 x 20	В 30 В 30
		ICK LED R 50 x 10 G				-	
IBT 2	E 52		B 39	ICK S 40 x 40 x 25	B 26	ICK S R 40 x 10	B 30
IBT 3	E 52	ICK LED R 54 x 20	B 39	ICK \$ 45 x 45 x 10	B 26	ICK S R 40 x 20	B 30
IBT 4	E 52	ICK LED R 54 x 20 G	B 39	ICK S 45 x 45 x 20	B 26	ICK S R 40 x 30	B 31
IBT 6	E 52	ICK LED R 66 x 40	B 39	ICK S 50 x 50 x 20	B 26	ICK S R 40 x 50	B 31
IBT 7	E 52	ICK LED R 75 x 10	B 40	ICK S 50 x 50 x 25	B 26	ICK S R 45 x 30	B 31
IBT 8	E 52	ICK LED R 84 x 40	B 40	ICK S 50 x 50 x 40	B 27	ICK S R 45 x 45	B 31
IBT 9	E 52	ICK LED R 100 x 40	B 40	ICK S 50 x 50 x 50	B 27	ICK S R 50 x 10	B 31
IBT 10	E 52	ICK LED R 160 x 40	B 40	ICK S 98 x 98 x 30	B 27	ICK S R 50 x 20	B 32
IBT 11	E 52	ICK LED R 200 x 40	B 41	ICK S 98 x 98 x 45	B 27	ICK S R 50 x 30	B 32
IBT 12	E 52	ICK PEN 3 FC	B 57	ICK S D 12 x 12 x 7,5	B 28	ICK S R 50 x 45	B 32
IBT 14	E 52	ICK PEN 3 XE	B 56	ICK S D 18 x 12 x 7,5	B 28	ICK S R 54 x 20	B 32
IBT 15	E 52	ICK PEN 3 XE 1	B 56	ICK S D 24 x 18 x 7,5	B 28	ICK S R 54 x 30	B 32
IBT 18	E 52	ICK PEN 38 F	B 57	ICK S D 98 x 98 x 10	B 28	ICK S R 54 x 45	B 33
ICK 6 8 L	B 52	ICK PEN 38 W	B 57	ICK SMD A 5	B 53	ICK S R 70 x 30	B 33
ICK 14 16 B	B 52	ICK PEN 45 W	B 57	ICK SMD A 8	B 53	ICK S R 70 x 50	B 33
ICK 14 16 L	B 52	ICK PGA 6 x 6 x 14	B 11	ICK SMD A 10	B 53	ICK S R 85 x 30	B 33
ICK 14 H	B 52	ICK PGA 8 x 8 x 12	B 11	ICK SMD A 13	B 53	ICK S R 85 x 45	B 33
ICK 16 H	B 52	ICK PGA 9 x 9	B 11	ICK SMD A 17	B 53	ICK S R 98 x 30	B 34
ICK 18 H	B 52	ICK PGA 11 x 11	B 11	ICK SMD A 22	B 53	ICK S R 98 x 50	B 34
ICK 20 L	B 52	ICK PGA 11 x 11 x 8	B 11	ICK SMD B 5	B 53	ICK S R A 40 x 20	B 31
ICK 24 B	B 52	ICK PGA 11 x 11 x 12	B 12	ICK SMD B 7 SA	B 53	IK 3	E 51
ICK 28 B	B 52	ICK PGA 14 x 14	B 12	ICK SMD B 10 SA	B 53	IK 341 3	E 51
ICK 35 SA	A 124	ICK PGA 14 x 14 x 10	B 12	ICK SMD B 13 SA	B 53	IS 1	E 49
ICK 36 B	B 52	ICK PGA 14 x 14 x 12	B 12	ICK SMD B 19	B 53	IS 2	E 49
ICK 40 B	B 52	ICK PGA 14 x 14 x 14	B 12	ICK SMD BOX 1	B 55	IS 3	E 49
ICK 1000 B	B 52	ICK PGA 15 x 15	B 12	ICK SMD C 7 SA	B 53	IS 4	E 49
ICK 1000 H	B 52	ICK PGA 16 x 16 x 8	B 13	ICK SMD C 10 SA	B 53	IS 5	E 49
ICK BGA 10 x 10	B 17	ICK PGA 16 x 16 x 10	B 13	ICK SMD C 17	B 53	IS 6	E 49
ICK BGA 10 x 10 x 10	B 17	ICK PGA 16 x 16 x 12	B 13	ICK SMD E 15 SA	B 54	IS 7	E 50
ICK BGA 14 x 14	B 17	ICK PGA 17 x 17	B 13	ICK SMD E 22 SA	B 54	IS 8	E 50
ICK BGA 14 x 14 x 10	B 17	ICK PGA 17 x 17 x 8	B 13	ICK SMD E 29 SA	B 54	IS 53	A 127
ICK BGA 21 x 21	B 18	ICK PGA 17 x 17 x 12	B 13	ICK SMD F 8	B 54	ISAB 3 A	E 32
ICK BGA 23 x 23	B 18	ICK PGA 18 x 18	B 14	ICK SMD F 10	B 54	ISAB 3 B	E 33
ICK BGA 23 x 23 x 10	B 18	ICK PGA 19 x 19	B 14	ICK SMD F 17 SA	B 54	ISAB 3 C	E 33
ICK BGA 27 x 27	B 18	ICK PGA 19 x 19 x 12	B 14	ICK SMD F 19	B 54	ISAB 4 A	E 32
ICK BGA 27 x 27 x 10	B 18	ICK PGA 20 x 20	B 14	ICK SMD F 21	B 54	ISAB 4 B	E 33
ICK BGA 27 x 27 x 14	B 18	ICK PGA 20 x 20 K	B 15	ICK SMD F 26	B 54	ISAB 4 C	E 33
ICK BGA 27 x 27 x 22	B 19	ICK PGA 20 x 20 x 8	B 15	ICK SMD G 8 MI	B 54	ISAB 5 B	E 33
ICK BGA 31 x 31	B 19	ICK PGA 20 x 20 x 10	B 14	ICK SMD G 10	B 54	ISAB 5 C	E 33
ICK BGA 31 x 31 x 10	B 19	ICK PGA 20 x 20 x 12	B 15	ICK SMD G 13 SA	B 54	ISAB 6 A	E 32
ICK BGA 35 x 35	B 19	ICK PGA 21 x 21	B 15	ICK SMD G 17 SA	B 54	ISAB 6 B	E 33
ICK BGA 35 x 35 x 10	B 19	ICK PGA 22 x 22	B 15	ICK SMD G 19 SA	B 54	ISAB 6 C	E 33
ICK BGA 37 x 37 x 6	B 19	ICK PGA 25 x 25	B 16	ICK SMD G 21	B 54	ISAB 25 A	E 32
ICK BGA 37 x 37 x 10	B 20	ICK PLCC 28	B 52	ICK SMD H 8	B 54	ISAB 25 B	E 33
ICK BGA 40 x 40	B 20	ICK PPC 51	B 56	ICK SMD H 10	B 54	ISAB 25 C	E 33
ICK BGA 40 x 40 x 10	B 20	ICK PRO 40 W	B 57	ICK SMD H 17	B 54	ISAM 2 A	E 34
ICK BGA 42,5 x 45	B 20	ICK R	B 52	ICK SMD H 19 SA	B 54	ISAM 2 B	E 34
ICK EM 25	B 56	ICK \$ 10 x 10 x 6,5	B 21	ICK SMD H 25	B 54	ISAM 2 C	E 34
ICK LED R 23,5 x 14	B 35	ICK \$ 10 x 10 x 10	B 21	ICK SMD K 8	B 54	ISAM 3 A	E 34

art. no.	page	art. no.	page	art. no.	page	art. no.	page
ISAM 3 B	E 34	LA 2 09	D 7	LA V 11	D 18	SFP 054	A 135
ISAM 3 C	E 34	LA 2 10	D 7	LA V 14	D 20	SFP 057	A 135
ISAS 25 A	E 35	LA 4	D 14	LA V 15	D 20	SFP 058	A 135
ISAS 25 B	E 36	LA 5	D 14	LA V 17	D 22	SFP 060	A 135
ISAS 25 C	E 36	LA 6	D 15	LA V 18	D 22	SFP 067	A 135
ISAS 30 A	E 35	LA 7	D 15	LA V 21	D 24	SFP 074	A 135
ISAS 30 B	E 36	LA 8	D 15	LA V 22	D 24	SFP 076	A 135
ISAS 30 C	E 36	LA 9	D 17	LA V 24	D 25	SFP 079	A 135
ISAS 40 A	E 35	LA 10	D 17	LS 101	E 43	SFP 090	A 135
ISAS 40 B	E 36	LA 11	D 17	LS 102	E 43	SFP 100	A 135
ISAS 40 C	E 36	LA 14	D 19	LS 103	E 43	SFP 106	A 135
ISAS 50 A	E 35	LA 15	D 19	LS 104	E 43	SFP 112	A 135
ISAS 50 B	E 36	LA 17	D 21	LS 105	E 43	SK 01	A 66
ISAS 50 C	E 36	LA 18	D 21	LS 106	E 43	SK 02	A 66
ISAS 60 A	E 35	LA 20	D 34	LS 107	E 43	SK 03	A 66
ISAS 60 B	E 36	LA 21	D 23	LSD 07520	E 42	SK 04	A 64
ISAS 60 C	E 36	LA 22	D 23	LSD 08910	E 42	SK 05	A 62
ISP 218	E 45	LA 25	D 33	LSD 08920	E 42	SK 06	A 79
ISP 220	E 45	LA 26	D 33	LSD 13510	E 42	SK 07	A 72
ISP 220 V	E 45	LA 27 K	D 13	LSD 13520	E 42	SK 08	A 73
ISP 247	E 45	LAGI 40	D 36	MD A 04	E 48	SK 09	A 59
К 0,55	A 128	LAGI 60	D 36	MD A 06	E 48	SK 11	A 79
К 1,1	A 128	LAGI 80	D 36	MD A 07	E 48	SK 12	A 123
КЗ́	A 126	LAGI 92	D 36	MD A 09	E 48	SK 12 SA 2 x 32	A 124
К 3 Т	A 126	LAGI 119	D 36	MD A 12	E 48	SK 12 SA 32	A 124
K 5	A 126	LA HL 1	D 27	MD B 07	E 48	SK 13	A 123
К 9	A 126	LA HL 2	D 27	MD B 10	E 48	SK 13 35 SA 220	A 124
К 15	A 127	LA HL 3	D 27	MD B 11	E 48	SK 13 35 SA 220 3,2	A 124
KAP 1 P	E 16	LAHL D 1	D 29	MD B 12	E 48	SK 13 35 SA 220 3,5	A 124
KAP 3 G	E 16	LAHLR 1 500	D 35	MD B 15	E 48	SK 14	A 67
КАР З К	E 16	LA HLV 1	D 28	MD C 13	E 48	SK 15	A 77
KAP 218	E 16	LA HLV 2	D 28	MD C 22	E 48	SK 16	A 72
KAP 218 O	E 16	LA HLV 3	D 28	MLW 32	E 47	SK 18	A 62
KAP 220 G	E 16	LA ICK 15 x 15 F 05	B 58	MLW 44	E 47	SK 19	A 63
KAP 220 K	E 16	LA ICK 15 x 15 F 12	B 58	MLW 51	E 47	SK 20	A 68
KAP 220 O	E 16	LA ICK 17 x 17 F 12	B 58	MRL 20	E 47	SK 21	A 70
KAP 247 O	E 16	LA ICK 17 x 17 F 12 A	B 58	MS 34 518	E 46	SK 23	A 79
KF 5/10	C 18	LA ICK 17 x 17 W 05	B 58	MS 53 3	E 46	SK 25	A 61
KF 5/15	C 18	LA ICK 17 x 17 W 12	B 58	MS 53 7	E 46	SK 28	A 63
KF 5/5	C 18	LA ICK 18 x 18 F 12	B 58	MS 53 25	E 46	SK 30	A 67
KK 1 3,96	C 17	LA ICK 18 x 18 W 12	B 58	MS 54 25	E 46	SK 31	A 72
KK 1 6,35	C 17	LA ICK 21 x 21 F 05	B 58	MS 56 15	E 46	SK 32	A 76
KK 1 12,7	C 17	LA ICK 21 x 21 F 12	B 58	MS 58 5	E 46	SK 33	A 42
KK 1 19,05	C 17	LA ICK 21 x 21 W 05	B 58	MS 58 7	E 46	SK 34	A 67
KK 32	C 19	LA ICK 21 x 21 W 12	B 58	MS 58 15	E 46	SK 36	A 66
KK 92 KK 562 GS	C 19 C 18	LA ICK PEN 2 K 12 LA ICK PEN 3 XE	B 60 B 60	MS 84 4 MS 183 7	E 46 E 46	SK 39 SK 40	A 67 A 82
KL 35 50	E 25	LA ICK PEN 3 AE	B 60	MS 183 7 MS 183 25	E 46	SK 40	A 62 A 49
KL 35 75	E 25	LA ICK PEN 4 F K	B 59	MS 183 25 MS 183 35	E 46	SK 44	A 49 A 90
KL 35 100	E 25	LA ICK PEN 8 F 12	B 59	MS 185 35 MS 184 7	E 46	SK 45	A 63
KL 35 K 40	E 25	LA ICK PEN 8 W 05	B 59	MS 184 25	E 46	SK 46	B 43
KL 35 K 50	E 25	LA ICK PEN 8 W 12	B 59	MS 184 35	E 46	SK 40 SK 47	A 49
KL 35 K 75	E 25	LA ICK PEN 16 K 12	B 59	MS 510 15	E 46	SK 48	A 73
KL 35 K 100	E 25	LA ICK PEN 16 W 12	B 59	MS 923 25	E 46	SK 49	A 51
KTE 1	A 129	LA ICK PEN 16 W 12 A	B 59	MS 3518 25	E 46	SK 50	A 37
KTE 2	A 129	LA ICK PEN 18 W 12	B 59	MS 3518 35	E 46	SK 51	A 61
KTE R	B 47	LA ICK PEN 38 W 12	B 59	MS 4016	E 46	SK 52	A 74
LA 1 01	D 5	LA ICK PRO 25 F 12	B 59	MSHV 90	E 28	SK 53	A 74
LA 1 02	D 5	LA LED 40 x 30	B 49	MST 3	E 44	SK 55	A 83
LA 1 03	D 5	LA LED 50 x 20	B 49	MST 220	E 44	SK 56	A 54
LA 1 04	D 5	LA LED 50 x 45	B 49	MSTS 3	E 44	SK 57	A 64
LA 1 05	D 5	LA LED 68	B 50	MSTS 220	E 44	SK 58	A 45
LA 1 06	D 5	LAM 1	D 9	MSVL 50	E 28	SK 59	A 60
LA 1 07	D 5	LAM 2	D 9	MSVL 60	E 28	SK 60	A 74
LA 1 08	D 5	LAM 3	D 10	MSVL 70	E 28	SK 61	A 82
LA 1 09	D 5	LAM 3 K	D 10	MSVL 85	E 28	SK 63	A 62
LA 1 10	D 5	LAM 4	D 11	MSVL 100	E 27	SK 64	A 70
LA 2 01	D 7	LAM 4 K	D 11	SFP 005	A 135	SK 65	A 70
LA 2 02	D 7	LAM 5	D 12	SFP 006	A 135	SK 66	A 55
LA 2 03	D 7	LAM 5 K	D 12	SFP 007	A 135	SK 67	A 69
LA 2 04	D 7	LAV6	D 16	SFP 016	A 135	SK 68	A 89
LA 2 05	D 7		D 16	SFP 028	A 135	SK 69	A 71
LA 2 06	D 7		D 16	SFP 029	A 135	SK 71	A 64
LA 2 07	D 7		D 18	SFP 037	A 135	SK 72	A 63
LA 2 08	D 7	LA V 10	D 18	SFP 046	A 135	SK 73	A 64


art. no.	page	art. no.	page	art. no.	page	art. no.	page
SK 74	A 71	SK 119	A 47	SK 185 37,5 STS TO 220	A 104	SK 447	A 26
SK 75 25	A 105	SK 120	A 45	SK 185 37,5 TO 220	A 104	SK 448	A 27
SK 75 25 STS TO 220	A 105	SK 121	A 42	SK 185 50 C TO 220	A 104	SK 448 20 1 x M3 L	A 111
SK 75 25 TO 220 SK 75 37,5	A 105 A 105	SK 122 SK 124	A 60 A 71	SK 185 50 STC TO 220 SK 185 50 STS TO 220	A 104 A 104	SK 448 40 2 x M3 L SK 448 60 3 x M3 L	A 111 A 111
SK 75 37,5 SK 75 37,5 STS TO 220	A 105	SK 124 SK 125	A 71 A 91	SK 185 50 515 10 220	A 104 A 104	SK 448 80 3 X M3 L SK 450	A 111 A 34
SK 75 37,5 TO 220	A 105	SK 125 SK 126 25	A 107	SK 185 50 10 220	A 76	SK 450 SK 451	A 34 A 91
SK 75 57,5 10 220 SK 75 50	A 105	SK 126 25 2 x M3	A 107	SK 189	A 70 A 32	SK 452	A 91
SK 75 50 SK 75 50 STS TO 220	A 105	SK 126 25 STS TO 220	A 107	SK 199	A 52	SK 452 20 1 x M3	A 96
SK 75 50 TO 220	A 105	SK 126 25 TO 220	A 107	SK 190	A 52	SK 452 20 2 x M3	A 96
SK 75 75	A 105	SK 126 37,5	A 107	SK 193	A 50	SK 452 40 2 x M3	A 96
SK 75 1000	A 105	SK 126 37,5 2 x M3	A 107	SK 194	A 81	SK 452 40 4 x M3	A 96
SK 76 25	A 105	SK 126 37,5 STS TO 220	A 107	SK 195	A 71	SK 452 60 3 x M3	A 96
SK 76 25 STS TO 220	A 105	SK 126 37,5 TO 220	A 107	SK 197	A 65	SK 452 60 6 x M3	A 96
SK 76 25 TO 220	A 105	SK 126 1000	A 107	SK 198	A 53	SK 452 80 4 x M3	A 96
SK 76 37,5	A 105	SK 128	A 91	SK 199	A 51	SK 452 80 8 x M3	A 96
SK 76 37,5 STS TO 220	A 105	SK 129 STC	A 103	SK 400	A 28	SK 452 100 5 x M3	A 96
SK 76 37,5 TO 220	A 105	SK 129 STIC		SK 400 20 1 x M3 L	A 111	SK 452 100 10 x M3	A 96
SK 76 50	A 105	SK 129 STCB		SK 400 40 2 x M3 L	A 111	SK 453	A 33
SK 76 50 STS TO 220	A 105	SK 129 STS	A 103	SK 400 60 3 x M3 L	A 111	SK 454	A 24
SK 76 50 TO 220	A 105	SK 129 STIS		SK 401	A 63	SK 454 20 1 x M3	A 96
SK 76 75	A 105	SK 129 STSB		SK 402	A 62	SK 454 20 1 x M3 L	A 111
SK 76 1000	A 105	SK 130	A 56	SK 403	A 64	SK 454 20 2 x M3	A 96
SK 78	A 61	SK 132	A 44	SK 404	A 65	SK 454 40 2 x M3	A 96
SK 79	A 73	SK 133	A 44	SK 405	A 47	SK 454 40 2 x M3 L	A 111
SK 80	A 74	SK 134	A 28	SK 406	A 38	SK 454 40 4 x M3	A 96
SK 81	A 41	SK 135	A 39	SK 407	A 39	SK 454 60 3 x M3	A 96
SK 82	A 75	SK 136	A 48	SK 408	A 40	SK 454 60 3 x M3 L	A 111
SK 83	A 79	SK 138	A 91	SK 409 STC	A 100	SK 454 60 6 x M3	A 96
SK 84	A 68	SK 139	A 53	SK 409 STIC		SK 454 80 4 x M3	A 96
SK 85	A 46	SK 140	A 77	SK 409 STCB		SK 454 80 8 x M3	A 96
SK 86	A 75	SK 144	A 82	SK 409 STS	A 100	SK 454 100 5 x M3	A 96
SK 88	A 73	SK 145	A 59	SK 409 STIS		SK 454 100 10 x M3	A 96
SK 89	A 77	SK 145 25 STC	A 106	SK 409 STSB		SK 455	A 33
SK 90	A 48	SK 145 25 STS TO 220	A 106	SK 410	A 44	SK 456	A 30
SK 91	A 52	SK 145 30 STC	A 106	SK 411	A 42	SK 456 20 1 x M3 L	A 111
SK 92	A 41	SK 145 37,5 STS TO 220	A 106	SK 412	A 47	SK 456 40 2 x M3 L	A 111
SK 93	A 56	SK 145 50 STC	A 106	SK 413	A 43	SK 456 60 3 x M3 L	A 111
SK 94 SK 95 15	A 49 A 108	SK 145 50 STS TO 220 SK 147	A 106	SK 414 SK 415	A 90 A 90	SK 458 SK 459 STC	D 30 A 101
SK 95 15 SK 95 15 SOT 32 S	A 108	SK 147 SK 148	A 74 A 68	SK 415	A 90 A 47	SK 459 STIC	ATUT
SK 95 15 STS SOT 32 S	A 108	SK 148	A 53	SK 417	A 47 A 46	SK 459 STCB	
SK 95 25	A 108	SK 150	A 61	SK 418	A 40	SK 459 STS	A 101
SK 95 25 1 x M2,5 1 x M3		SK 150 SK 153	A 83	SK 419	A 70	SK 459 STIS	ATUT
SK 95 25 2 x M3	A 108	SK 154	A 46	SK 420	A 31	SK 459 STSB	
SK 95 25 SOT 32	A 108	SK 155	A 45	SK 421	A 47	SK 459 25 2 x TO 220	A 102
SK 95 25 STS SOT 32	A 108	SK 156	A 36	SK 422	A 32	SK 459 25 M	A 102
SK 95 25 STS TO 220	A 108	SK 157	A 54	SK 423	A 32	SK 459 37,5 2 x TO 220	A 102
SK 95 25 TO 220	A 108	SK 158	A 58	SK 424	A 34	SK 459 37,5 M	A 102
SK 95 1000	A 108	SK 159	A 58	SK 425	A 34	SK 459 50 2 x TO 220	A 102
SK 96	A 91	SK 160	A 58	SK 426	A 36	SK 459 50 M	A 102
SK 97	A 62	SK 161	A 58	SK 427	A 36	SK 460 25	A 112
SK 98	A 65	SK 162	A 58	SK 429	A 37	SK 460 37,5	A 112
SK 99	A 37	SK 163	A 78	SK 431 1	A 124	SK 460 50	A 112
SK 100	A 38	SK 165	A 61	SK 431 2	A 124	SK 461	D 30
SK 101	A 54	SK 166	A 48	SK 431 3	A 124	SK 463	A 43
SK 102	A 50	SK 168	A 50	SK 432	A 82	SK 464	A 39
SK 104 LS	A 98	SK 172	A 81	SK 433	A 41	SK 466	A 43
SK 104 STC	A 97	SK 173	A 59	SK 434	A 35	SK 467	A 33
SK 104 STIC		SK 174	A 30	SK 435	A 81	SK 468	A 36
SK 104 STCB	A 07	SK 175	A 83	SK 436	A 37	SK 469	A 23
SK 104 STS	A 97	SK 176	A 78	SK 437 SK 437 STC	A 24	SK 469 STS	A 110
SK 104 STIS		SK 177	A 27		A 109	SK 470 SK 470 25 STS	A 22
SK 104 STSB SK 105	A 90	SK 178 SK 179	A 28 A 30	SK 437 STC 2 SK 437 STS	A 109 A 109	SK 470 25 STS SK 470 30 STS	A 110 A 110
SK 105	A 90 A 31	SK 179 SK 180	A 30	SK 437 STS 2	A 109 A 109	SK 470 35 STS	A 110
SK 107	A 60	SK 180	A 60	SK 438	A 52	SK 470 50 STS	A 110
SK 107 SK 108	A 80	SK 181 94 C 3 x TO 220	A 60	SK 439	A 52	SK 470 50 515	A 29
SK 100	A 80	SK 181 74 C 0 X 10 220	A 40	SK 440	D 30	SK 472	A 31
SK 110	A 80	SK 184	A 68	SK 441	D 30	SK 472	A 25
SK 111	A 81	SK 185	A 73	SK 442	A 42	SK 475	A 35
SK 112	A 89	SK 185 25 STC TO 220	A 104	SK 443	A 59	SK 476	A 24
SK 113	A 48	SK 185 25 STS TO 220	A 104	SK 444	A 38	SK 477	A 24
	A 48 A 123	SK 185 25 STS TO 220 SK 185 25 TO 220	A 104 A 104	SK 444 SK 445	A 38 A 34	SK 477 SK 478	A 24 A 23

art. no.	page	art. no.	page	art. no.	page	art. no.	page
SK 480	A 84	SK 547	A 31	SK 617	A 88	THFK 247	A 116
SK 481	A 85	SK 548	A 34	SK 618	B 42	THFM	A 116
SK 482	A 86	SK 549	A 29	SK 619	B 42	THFMG	A 116
SK 483	A 87	SK 550	A 27	SK 620	B 42	THFU 1	A 119
SK 484	A 110	SK 551	A 25	SK 621	A 56	THFU 2	A 119
SK 485	A 38	SK 552	A 23	SK DC 2 1 76 SA	A 114	THFU 3	A 120
SK 486	A 25	SK 553	A 44	SK DC 4 1 117 SA	A 113	THFU 4	A 120
SK 487	A 87	SK 554	A 26	SK DC 5 1 59 SA	A 114	THFU 5	A 120
SK 489	A 85	SK 555	A 51	SK DC 5 59 SA	A 114	THFU 6	A 121
SK 490	A 84	SK 556	A 77	SK DC 6 1 60 SA	A 113	THFU 7	A 121
SK 492	A 84	SK 557	A 50	SK DC 7 1 117 SA	A 114	UK 14 SA 220	A 123
SK 493	A 28	SK 558	A 23	SK DC 7 117 SA	A 114	UK 14 SA 220 3,2	A 123
SK 494	A 83	SK 559	A 25	SK DC 8 1 60 SA	A 113	UK 14 SA M3	A 123
SK 495	A 87	SK 560	A 26	SK DC 8 60 SA	A 113	US 58 4	E 46
SK 496	A 22	SK 561	A 26	SK DC 10 60 SA	A 113	US 512 4	E 46
SK 497	D 30	SK 562	A 29	SKK 56	C 19	WB 3	E 4
SK 498	D 30	SK 563	A 30	SKK 58	C 19	WB 3 P	E 4
SK 499	A 87	SK 564	A 30	SKK 510	C 19	WBT 30	E 4
SK 500	A 72	SK 565	A 22	SK LED 1	B 48	WBT 300	E 4
SK 501	A 54	SK 566	A 26	SK LED 2	B 48	WG 3	E 4
SK 502	A 49	SK 567	A 35	SK LED 3	B 48	WG 3 P	E 4
SK 503	A 46	SK 568	A 54	SK LED BOX 1	B 51	WGT 300	E 4
SK 504	A 45	SK 569	B 43	SMP 410 A	E 41	WK 3	E 4
SK 505	A 41	SK 570	B 44	SMP 410 B	E 41	WK 3 P	E 4
SK 505	A 40	SK 570 SK 571	B 44	SMP 410 D	E 41	WK 3/4	E 4
SK 507	A 40	SK 572	B 44	SMP 410 C	E 41	WKT 24	E 4
SK 509	A 29	SK 572	A 85	SMP 415 B	E 41	WKT 300	E 4
SK 510	A 46	SK 575	A 86	SMP 415 C	E 41	WL 0,55	A 128
SK 511	A 32	SK 575	A 84	SMP 515 A	E 41	WL 1.1	A 128
SK 512	A 84	SK 576	A 85	SMP 515 B	E 41	WLFG 9010 R 25	E 9
SK 512	A 31	SK 570 SK 577	B 43	SMP 515 C	E 41	WLFG 9010 R 50	E 9
SK 514	A 86	SK 578	B 43	STP 4	A 136	WLFG 9010 R 100	E 9
SK 515 05 10	A 94	SK 579	A 55	STP 5	A 136	WLFG 9015 R 25	E 9
SK 515 05 10 S	A 94	SK 580	A 51	SU 02	A 135	WLFG 9015 R 50	E 9
SK 515 05 23,5	A 94	SK 581	A 28	SU 03	A 135	WLFG 9015 R 100	E 9
SK 515 05 23,5 S 2	A 94	SK 582	A 25	SU 05	A 135	WLFG 9020 R 25	E 9
SK 515 05 37	A 94	SK 583	A 53	SU 09	A 135	WLFG 9020 R 50	E 9
SK 515 05 37 S 3	A 94	SK 584	B 44	SU 16	A 135	WLFG 9020 R 100	E 9
SK 515 10 S TO 220	A 94	SK 585	B 42	SU 27	A 135	WLFG \$ 900 K R 25	E 9
SK 515 10 TO 220	A 94	SK 586	A 22	SU 29	A 135	WLFG S 900 K R 50	E 9
SK 515 23,5 S 2 x TO 220	A 94	SK 587	A 29	SU 32	A 135	WLFG S 900 K R 100	E 9
SK 515 23,5 TO 220	A 94	SK 588	A 45	SVP 01	A 136	WLFT 88	E 8
SK 515 37 S 3 x TO 220	A 94	SK 589	A 86	SVP 04	A 136	WLFT 404 /	E 7
SK 515 37 TO 220	A 94	SK 590	B 46	SVP 10	A 136	WLFT 405/	
SK 516 15 S TO 218	A 94	SK 591	A 49	SVP 12	A 136	WLFT 414	
SK 516 15 TO 218	A 94	SK 592	B 45	SVP 13	A 136	WLFT 8943	Ε6
SK 516 33 S 2 x TO 218	A 94	SK 593	A 87	SWP 02	A 135	WLK 5	E 23
SK 517	A 93	SK 594	A 38	SWP 06	A 135	WLK 10	E 23
SK 518	A 93	SK 595	A 43	SWP 10	A 135	WLK 30	E 23
SK 519	A 48	SK 596	A 76	SWP 15	A 135	WLK 120	E 23
SK 520	A 50	SK 597	A 27	SWP 23	A 135	WLK DK 4	E 24
SK 521	A 24	SK 598	B 42	SWP 25	A 135	WLK DK 10	E 24
SK 522	A 23	SK 599	B 45	SWP 29	A 135	WLK DK 50	E 24
SK 523	A 55	SK 600 STC	A 99	SWP 36	A 135	WLK M 4	E 24
SK 524	A 52	SK 600 STIC		SWP 40	A 135	WLK M 50	E 24
SK 525 15	A 95	SK 600 STCB		SWP 55	A 135	WLK P	E 24
SK 525 15 ST	A 95	SK 600 STS	A 99	SWP 57	A 135	WLP 004	E 21
SK 525 20 ST	A 95	SK 600 STIS		TF 3 2	E 50	WLP 035	E 21
SK 525 25 ST	A 95	SK 600 STSB		THF 104	A 115	WLP 300 S	E 21
SK 525 30	A 95	SK 601	A 44	THF 129 TO 220	A 115	WLP 500	E 21
SK 525 30 ST	A 95	SK 602	B 43	THF 220	A 115	WLP 500 S	E 21
SK 526 30 ST	A 95	SK 603	D 31	THF 220 17	A 115	WLPF 05	E 21
SK 527	A 35	SK 604	D 31	THF 247	A 115	WLPF 10	E 21
SK 530	A 57	SK 605	D 31	THF 247 4	A 115	WLPF 20	E 21
SK 531	A 57	SK 606	D 31	THF 249	A 115	WLPF 50	E 21
SK 533	A 57	SK 607	D 31	THF 409 220 1	A 115	WLPF 300 S	E 21
SK 535	A 57	SK 608	D 31	THF 409 220 2	A 115	WLPK 3	E 22
SK 536	A 57	SK 609	A 92	THF 409 SOT 32	A 115	WLPK 5	E 22
SK 537	A 57	SK 610	A 92	THF 409 TO 220	A 115	WLPK 10	E 22
SK 538	A 57	SK 611	A 92	THF 600	A 115	WP 4030 100	A 125
SK 539	A 57	SK 612	A 39	THFA 1	A 117	WP 4030 100 3	A 125
SK 540	A 57	SK 613	A 43	THFA 2	A 117	WS 3	E 4
SK 544	A 76	SK 614	A 52	THFA 3	A 117	WS 3 M	E 4
SK 545	A 39	SK 615	B 45	THFA 4	A 117	WS 3 P	E 4
SK 546	A 40		A 22	THFK 220	A 116	WS 3/4	E 4
			-			-	

_	
art. no.	page
WSC-220	E 4
WSF 16	E 10
WSF 32	E 10
WSF 635	E 10
WSFS 635	E 10
WSI 220 210	E 5
WSI 220 225	E 5
WSI TO 3 PL	E 5
WSI TOP 3 235	E 5
WSI TOP 3 280	E 5
WSM-220	E 4
WST 30	E 4
WST 36	E 4
WST 85	E 4

Index

Active heatsinks for processors	B 58-61
Active heatsinks for processors Aluminium flat-, quadrangular-, angled-, U- & T-profiles	
Aluminium oxide wafers	E 17-18
Attachable heatsink	C 10-16
Cooling aggregates with axial fan	D 13-29
Cooling aggregates with radial fan	D 33-35
Die-cast heatsinks	A 125-128
Distance sleeves and spacers	E 32-40
Extruded heatsinks for DC/DC converter	A 113-114
Extruded heatsinks for lock-in retaining spring	A 84-88
Extruded heatsinks for PCB mounting	A 89-112
Fastening for mounting rail	E 25
Fin coolers	A 129
Finger shaped heatsinks	C 2-9
Fluid coolers	A 131-134
Guide rails	E 26-31
Heat conductive foam and gel foils	E 10-15
Heatsinks for BGAs	B 17-20
Heatsinks for DIL-IC, PLCC and SMD	B 52-55
Heatsinks for D PAK and others	C 21-22
Heatsinks for LEDs	B 35-51
Heatsinks for PGA	B 11-16
High-performance heatsinks	D 30-32
High thermoconducting graphite foils	E 9
Insulating caps and insolater sleeves	E 51-52
Insulating clamping parts for power transistors	E 45
Kapton insulator washers	E 16
Mica wafers	E 19
Miniature cooling aggregates	D 9-12
Mounting kits for insulation of power transistors	E 44
Mounting parts for heatsinks	E 49-50
Mounts	E 46-48
Passive heatsinks for processors	B 56-57
Pin heatsinks	B 21-34
Protection grid for fans	D 36
Retaining springs for transistors	A 115-122
Segment cooling aggregates	D 5-9
Small heatsinks	C 17-20
Standard extruded heatsinks	A 22-83
Thermal conductive foil one-sided adhesive	E 6
Thermally conductive adhesive	E 23-24
Thermally conductive foil both sides adhesive	E 7-8
Thermally conductive foil made of siliconelastomer	E 2-5
Thermal transfer compound and thermal interface film	
U-Extruded heatsinks	A 123-124
Vibration dampers and solder terminals	E 41-43

certified quality management

own tool-making department

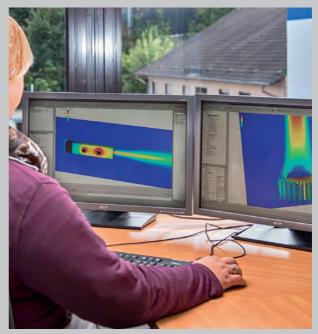
foresighted storekeeping

efficient special machines

precise punching department

up-to-date milling technology

foyer of the company



motivated employees

committed field service

innovative product development

Quality-Management System DIN EN ISO 9001

We are certified to DIN EN ISO 9001.

This process-directed quality management system implies a constant focus on satisfying the demands of customers, and this is the major objective of our company.

The implementation and further development of our quality management system demonstrably ensures

- guaranteed customer satisfaction and thus the success of
- our company, compliance with customers' requirements at all times through defined processes,
- early detection and prevention of errors, and
- checking of both process effectiveness and efficiency on a regular basis together with steady improvement.

It is through constant vigilance and the provision of evidence that we deliver flawless products, which fully comply with quality requirements, that we maintain our quality certification.

In order to secure lasting company success and to meet our customers' expectations now and in the future, we define measurable objectives within the framework of our quality system, which are regularly checked and developed. We are committed to constant measurement and improvement of our performance.

Our quality management system applies to all processes carried out by our company.

Certificate

Standard

Certificate Holder:

ISO 9001:2008

Certificate Registr. No. 09 100 4274

fischer elektronik 23

Fischer Elektronik GmbH & Co. KG Nottebohmstraße 28 D - 58511 Lüdenscheid

TÜV Rheinland Cert GmbH certifies:

Scope:

Validity:

Design/construction, manufacture, assembly and technical advice for heatsinks, sockets, connectors, mounting parts, cases, 19" assembly systems, computer accessories

An audit was performed, Report No. 4274. Proof has been furnished that the requirements according to ISO 9001:2008 are fulfilled. The due date for all future audits is 31-10 (dd.mm).

The certificate is valid from 2012-11-01 until 2015-10-31. First certification 1994

2012-10-23

www.tuv.com

TÜVRheinland® Precisely Right.

Certificate Registr. No. 01 104 8209

Certificate

ISO 14001:2004

fischer elektronik 🍽 🖻

TÜV Rheinland Cert GmbH certifies:

Fischer Elektronik GmbH & Co. KG Nottebohmstraße 28 · D - 58511 Lüdenscheid

Scope

Standard

Certificate Holder:

Design/construction, manufacture, assembly and technical adive for heatsinks, sockets, connectors, mounting parts, cases, 19" assembly systems, computer accessories

An audit was performed, Report No. 8209. Proof has bee furnished that the requirements according to ISO 14001:2004 are fulfilled

The due date for all future audits is 31-12 (dd.mm).

The certificate is valid from 2014-01-01 until 2016-12-31.

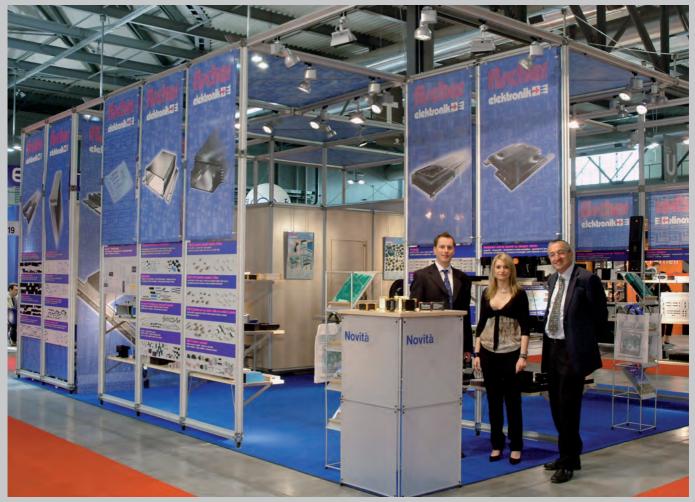
Validity:

2013-10-22

First certification 1998

www.tuv.com

Environmental Management System DIN EN ISO 14001


Fischer Elektronik considers protection of the environment and saving of natural resources entrepreneurial tasks of high priority.

Aware of this, Fischer Elektronik was the first German heatsink manufacturer to implement, in 1998, the environmental management system in accordance with DIN EN ISO 14001.

Our entrepreneurial responsibility comprises preventing accidents, safeguarding against occupational diseases, designing workplaces to suit human requirements, developing products which are safe to use, saving resources and avoiding environmental impact to the maximum extent possible.

We already consider environmental compatibility at the product and process development stage. The environmental impact of our activities is documented, assessed and in a continuous improvement process reduced to a minimum.

Implementation and consistent working on and with the environmental management system is a vital process and a constant challenge but finally it will always lead to better results.

BIAS, Milan

Electronica, Tel Aviv

IL

PCIM, Nuremberg

Electro Salon, Budapest

Elkom, Helsinki

FI

We exhibit

PARIS	WindEnergy Hamburg	professional
Paris F 16. 9 18. 9. 2014 www.enova-event.com hall 7.2	Hamburg D 23. 9 26. 9. 2014 www.windenergyhamburg.com hall B 7, stand 537	Bregenz A 30. 9 2. 10. 2014 www.led-professional.com
FORUM LED EUROPE	electronica	US AT LUX
Paris F 14. 10 15. 10. 2014 www.forumled.com stand B 10	Munich D 11. 11 14. 11. 2014 www.electronica.de hall B 1, stand 155 b	London GB 19. 11 20. 11. 2014 www.luxlive.co.uk hall A 32
embedded world Exhibition & Conference	PEIM	SA CE CE. SCANDINAVIAN ELECTRONICS EVENT
Nuremberg D 24. 2 26. 2. 2015 www.embedded-world.de stand 4 A - 311	Nuremberg D 20. 5 22. 5. 2015 www.pcim.de	Stockholm S 19. 4 21. 4. 2016 www.see-event.se

Explanations – references – printings

Imprinting of cardholders - Your and our time is expensive

An order for imprinting must state the font, the font size and the exact position of the imprint with dimensions, taking due account of countersunk holes etc.. When placing the first order, the company logo must be supplied as a vector file. If these conditions are not complied with, the order for imprinting may have to be turned down, or additional costs will have to be charged.

Compliance with the following criteria ensures smooth handling:

Adobe Illustrator (.ai/.eps) without half-tone images, fonts transformed into paths or supplied CorelDraw (.cdr) Adobe Acrobat (.pdf) QuarkXPress (.qxd) all fonts enclosed; half-tone images colour-separated (full-tone or scale colours) and InDesign (.indd) with correct resolution (300 dpi colour, black / white 600 dpi), no RGB

All this takes additional time and consequently incurs extra costs. The usability must be checked by our printing shop: screen formats (.jpg, .gif, .png) and paper copies, stickers and the like are not suitable for preparing printer's copies!

Copies that definitely cannot be used:

Imperfect copies such as fax copies / Microsoft Office files (.doc, .xls, .ppt) can only be used for information or for transmitting texts.

Please always add dimensional drawings (.dxf) to the parts to be imprinted! Please note as a general rule: Retouching work extending beyond the standard time will be invoiced additionally at cost price.

No part of this catalogue may be reproduced or distributed without prior written consent of Fischer Elektronik. All data contained in this catalogue, in texts, illustrations, documents and descriptions are subject to copyright and the provisions of DIN ISO 16016. All rights reserved. © Copyright Fischer Elektronik 1969 ... 2014

Downloaded from Arrow.com.

fisch@f elektronik→₹

Machined heatsinks Fluid heatsinks Lamella heatsinks Extruded heatsink with solder pins

Machined heatsinks

- several hundreds of extrusion profiles available
- future orientated stockkeeping of heatsink profiles in a fully automatic honeycomb warehouse
- precise milling treatments in highest quality
- effective heat spreading by means of heatsinks with grouted copper areas
- designs and modifications according to your demand

Lamella heatsinks

- compact lamella heatsinks with a big surface
- special design for forced convection
- thermotechnical optimal fitted lamellas
- precise milled flat semiconductor mounting surface
- single and double sided bottom plate made of aluminium or copper
- production according to customer specified demands

Fluid heatsinks

- fluid heatsinks for dissipation of big heat flow volumes
- compact design with internal lamella structure
- thick bottom plates for optimal heat dissipation
- I- and U streamed versions
- water connection or mounting flange for your special application
- customized treatments and solutions

Extruded heatsinks with solder pins

- solid pressed in soldering pins and threaded bolts for a direct pcb-mounting
- for horizontal and vertical mounting position
- standard drilling patterns and transistor retaining springs for various semi-conductive elements
- soldering pins with insulation for spacing help
- variations and modifications according to drawing

Figeher elektronik 23 Technical introduction

1. General points

In order to provide optimum performance of semi-conducting devices it is essential not to exceed the maximum junction temperature indicated by the manufacturer.

Δ

C

D

i,

C

A 2

Generally this maximum junction temperature can only be maintained without exceeding it by running the device concerned at lower power outputs.

At outputs approaching the maximum ratings semi-conductor devices have to be cooled by so called heatsinks, sometimes called dissipators.

The thermal performance of these heatsinks primarily depends on the thermal conductivity of the material from which they are made, size of surface area and mass.

In addition, surface colour, mounting position, temperature, ambient air velocity and mounting place all have varying influence on the final performance of the heatsink from one application to another.

However, a figure for thermal resistance can be experimentally determined in a reliable manner and used in the equations that follow in part 2.

There are no agreed international standard methods for testing electronic cooling systems or for the determination of the thermal resistance.

Therefore the diagrams and values given in our catalogue have been determined under practical operating conditions and therefore allow the most suitable heatsink from the range to be selected.

We expressly point out that all information and data is given to the best of our knowledge and belief. The user is solely responsible for the proper use of our products and he should check their suitability for the intended application.

Fischer Elektronik do not assume any warranty, whether expressed or implied, for the suitability, function or merchantibility of their products in specific or general applications, and they cannot be held liable for accidental or consequential damage due to non-observance of the above.

Furthermore Fischer Elektronik reserve the right to carry out technical modifications to their products at any time. All orders are subject to the General Sales Conditions of Fischer Elektronik.

2. The determination of thermal resistance

The thermal resistance is the parameter that is the most important in cooler selection, apart from mechanical considerations.

For determination of the thermal resistance the following equation applies:

Equation 1:
$$R_{th}K = \frac{\vartheta i - \vartheta u}{P} - (R_{th}G + R_{th}M) = \frac{\Delta \vartheta}{P} - R_{th}GM$$

In case of an application where the maximum junction temperature is not exceeded the temperature has to be verified. When the case temperature has been measured the use of the following equation will enable the maximum junction temperature to be calculated:

Equation 2: $\vartheta_i = \vartheta_G + P \times R_{thG}$

The meaning of the determinants:

- θ; = maximum junction temperature in °C of the device as indicated by manufacturer. As a »safety factor« this should be reduced by 20-30 °C.
- θ_u = ambient temperature in °C.
 The rise in temperature caused by radiant heat of the heatsink should be increased by a margin of 10-30 °C.
- $\Delta \vartheta$ = difference between maximum junction temperature and ambient temperature.
- $\vartheta_{\mathbf{G}}$ = measured temperature of device case (equation 2).
- P = maximum power rating of device in watts
- R_{th} = thermal resistance in K/W
- RthG = internal thermal resistance of semiconductor device (as indicated by manufacturer)

Heatsinks profile-overview Heatsink special design Special profiles Heatsink as visual & decor-parts	${\rightarrow}$	A 13 - 17 A 137 - 138 A 140 A 10	Heatsinks for SSR Die-cast heatsinks Assigment table Order example	\rightarrow \rightarrow	A 11 - 12 A 125 A 18 - 20 A 21
---	-----------------	---	---	-----------------------------	---

fischer elektronik => **Technical introduction**

= thermal resistance of mounting surface. For TO 3 cases the following approximate values apply: R_{th}M

- 1. dry, without insulatar
- 2. with thermal compound/without insulator
- 3. Aluminium oxide wafer with thermal compound

4. Mica wafer (0.05 mm thick) with thermal compound

0.40 - 0.90 K/W

= thermal resistance of heatsink, which can be directly taken from the diagrams RthK

RthGM = sum of RthG and RthM. For parallel connections of several transistors the value RthGM can be determined by the following equation:

Equation 3:
$$\frac{1}{RthGM ges.} = \frac{1}{RthG1 + RthM1} + \frac{1}{RthG2 + RthM2} + \dots + \frac{1}{RthGn + RthMn}$$

0.05 - 0.20 K/W

0.20 - 0.60 K/W

0.005 - 0.10 K/W

The result can be substituted into equation 1.

Κ = Kelvin, which is the standard measure of temperature differences, measured in $^{\circ}$ C, therefore 1 $^{\circ}$ C = 1 K.

K/W = Kelvin per watt, the unit of thermal resistance.

Calculation examples:

1. A TO 3 power transistor with 60 watt rating has a maximum junction temperature of 180 °C and an internal resistance of 0.6 K/W at an ambient of 40 °C with aluminium oxide wafers. What thermal resistance is required for the heatsink?

given:

P $R_{thG} = 0.6 \text{ K/W}$ 60 W = 180 °C - 20 °C =160 °C (for safety margin) $R_{thM} = 0.4 \text{ K/W}$ (average value) θi $\vartheta_{\textbf{U}}$ = 40 °C

find: RthK using equation 1

$$R_{\text{th}K} = \frac{\vartheta_{1} - \vartheta_{U}}{P} - (R_{\text{th}G} + R_{\text{th}M}) = \frac{160 \text{ °C} - 40 \text{ °C}}{60 \text{ W}} - (0.6 \text{ K/W} + 0.4 \text{ K/W}) = \frac{1.0 \text{ K/W}}{1.0 \text{ K/W}}$$

2. Same conditions as above but for three devices with equally distributed power ratings.

solution use equation 1 and equation 3

$$\frac{1}{\text{RthGM ges.}} = \frac{1}{0.6 + 0.4 \text{ K/W}} + \frac{1}{0.6 + 0.4 \text{ K/W}} + \frac{1}{0.6 + 0.4 \text{ K/W}} = \frac{3}{1} \text{ W/K}$$

RthGM ges. = $\frac{1}{3}$ K/W = $\underline{0.33 \text{ K/W}}$

substitute into Equation 1 gives:

$$R_{\text{thK}} = \frac{160 \text{ °C} - 40 \text{ °C}}{60 \text{ W}} - 0.33 \text{ K/W} = \frac{1.67 \text{ K/W}}{1.67 \text{ K/W}}$$

With these values determined, the tabulation on page A 13 - 17 can be used to give a choice of possible heatsink profiles. Then by examination of the drawings and curves the final choice can be made.

3. A transistor with power rating of 50 W and internal thermal resistance of 0.5 K/W has a case temperature of 40 °C. What is the actual value of junction temperature?

given:


$$P = 50 W$$
 $R_{thG} = 0.5 K/W$ $\vartheta_G = 40 °C$

find: ϑ_i using equation 2

 $\vartheta_i = 40 \ ^\circ C + (50 \ W \bullet 0.5 \ K/W) = 65 \ ^\circ C$

Thermal resistances of any profiles with forced convection

R _{thKf} = th R _{thK} = th	• RthK nermal resistance with forced convection nermal resistance with natural convection actor of proportion
---	--

3	Standard aluminium profiles Extruded heatsinks Lamella heatsinks Fluid coolers	\rightarrow \rightarrow	A 135 - 136 A 22 - 83 A 129 - 130 A 131 - 133	Thermal conductive material Hole pattern Drilling pattern for SSR Technical introduction	\rightarrow \rightarrow	E 2 - 24 A 21 A 12 A 2 - 8
---	---	-----------------------------	--	---	-----------------------------	-------------------------------------

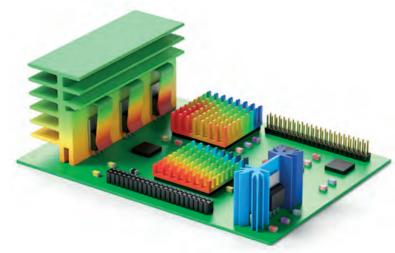
Downloaded from Arrow.com.

Α (

D

Technical introduction

Computer based thermal simulation for optimal cooling concepts


Performance, service life and reliability of electronic semiconductor devices are significantly determined by the thermal load to which the devices are exposed. An exceeding of the maximum operating temperature leads to malfunctions. An exceeding of the permissible junction temperature leads to a destruction of the semiconductor. To make it worse there is an advancing trend in the semiconductor industry for continuous increasing integration- and power densities of electronic devices. For the solution of thermal problems the first question is which kind of heat dissipation has to be considered. For this there are different processes available: by means of free convection (passive) with different heatsink solutions, by means of forced convection (active with help of fans, cooling aggregates) or by means of fluid media (fluid cooling).

However, electronic devices and systems have many different boundary and installation conditions. Therefore the choice of the optimum thermal management is often difficult. There are surely possibilities to find the right heat dissipation concept by using the thermal resistance for calculations or by testing and verifying prototypes directly in the application, but nowadays customer specified mechanical adjustments are requested and demanded more than ever. Small mechanical post-machinings, such as additional integrated threads or drilling can be considered in the calculation with safety reserves in the temperature of the thermal resistance, but extensive modifications demand a repeated inspection of the thermal circumstances.

To facilitate the determination of passive heat dissipation concepts Fischer Elektronik offers a computer based thermal simulation as a kind of service.

Considered factors in the thermal simulation

With help of the computer based thermal simulation the necessary characteristics of the cooling concept can be determined exactly. Based on physical concepts such as mass, energy and impulse the software especially considers the thermal requirements for free or forced convection. Simultaneously the system is aligned to thermal dissipation by means of fluid. Moreover the thermal simulation calculates physical effects such as thermal radiation and turbulences. The emission factor of the different surfaces also plays its role. As a result the simulation software delivers a precise cooling solution for the application and is a big help for the decision-making and interpretation of the electronic design.

Advantages of a computer based simulation

The computer based thermal simulation is already used for the prototype development. Herewith the development cycles of heat dissipation concepts is reduced considerably. Unsuitable concepts can be discarded quickly and without big costs of material. A lot of features and options of the simulation system also reduce the temporary and apparatuses efforts compared to a conventional simulation in the measurement chamber.

We will be happy to advise you in detail about the theme thermal simulation.

Heatsinks profile-overview	\rightarrow	A 13 - 17
Heatsink special design		A 137 - 138
Special profiles	\rightarrow	A 140
Heatsink as visual & decor-parts	\rightarrow	A 10

Heatsinks for SSR Die-cast heatsinks Assigment table Order example $\begin{array}{r} \rightarrow \quad A \ 11 \ - \ 12 \\ \rightarrow \quad A \ 125 \\ \rightarrow \quad A \ 18 \ - \ 20 \\ \rightarrow \quad A \ 21 \end{array}$

A 4

N

C

Fischer elektronik 23 Technical introduction

Remarks:

1. The values indicated in the diagrams apply only for heatsinks with black anodised surface, mounted vertically and natural convection.

Correction factors: natural surface: +10 to 15 % for horizontal mounting: +15 to 20 %

2. Heatsink profiles are extruded to European standard DIN EN 12020 (former DIN 17615). For profiles exceeding a circumscribed circle of 350 mm, the tolerances to DIN EN 755 (former DIN 1748) apply.

Important note:

Manufacturers of certain electronic components, especially modules with a large surface area, IGBT etc., specify installation surfaces for heatsinks etc. with an flatness, which is beyond standard tolerances. Such perfect flatness can only be achieved by milling the installation surface. Furthermore, it should be noted that threaded wire inserts may be required in order to reach higher tightening torques in aluminium (e.g. Heli-Coil or similar.). Please observe the semiconductor manufacturers' information.

- 3. The mentioned heatsink profiles in our catalogue contain so called extrusion marks between the fins for a profile identification. To avoid misuse the operator has to check the size and position for the mechanical treatment or placement of the components.
- 4. Profile extruded threaded channels are no threads conforming to standards, as they have no thread pitch. The thread pitch is imitated by staggered webs (ribs). The customer is responsible for appropriate use.
- 5. Machining of our extruded and non extruded profiles conforms to requirements of DIN ISO 2768 m unless otherwise stated. For all ICK S types DIN ISO 2768c is valid.
- 6. The lengths of extruded profiles []↔] and the pin layouts [] indicate only the standard range. We offer every profile cut to customer's exact length and machining requirement made to drawing or sample. We bore, countersink, mill, saw, grind and cut threads into your heat sink to meet your specific requirements. With our modern machine tools including CNC machining centres, multispindled drills (up to 26 drillings/threads at the same time) and digital milling and stamping tools plus our own "in house" tool room we are able to manufacture competetively priced prototypes as well as batch and mass produced parts with short lead times.
- 7. The standard material of our heatsinks is warm age-hardened aluminium alloy according to EN AW 6060 T66 (former AlMgSi05 – F22 acc. to DIN 1748). Our standard surface treatments are raw degreased aluminium (Al) and black anodised (SA). On request, we anodise clear natural (ME) or decorative in any colour that is technically possible.
- 8. If you cannot find a suitable profile within our range of approx. 400 profiles, 13 small heatsinks and 50 finger shaped heatsinks, we can design and produce to your requirements. Please contact us at the start of your next project so that we can work together, either directly or through our representatives. Remember that we have the ability to find the solution for "your" cooling problem.

9. Note on tolerances

All dimensions given in this cataloque for products, items and machined parts are acc. to DIN ISO 2768 m if not otherwise stated. Not included are items like extruded profiles, diecasts, handles, vibration dumpers etc. for which different standards apply.

Update - August 2014

The information given in this catalogue were established and examined carefully.

Nevertheless, mistakes or printing errors, and especially technical modifications and updating and improvement of our products, cannot be excluded. All trade marks are recognised even if they are not specifically identified or mentioned. No identification does not imply that a product or trademark is not registered. No part of this catalogue may be reproduced or distributed without prior written consent of Fischer Elektronik. All data contained in this catalogue, in texts, illustrations, documents and descriptions are subject to copyright and the provisions of DIN ISO 16016. All rights reserved.

© Copyright Fischer Elektronik 1969 ... 2014

A 5

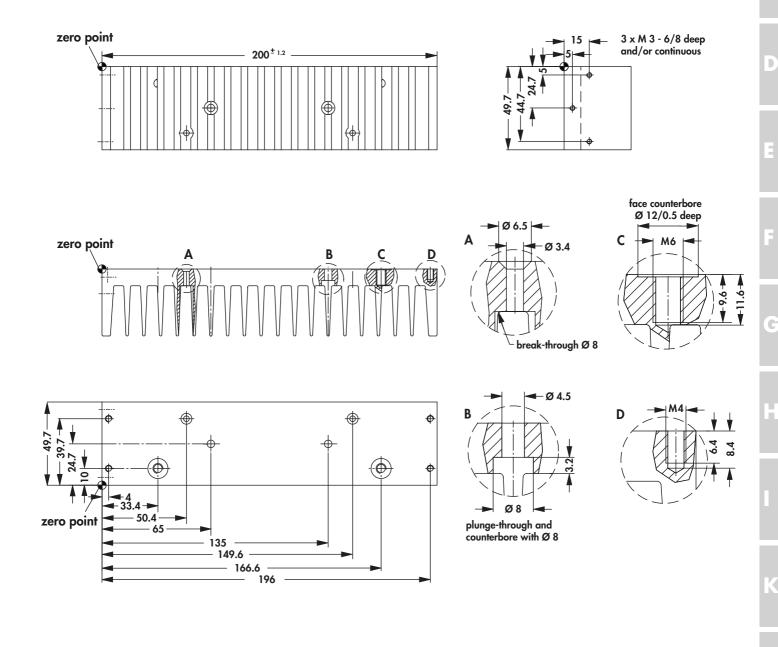
Standard aluminium profiles Extruded heatsinks Lamella heatsinks Fluid coolers

Thermal conductive material Hole pattern Drilling pattern for SSR Technical introduction $\begin{array}{rrr} \rightarrow & E & 2 - 24 \\ \rightarrow & A & 21 \\ \rightarrow & A & 12 \\ \rightarrow & A & 2 - 8 \end{array}$

С

D

E


G

Technical introduction

General information

Blind holes are produced after anodising. Through holes are produced before anodising. With completely visual parts, additional painting is recommended. The sections are extruded according to DIN EN 12020. For sections that exceed a circumscribed circle of 300 mm, DIN EN 755 apply. The machining tolerances are specified according to DIN ISO 2768 m.

Visual parts: Please indicate at which place clamp points are allowed! We recommend e.g. supplementary laquering.

Heatsinks profile-overview \rightarrow A 13 - 17Heatsinks for SSR \rightarrow A 11 - 12Heatsink special design \rightarrow A 137 - 138Die-cast heatsinks \rightarrow A 125Special profiles \rightarrow A 140Assignent table \rightarrow A 18 - 20Heatsink as visual & decor-parts \rightarrow A 10Order example \rightarrow A 21
--

Δ

Figeher elektronik 23 Technical introduction

Information for dimensioning, shown on SK 47 general:

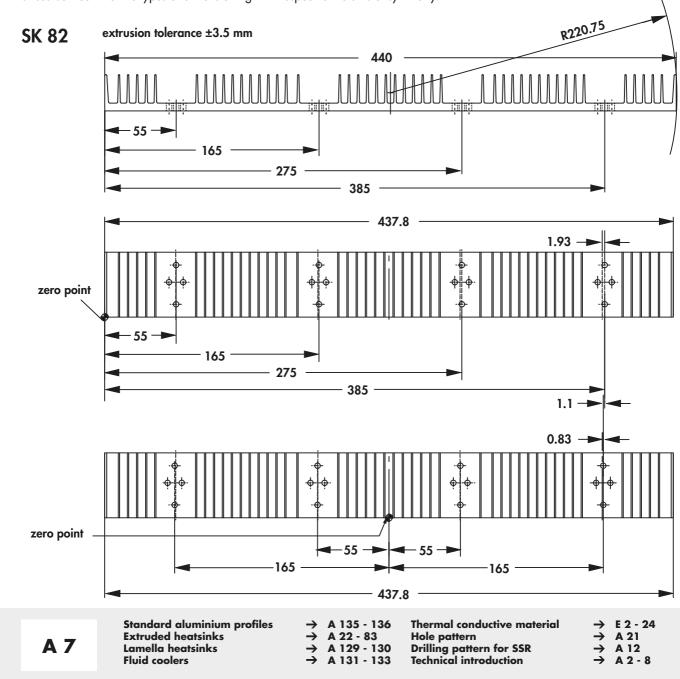
The deflection can be up to 0.8 mm concave, 0.2 mm convex. If a certain flatness of the bottom surface is required the bottom thickness can be decreased by a maximum of approx. 0.8 mm by means of face-milling. This situation must be taken into consideration with the bore hole depths for blind holes.

Counterbores and bore hole diameters are to be produced according to DIN 74, if not explicitly stated otherwise. The depth of thread should be calculated as follows.

Example M 5:

thread: <M> 5 x 1.6 mm = 8 mm

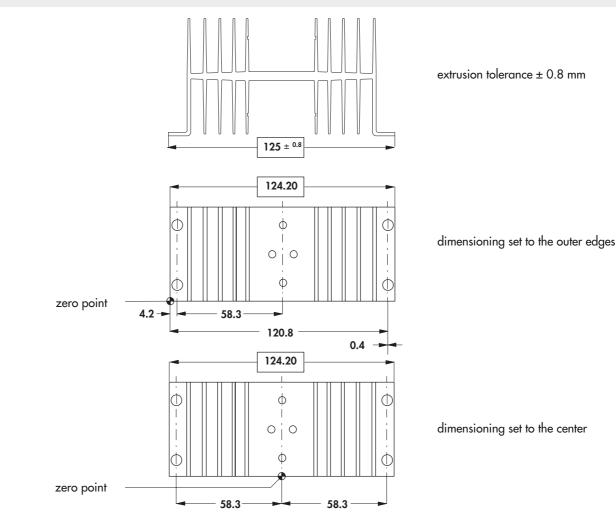
core bore: 8 mm + 2 mm = 10 mm


Examples:

- cutout A: Through-hole according to DIN 74 A m 3, counterbore bottom side, undercut of the fins.
- cutout B: Through hole with break-through of the fins according to DIN 74 H m 4, counterbore on fin side.
- cutout C: Thread M 6. Depth of thread 1.6 x 6 mm = 9.6 mm, bore depth 9.6 mm + 2 mm = 11.6 mm.
- Bore hole on fin base is plunged through. Face counterbore dia. 12 x 0.5 on bottom side. **cutout D:** Blind thread M 4. Depth of thread 1.6 x 4 mm = 6.4 mm, bore depth 6.4 mm + 2 mm = 8.4 mm.

Extrusion tolerances – production tolerances

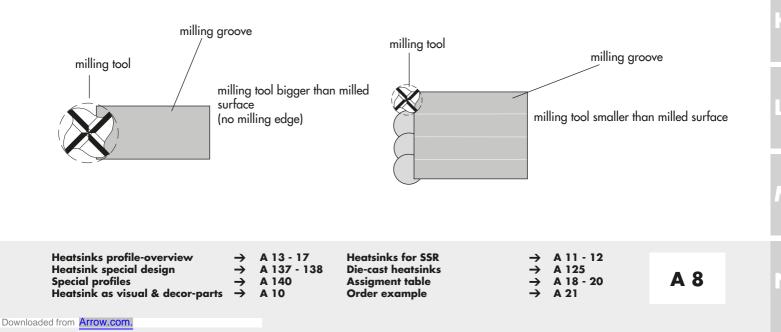
There is often the problem, that the production tolerances cannot be adhered to, due to the extrusion tolerances. The two examples show how the production tolerances can be cut in half by means of suitable dimensioning (here: extension of the zero point from the outer edge to the center of the section).


When taking unfavourable extrusion tolerances into consideration a difference of 1.1 mm arises between the two types of dimensioning with respect to the axis of symmetry.

Downloaded from Arrow.com.

Technical introduction

SK 34


D

C

When taking unfavourable extrusion tolerances into consideration, a difference of 0.4 mm arises between the two types of dimensioning with respect to the axis of symmetry.

Milling

If, when milling heatsinks, cooling aggregates, etc., the milling tool diameter is smaller than the area being milled for production reasons, so called "milling grooves" with steps or edges are produced (see sketch). Even if the roughness depth value for the surface is observed, it is a good idea to specify the area of the component in which no milling edges are allowed.

fisch@r elektronik→3

Precision machining and highly decorative surfaces

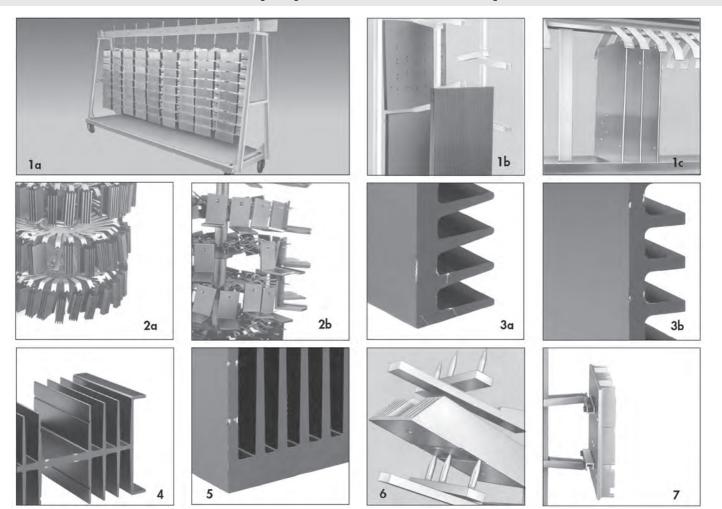
Decorative aluminium milled parts

- high quality, very precise milled, decorative aluminium parts
- exact radii and sharp-edged cutouts
- precision ground surfaces
- natural colour and black anodized

Chromium plating and gold plating

- chromium plating and gold plating of front panels, extruded profiles and construction parts
- qualitative constant and reproducible, high quality surfaces
- various gloss levels by means of different polishing processes
- processing of brass, aluminium and steel

Surface refinements


- corrosion resistant and decorative anodize layers
- lacquerings and durable powder coatings in all current RAL colours
- anti-glare surfaces, Nextel®-Suide Coating
- electrically conductive surfaces, chromate VI free
- prevention of clamp marks by means of special contacting systems

Development and construction

- compentent partner with experience of more than 40 year
- Innovative product development, product-specific support by means of application engineers
- design assistance, feasibility analyses and product optimizations
- construction support and preparation of drawings

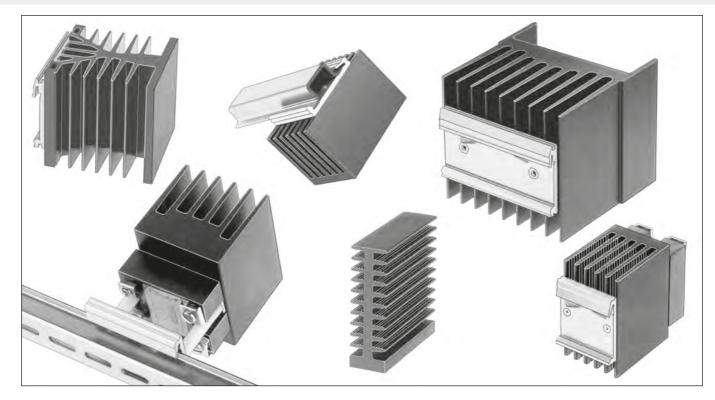
Heatsinks for decorative purposes and as visual parts

Anodising (also known as ELOXAL: **EL**ectrically **OX**idised **AL**uminium) is used in many cases for decorative surface protection of aluminium. In this process, the aluminium parts to be treated are connected to the positive pole of a direct-current source (anode) in a suitable electrolyte where aluminium, in so doing, forms the negative pole (cathode). The flowing direct current now causes a migration of oxygencontaining ions, with electrically negative charge, to the anode in order to deposit the oxygen. At this point, the aluminium reacts with this oxygen, forming aluminium oxide. A non-porous, electrically insulating, abrasion free, oxide barrier, or "eloxallayer", then develops. The development and therefore thickness of this layer can be controlled by the amount of current flow.

For process handling, secure transportation and electrical connection, the parts to be anodised must be placed on "racks" (figure 1). As excellent electrical contact is necessary and the parts being processed must be mounted on the carrying racks in a totally secure manner a high clamping force is required especially for those large and heavy heatsinks (figure 2). This will mean that "clamp marks" are visible. These are mere bare points in the case of small and light weight heatsinks with black anodising (figure 3) but for heavy parts the clamping pressures and current can cause deformation of the surface (figure 4). Any such deformations on large heatsinks is unavoidable and varies with each part (figure 5).

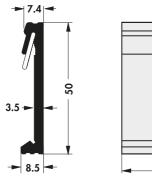
If heat sinks are used as visual parts, in other words parts whose surface must be blemish-free in appearance, it is suggested that the customer will define specific areas which should have no clamp marks. If, for technical production reasons, it is not possible to place clamps on the remaining points then consideration should be either given to the construction of separate specialpurpose frames which will allow processing (figure 6). Existing or additional threaded holes may possibly also be used for screwing on fixing angles, upon which the clamps may then be placed (figure 7). Furthermore, there is always the possibility to remove the clamp marks by hand finishing, although some slight indentation may still be visible. Alternatively, instead of using the anodising process there are various paint finishes available.

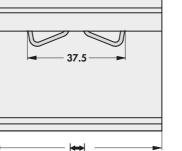
With visual parts and mouldings, both discussion of all technical details and determination of the desired design in cooperation with the manufacturer - even at the initial enquiry stage - are imperative for the smooth completion of orders to the satisfaction of the customer.

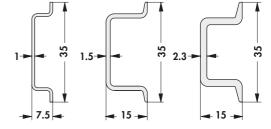

Our experts are at your disposal for all technical advice.

Standard aluminium profiles Technical introduction Extruded heatsinks Assigment table $\begin{array}{r} \rightarrow \quad A \ 135 - 136 \\ \rightarrow \quad A \ 2 - 8 \\ \rightarrow \quad A \ 22 - 83 \\ \rightarrow \quad A \ 18 - 20 \end{array}$

Drilling pattern for SSR Die-cast heatsinks High capacity heatsinks Heatsinks for PCB




Fischer elektronik 23 Heatsinks for solid state relays



universal clip fastening, suitable for all 35 mm mounting rails
 according to DIN EN 50 022, rail thickness from 1 to 2.3 mm → E 25

- fast and simple asssembly of heatsinks by means of snapping them onto the mounting rail
- secure hold due to a stable extruded profile with integral stainless steel spring
- special lengths (≥40 mm) and drillings on request

Examples of mounting rail versions suitable for KL 35

surface:

finish clear anodised

Α	1	1	

Downloaded from Arrow.com.

Distance sleeves	→	E 32 - 39
Fastening for mounting rail	→	E 25
Guide rails for PCBs	→	E 26 - 30
Mounting material f. semiconduct.	→	E 44 - 48

Spacers Mica wafers Aluminium oxide wafers Technical introduction

 $\begin{array}{c} \rightarrow \quad E \ 40 \\ \rightarrow \quad E \ 19 \\ \rightarrow \quad E \ 17 \ - \ 18 \\ \rightarrow \quad A \ 2 \ - \ 8 \end{array}$

C

D

C

Heatsinks for solid state relays

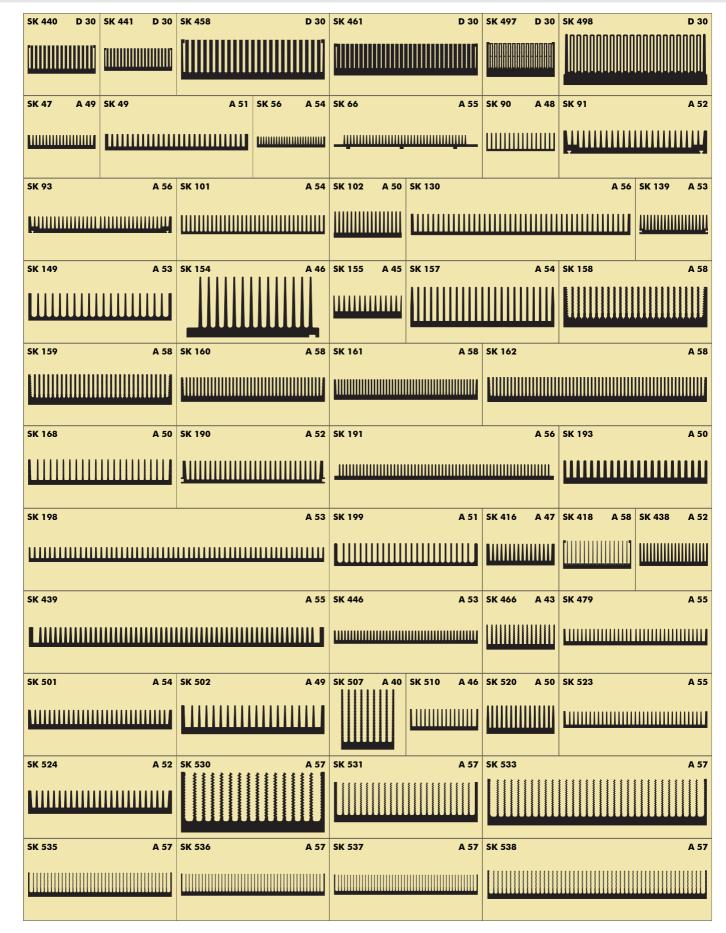
perforations	with	KL 35	without KL 35
 drilling pattern rotated by 90° as well as further drilling patterns upon request 	 fixing of the SSR by means of screws with the help of insert nuts in the heatsink 	 fixing of the SSR by means of screws with the help of tapped holes in the heatsink 	 fixing of the SSR by means of screws with the help of tapped holes in the heatsink
	art. no.	art. no.	art. no.
SSR 1 \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	SK 172 75 KL SSR 1	SK 89 75 KL SSR 1 SK 89 100 KL SSR 1 SK 111 75 KL SSR 1 SK 434 75 KL SRR 1 SK 453 75 KL SRR 1 SK 467 75 KL SRR 1 SK 507 75 KL SSR 1	SK 04 75 SSR 1 SK 33 75 SSR 1 SK 453 75 SSR 1 SK 455 75 SSR 1 SK 467 75 SRR 1 SK 507 75 SRR 1
SSR 2		SK 89 100 KL SSR 2 SK 89 150 KL SSR 2 SK 176 100 KL SSR 2 SK 176 150 KL SSR 2 SK 194 75 KL SSR 2 SK 507 100 KL SSR 2	SK 04 150 SSR 2 SK 33 75 SSR 2 SK 507 100 SSR 2 SK 507 150 SSR 2
SSR 3	SK 187 75 KL SSR 3	SK 111 75 KL SSR 3	SK 48 50 SSR 3
SSR 4	SK 172 150 KL SSR 4	SK 455 100 KL SSR 4	SK 455 100 SSR 4 SK 467 100 SSR 4

Distance sleeves \rightarrow	E 32 - 39
Fastening for mounting rail \rightarrow	E 25
Guide rails for PCBs →	E 26 - 30
Mounting material for semiconduct \rightarrow	E 44 - 48

Spacers Mica wafers Aluminium oxide wafers Mounting parts for heatsinks $\begin{array}{r} \rightarrow \quad E \ 40 \\ \rightarrow \quad E \ 19 \\ \rightarrow \quad E \ 17 \ - \ 18 \\ \rightarrow \quad A \ 2 \ - \ 8 \end{array}$

A 12

Downloaded from Arrow.com.


A

C

D

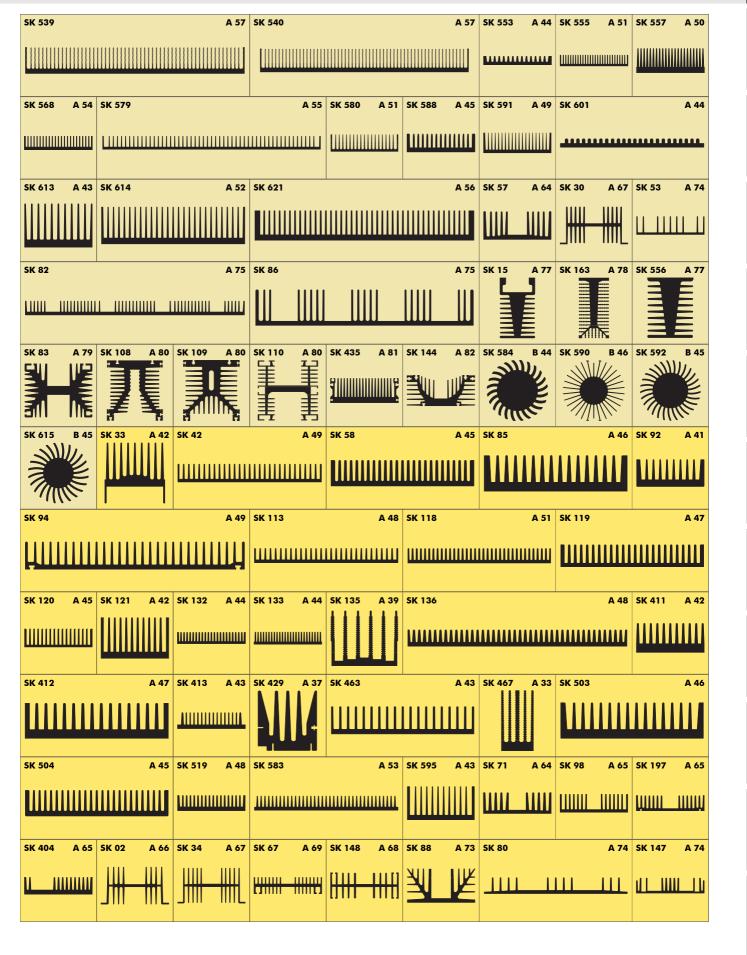
G

Heatsink-chart

A 13

Downloaded from Arrow.com.

N


P

D

2

ŝ

Heatsink-chart

< 1 K/W

2,5-3 K/W

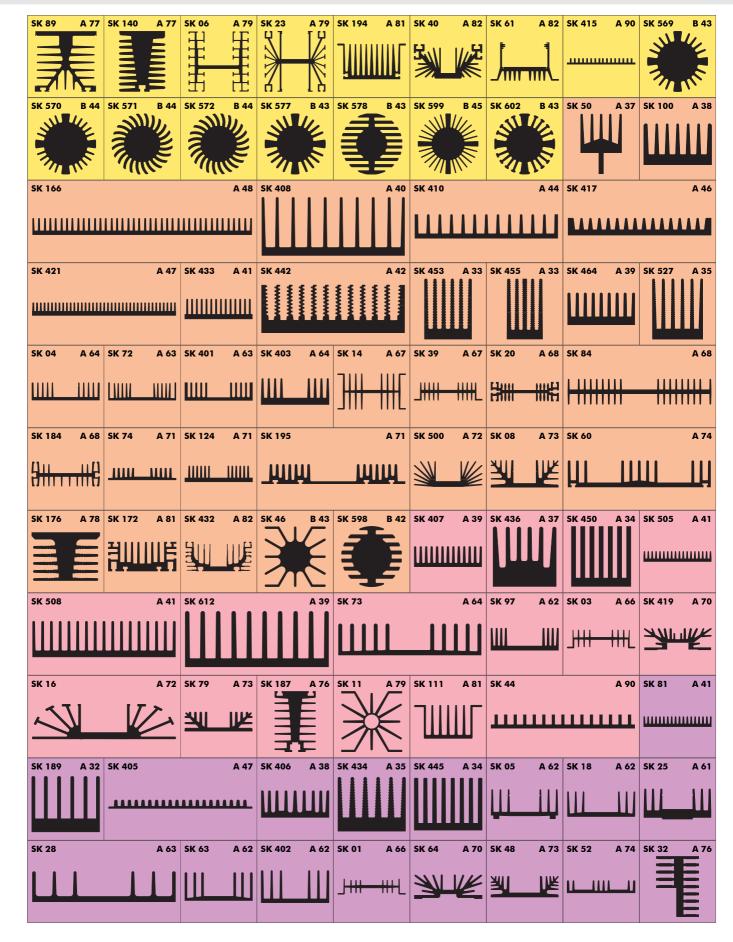
1-1.5 K/W

3-4 K/W

1.5-2 K/W

4-5 K/W

2-2.5 K/W


> 5 K/W

Δ

-

ŝ

Heatsink-chart

A 15

Heatsink-chart classified in categories of thermal resistance at 75 mm length

Downloaded from Arrow.com.

B

C

D

Ε

ŝ

C

ł

Ν

Heatsink-chart

SK 544 A 76	SK 596 A 76	SK 175 A 83	SK 105 A 90	SK 484	A 110	SK 487 A 87	SK 499 A 87	SK 514 A 86
						1	htth	E
SK 593 A 87		SK 99 A 37		SK 134 A 28	SK 182 A 40	SK 424 A 34	SK 425 A 34	
	SK 545		SK 546			SK 594	A 38	SK 19 A 63
SK 45	A 63	SK 51 A 61	SK 165 A 61	SK 181 A 60	SK 36 A 66	SK 21	A 70	SK 65 A 70
шп				<i>7</i> ///// П	_₩₩L			
SK 69	A 71	SK 07 A 72	SK 55 A 83	SK 68 A 89	SK 112 A 89	SK 128 A 91	SK 414	A 90
			۳ ـ ۴	illli			ш	шш
SK 481 A 85	SK 482 A 86	SK 483 A 87	SK 489 A 85	SK 495 A 87	SK 517 A 93	SK 518 A 93	SK 585 B 42	SK 589 A 86
SK 610 A 92	SK 618 B 42	SK 619 B 42	SK 620 B 42	SK 156 A 36			SK 180 A 36	SK 422 A 32
SK 444 A 38			SK 485 A 38	SK 566 A 26	SK 78 A 61		SK 122 A 60	SK 150 A 61
SK 173 A 59	SK 185 A 73	LA LED 68 B 50	5K 96 A 91	5K 138 A 91	SK 451 A 91	SK 490 A 84	SK 573 A 85	SK 574 A 86
	SK 611 A 92	SK LED 2 B 48	SK LED 3 B 48	5K 177 A 27	SK 178 A 28	SK 400 A 28	SK 420 A 31	SK 423 A 32
SK 427 A 36	SK 437 A 24	SK 447 A 26	SK 448 A 27	SK 452	A 27	SK 454 A 24	SK 456 A 30	SK 469 A 23

1,5-2 K/W

4-5 K/W

2-2,5 K/W

> 5 K/W

Downloaded from Arrow.com.

< 1 K/W

1-1,5 K/W

4

C

D

E

G

ŀ

A 16

Heatsink-chart

SK 470	A 22	SK 471	A 29	SK 473	A 25	SK 476	A 24	SK 477	A 24	SK 478	A 23	SK 486	A 25	SK 493	A 28	SK 496	A 22
			ш		ш	ш	ш	ш	ш	L	L					L	
SK 509	A 29	SK 511	A 32	SK 513	A 31	SK 521	A 24	SK 522	A 23	SK 547	A 31	SK 548	A 34	SK 549	A 29	SK 550	A 27
шш	ш		ш	шш	ш	Ш		μ	Щ	шш		шшш		шш	ш	ш	Ш
SK 551	A 25	SK 552	A 23	SK 554	A 26	SK 558	A 23	SK 559	A 25	SK 560	A 26	SK 561	A 26	SK 562	A 29	SK 563	A 30
Ш	Ш			Ш	Ш			Ш	Ш	Ш	Ш	ш	ш	ШШ	Ш		шш
SK 564	A 30	SK 565	A 22	SK 581	A 28	SK 582	A 25	SK 586	A 22	SK 587	A 29	SK 597	A 27	SK 616	A 22	SK 09	A 59
	шш				ш		Ш			шш	ш	اللار				Ш	
SK 59	A 60	SK 145	A 59	SK 443	A 59	SK 31		SK 153	A 83	SK 494	A 83	іск в			B 52		в 52
SFP	A 135	SK 12	A 123	SK 13	A 123	SK 75	A 105	SK 76	A 105	SK 95	A 108	SK 115	A 123	SK 125	A 91	SK 126	A 107
SK 431	A 124	SK 480	A 84	SK 492	A 84	SK 512	A 84	SK 515	A 94	SK 515 0	5 A 94	SK 516	A 94	SK 575	A 84	SK 609	A 92
SK LED 1	B 48	STP	A 136	SU	A 135	SVP	A 136	SWP	A 135	UK 14 S	۹		A 123				
ॠ	₩																

D

Κ

Μ

Ν

H

A 17

Assignment table of transistor heatsinks

	TO 3	TO 66	SOT 9	TO 220	SOT 32
	S C C C C C C C C C C C C C C C C C C C			A	
extruded profiles	SK 01 SK 02 SK 03 SK 04 SK 05 SK 07 SK 08 SK 14 SK 16 SK 18 SK 19 SK 20 SK 21 SK 28 SK 30 SK 31 SK 34 SK 36 SK 39 SK 45 SK 48 SK 52 SK 53 SK 55 SK 60 SK 63 SK 67 SK 69 SK 71 SK 72 SK 73 SK 74 SK 78 SK 79 SK 80 SK 84 SK 79 SK 80 SK 84 SK 77 SK 122 SK 124 SK 147 SK 148 SK 150 SK 165 SK 197 SK 401 SK 402 SK 404	SK 01 SK 02 SK 03 SK 04 SK 05 SK 07 SK 08 SK 14 SK 16 SK 18 SK 19 SK 20 SK 21 SK 28 SK 30 SK 31 SK 34 SK 36 SK 39 SK 45 SK 48 SK 52 SK 53 SK 55 SK 60 SK 63 SK 69 SK 71 SK 72 SK 73 SK 74 SK 78 SK 79 SK 80 SK 122 SK 147 SK 148 SK 150 SK 165 SK 197 SK 401 SK 402 SK 404	SK 01 SK 02 SK 03 SK 04 SK 05 SK 07 SK 08 SK 14 SK 16 SK 18 SK 19 SK 20 SK 21 SK 28 SK 30 SK 31 SK 34 SK 36 SK 39 SK 45 SK 48 SK 52 SK 53 SK 55 SK 60 SK 63 SK 69 SK 71 SK 72 SK 73 SK 74 SK 78 SK 79 SK 80 SK 122 SK 147 SK 148 SK 150 SK 165 SK 197 SK 401 SK 402 SK 404	SK 09 SK 59 SK 145	SK 01 SK 02 SK 03 SK 04 SK 05 SK 07 SK 08 SK 14 SK 16 SK 18 SK 19 SK 20 SK 21 SK 28 SK 30 SK 31 SK 34 SK 36 SK 39 SK 45 SK 48 SK 52 SK 53 SK 55 SK 60 SK 63 SK 69 SK 71 SK 72 SK 73 SK 74 SK 78 SK 79 SK 80 SK 122 SK 147 SK 148 SK 150 SK 165 SK 185 SK 197 SK 401 SK 402 SK 404

Extruded heatsinks A 22 - 83 \rightarrow Heatsinks f. printed circuit boards \rightarrow A 89 - 111 Thermal conductive material \rightarrow E 2 - 24 Mount. material f. semiconductors \rightarrow E 44 - 48

Die-cast heatsinks Reating springs for transistors Lock-in transistor fixing spring **Technical introduction**

Downloaded from Arrow.com.

A

C

D

C

ī.

K

fischer elektronik 23 Assignment table of transistor heatsinks

	TO 3	TO 66	SOT 9	TO 5	TO 247	TO 3 P
	Contraction of the second seco				12	A
extruded heatsink					SK 126	SK 104
with solder pins					SK 145	SK 129
					SK 437	SK 400
					SK 459	SK 409
					SK 484	SK 448
						SK 456
						SK 484
extruded	WP 4030				SK 126	SK 452
heatsinks					SK 452	
set-up/clip-on	AKK 127				FK 243	
heatsinks	AKK 191				FK 245	
finger-shaped	FK 201	FK 201	FK 201			
heatsinks	FK 202	FK 202	FK 202			
	FK 205	FK 205	FK 205			
	FK 206	FK 206	FK 206			
	FK 223	FK 207	FK 207			
	FK 236	FK 208	FK 208			
		FK 217	FK 217			
		FK 225	FK 234			
		FK 234	FK 236			
		FK 236				
small heatsinks				KF		
				KK 562		
				SKK		

Extruded heatsinks A 22 - 83 → Heatsinks f, printed circuit boards \rightarrow A 22 - 83 Heatsinks f, printed circuit boards \rightarrow A 89 - 112 Thermal conductive material \rightarrow E 2 - 24 Mount. material f, semiconductors \rightarrow E 44 - 48

Die-cast heatsinks Reating springs for transistors Lock-in transistor fixing spring **Technical introduction**

 $\uparrow \uparrow \uparrow \uparrow$

A 125 A 115 - 117 A 84 - 88 A 2 - 8

D

A 19

Assignment table transistor heatsinks

	TO 218	TO 220	SOT 32	DIL	PLCC	P-SIP	PGA/BGA
	1 St	A.	J.S.		Concern Hannahar	1	
U-heatsinks		ICK 35 SK 13 SK 431 UK 14	SK 12				assignment table → B 2 - 10
extruded heatsink with solder pin	SK 145 SK 437 SK 459 SK 460	SK 75 SK 104 SK 129 SK 145 SK 185 SK 409 SK 459 SK 460	SK 104 SK 129 SK 409 SK 459 SK 469 SK 470			SK 459 SK 460	
extruded heatsinks	SK 126 SK 452	SK 95 SK 126 SK 452 SK 454 SK 517 SK 518	SK 95 SK 454	ICKB ICKH ICKL	ICK PLCC ICK R		
set-up/clip-on heatsinks	FK 224 FK 241 SK 516	FK 220 FK 224 FK 237 SK 515				FK 224 FK 241	
finger-shaped heatsinks	FK 224 FK 243 FK 245	FK 205 FK 206 FK 207 FK 208 FK 210 FK 212 FK 214 FK 214 FK 216 FK 217 FK 218 FK 217 FK 218 FK 219 FK 220 FK 222 FK 222 FK 225 FK 222 FK 223 FK 231 FK 231 FK 233 FK 234 FK 235 FK 247	FK 201 FK 205 FK 206 FK 207 FK 208 FK 209 FK 210 FK 211 FK 212 FK 213 FK 213 FK 213 FK 214 FK 215 FK 216 FK 217 FK 216 FK 217 FK 218 FK 219 FK 223 FK 234 FK 235 FK 236 FK 239			FK 224	
small heatsinks			КК 32 КК 92				

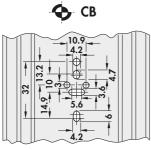
 $\begin{array}{rcl} \mbox{Extruded heatsinks} & \rightarrow & A \ 22 \ - \ 83 \\ \mbox{Heatsinks f. printed circuit boards} & \rightarrow & A \ 97 \ - \ 112 \\ \mbox{Thermal conductive material} & \rightarrow & E \ 2 \ - \ 24 \\ \mbox{Mount. material f. semiconductors} & \rightarrow & E \ 44 \ - \ 48 \end{array}$

Die-cast heatsinks Reating springs for transistors Lock-in transistor fixing spring Technical introduction A 20

A

C

D

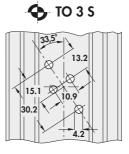

C

ī.

N

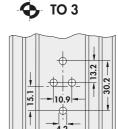
fischer **elektronik** 23 Heatsinks

Hole pattern

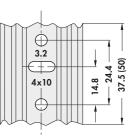


CB = **TO** 3 + **SOT** 9 + **TO** 66 + **SOT** 32 at |↔ 37.5 mm oblique drilling

Ф ТО 220

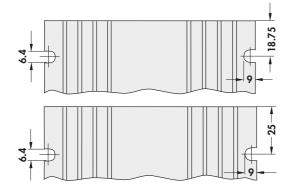

Ø 3.2

- 13


TO 3 oblique drilling for 🛏 37.5 mm

SOT 32

TO 3 exceeding ₩ 50 mm



SOT 32 / TO 220 exceeding 🖛 37.5 mm

Standard hole pattern are processed as complete pin layouts, centered on the length of the heatsink. Other positions of the pin layout on the heatsink, multiple drillings or changes of the drillings are processed according to customer's requirements.

For heatsinks exceeding 😝 75 mm standard hole pattern can be supplied in multiple design.

Fixing slots

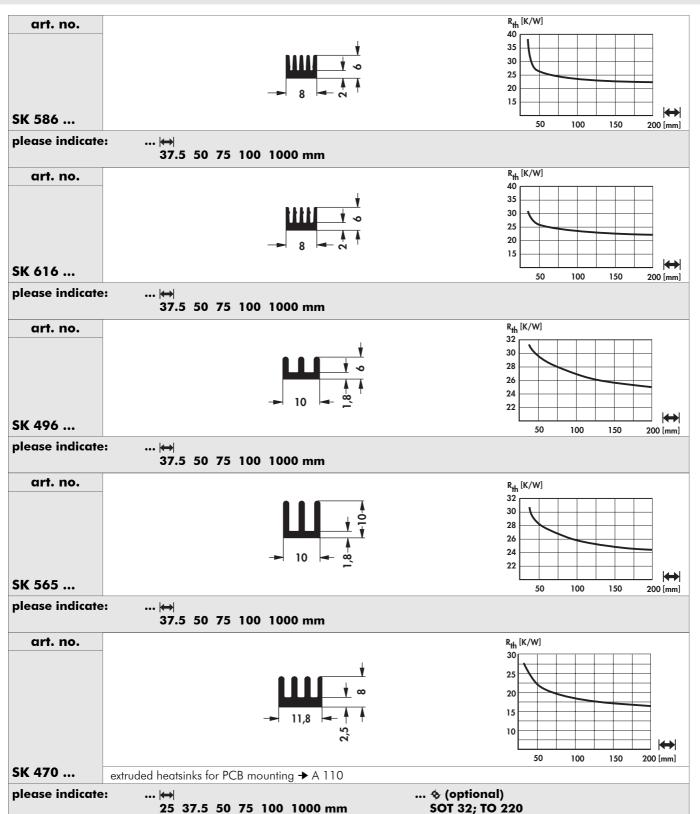
 ↔ [mm]	number of fixing slots
37.5	2
75	4

 ↔ [mm]	number of fixing slots
50	2
100	4

Heatsinks with the following shape _____ and a standard hole pattern have these fixing slots as part of the serial production

Order example

SK 01	50	SA	TO3	
profile	length	surface	pin layout	


Surface treatment for heatsinks with standard drilling: black anodised (SA).

Raw degreased aluminium (AL) and clear natural anodise (ME) on request.

A 21	Extruded heatsinks → Heatsinks for printed circuit boards→ Thermal conductive material → Mount. material for semiconductors→	E 2 - 24	Die-cast heatsinks Reating springs for transistors Lock-in transistor fixing spring Technical introduction	\rightarrow \rightarrow	A 115 - 117
------	---	----------	---	-----------------------------	-------------

Ľ

Standard extruded heatsinks

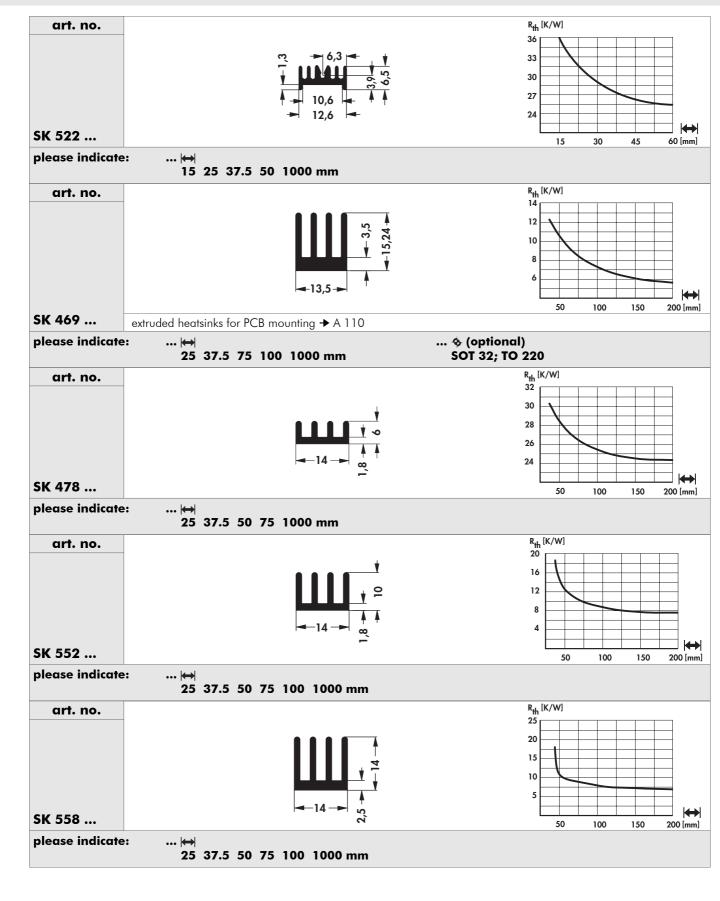
N

High decorative surfaces \rightarrow	A 9
Order example →	A 21
Heatsink as visual & decor-parts \rightarrow	A 10
Drilling pattern for Solid State Relais \rightarrow	A 12

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction $\begin{array}{l} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

A 22

1


-

Ī

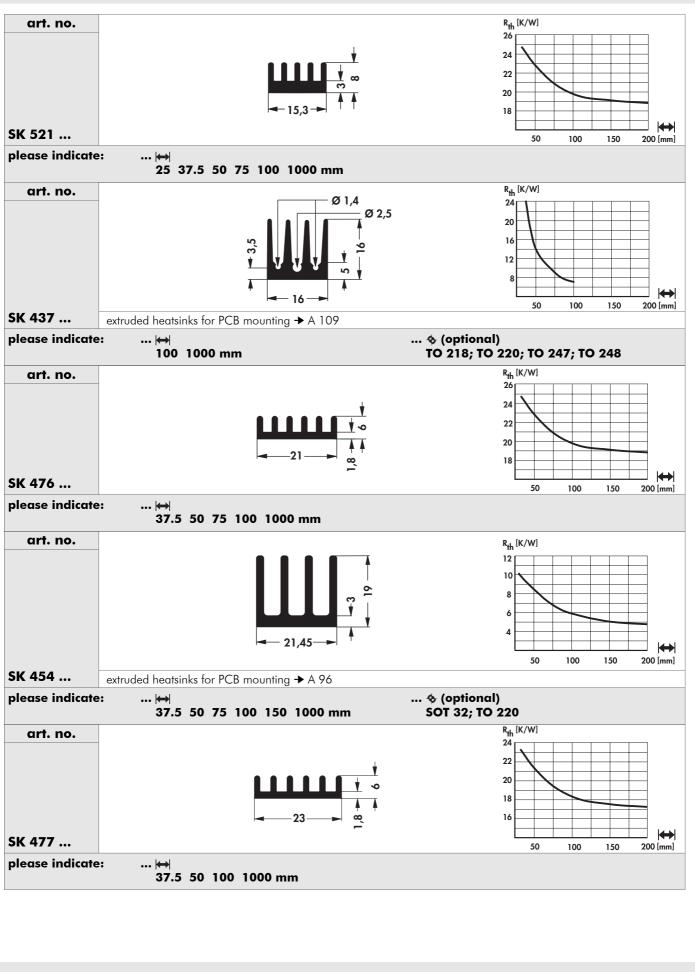
C

Standard extruded heatsinks

23

High decorative surfaces \rightarrow	•	A 9	He
Order example →	•	A 21	Sp
Heatsink as visual & decor-parts →	•	A 10	Sp
Drilling pattern for Solid State Relais $ ightarrow$	•	A 12	Tee

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction $\begin{array}{r} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$


0

D

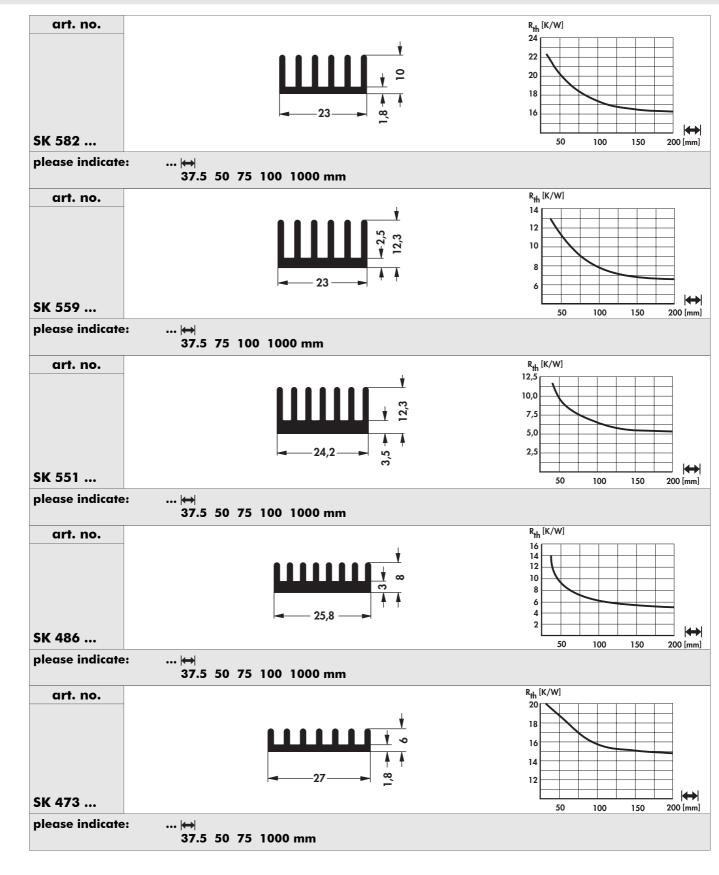
Ε

G

Standard extruded heatsinks

High decorative surfaces	→	A 9
Order example	→	A 21
Heatsink as visual & decor-parts	→	A 10
Drilling pattern for Solid State Relais	; →	A 12

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction $\begin{array}{l} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$


A 24

Δ

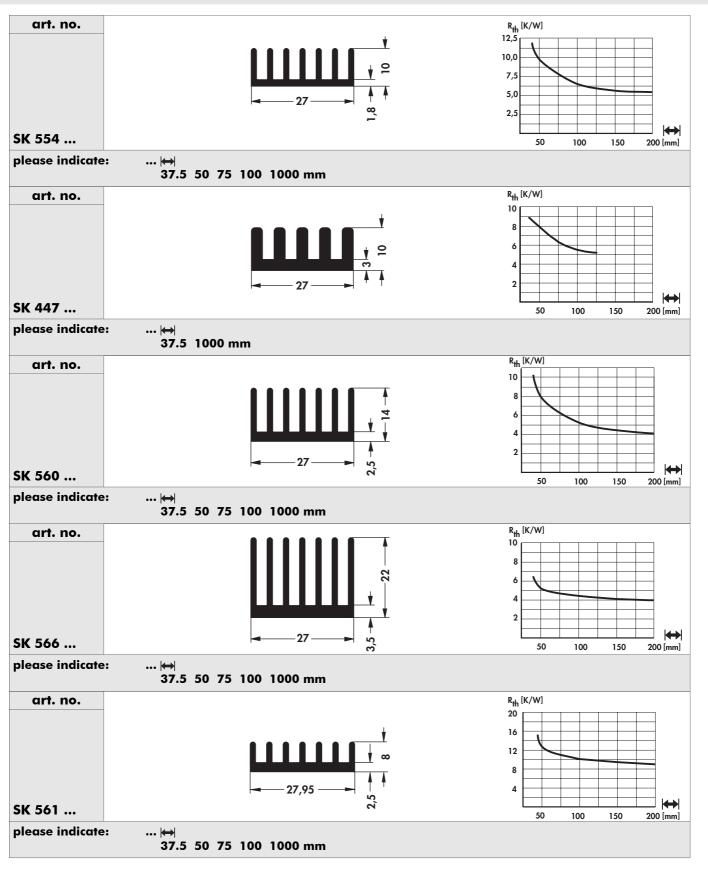
C

Standard extruded heatsinks

Δ	25
_	

Downloaded from Arrow.com.

High decorative surfaces \rightarrow	A 9
Order example →	A 21
Heatsink as visual & decor-parts \rightarrow	A 10
Drilling pattern for Solid State Relais $ ightarrow$	A 12


Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction $\begin{array}{r} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

0

D

ŝ

Standard extruded heatsinks

High decorative surfaces	→	A 9
Order example	→	A 21
Heatsink as visual & decor-parts	→	A 10
Drilling pattern for Solid State Relai	s→	A 12

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction A 26

N

4

-

1

1

ŝ

C

Standard extruded heatsinks

A 9

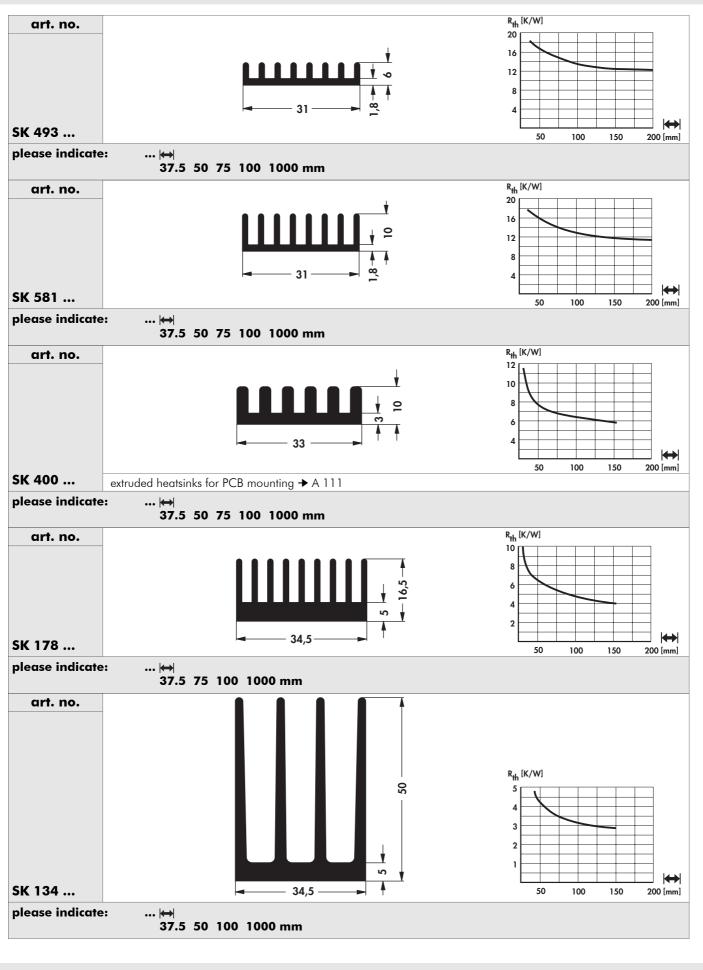
A 10

→ A 21

→ \rightarrow A 12

Ν

	High decorative surfaces
A 27	Order example Heatsink as visual & decor-parts
	Drilling pattern for Solid State Relais


Heatsinks for Solid State Relay Special heatsink design Special profiles **Technical introduction**

A 11 – 12 → A 137 – 138 → A 140 → A 2 – 8

D

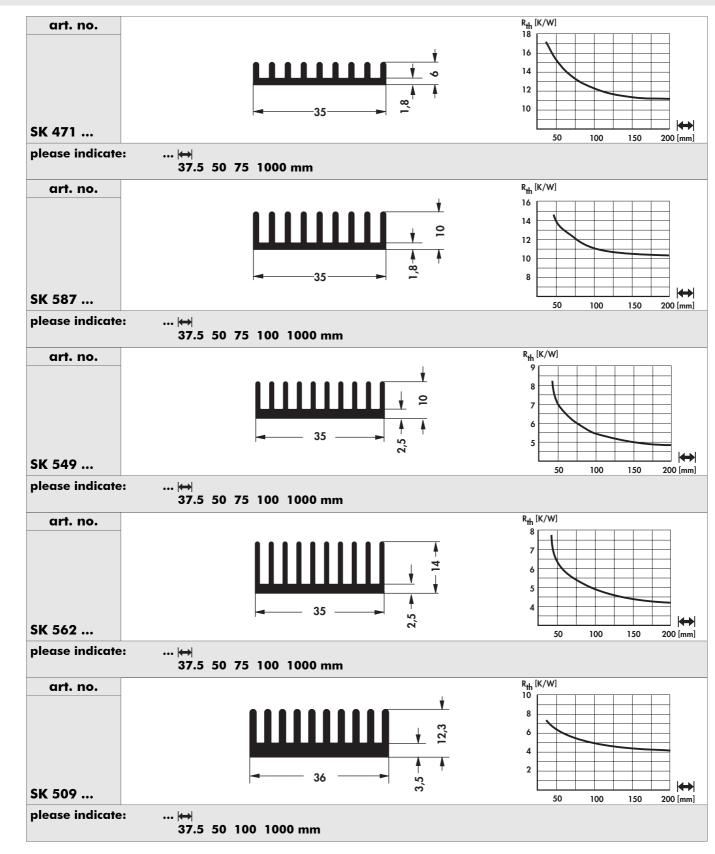
ŝ

Standard extruded heatsinks

High decorative surfaces	→	A 9
Order example	→	A 21
Heatsink as visual & decor-parts	→	A 10
Drilling pattern for Solid State Relais	→	A 12

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction $\begin{array}{l} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

A 28


-

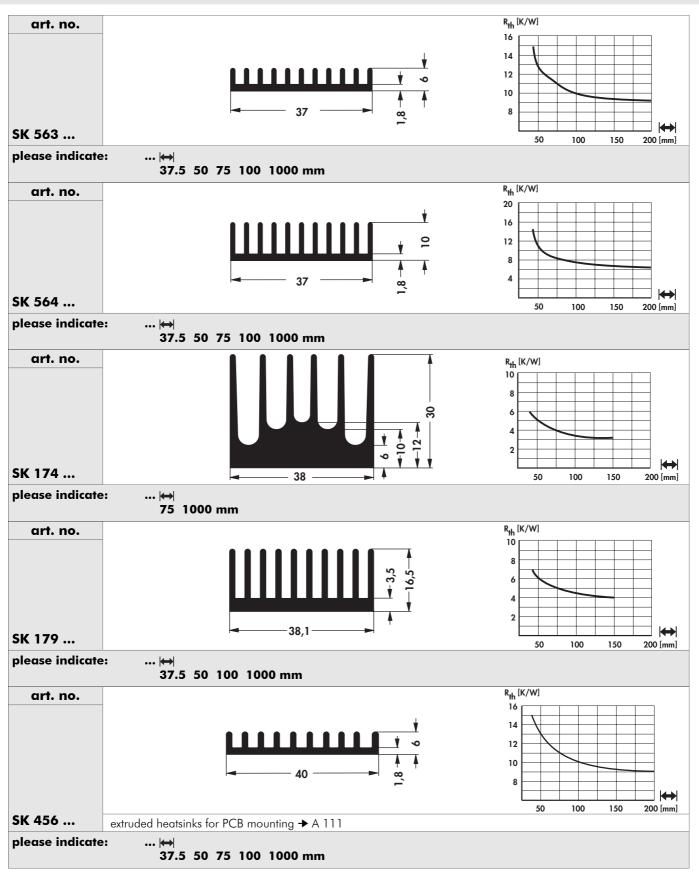
C

N

Standard extruded heatsinks

Downloaded from Arrow.com.

High decorative surfaces	\rightarrow	A 9	
Order example	→	A 21	
Heatsink as visual & decor-parts	→	A 10	
Drilling pattern for Solid State Relai	s→	A 12	


Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction $\begin{array}{r} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

P

0

D

Standard extruded heatsinks

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction A 30

.

1

ŝ

C

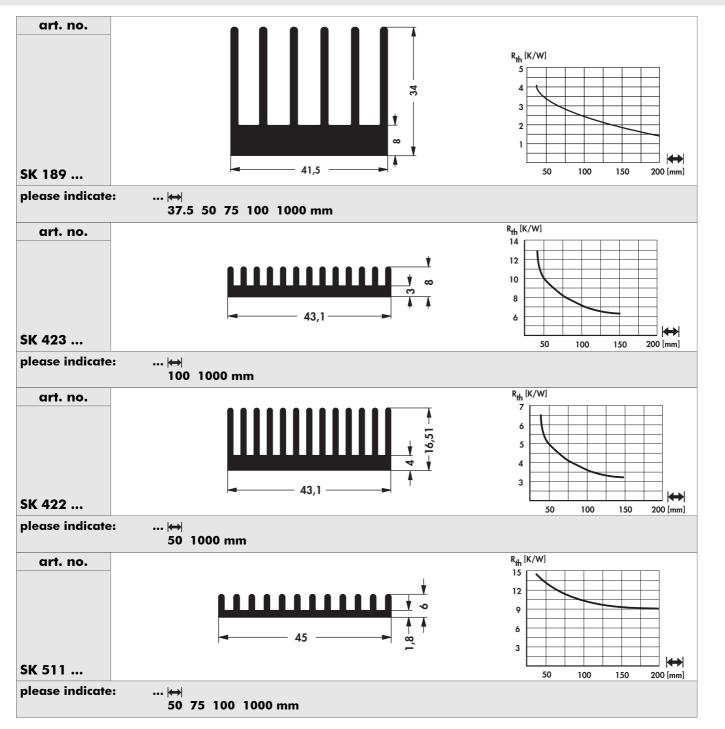
Standard extruded heatsinks

Downloaded from Arrow.com.

High decorative surfaces	\rightarrow	A 9
Order example	→	A 21
Heatsink as visual & decor-parts	→	A 10
Drilling pattern for Solid State Relais	→	A 12

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction $\begin{array}{r} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

P


0

D

Ε

ŝ

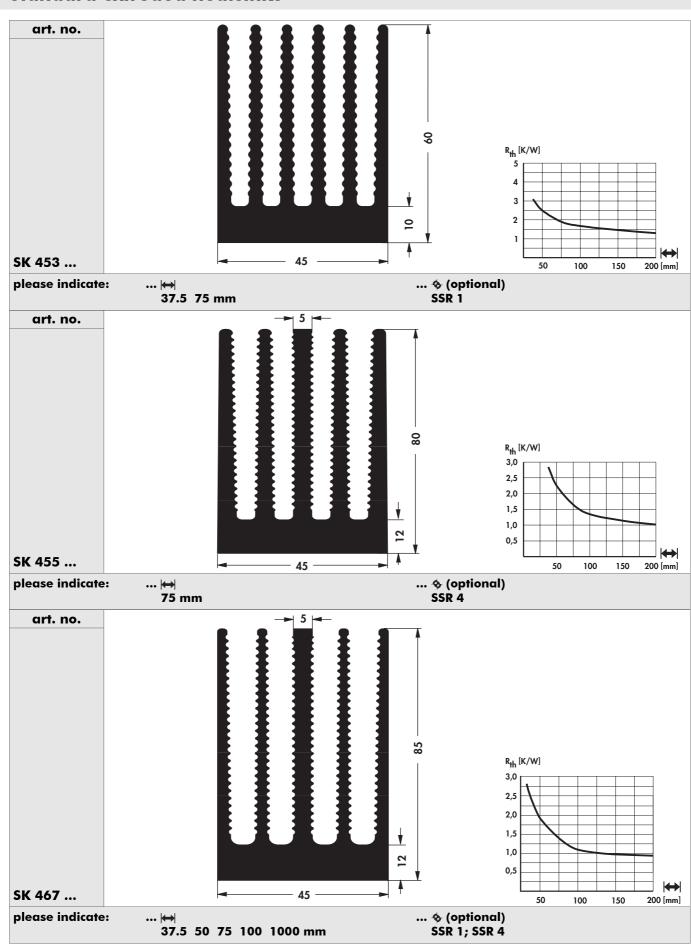
Standard extruded heatsinks

-

1

Ī

h


C

A 32

High decorative surfaces -	>	A 9
Order example -	÷	A 21
Heatsink as visual & decor-parts -	÷	A 10
Drilling pattern for Solid State Relais -	•	A 12

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction $\begin{array}{l} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

Standard extruded heatsinks

A 33

Downloaded from Arrow.com.

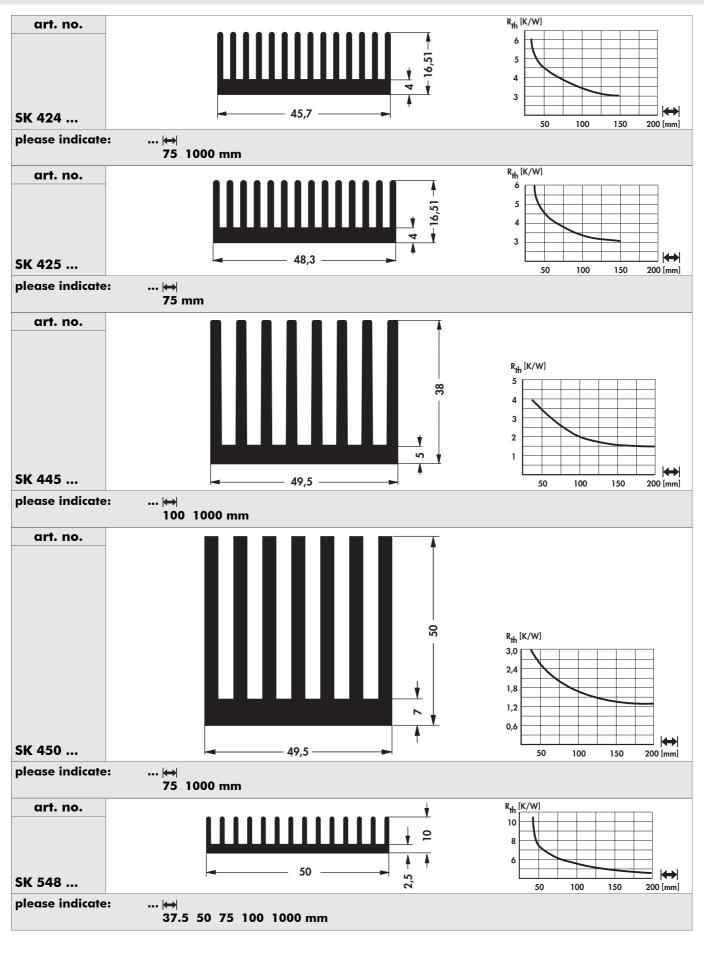
High decorative surfaces	→	A 9
Order example -	→	A 21
Heatsink as visual & decor-parts	→	A 10
Drilling pattern for Solid State Relais -	→	A 12

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction $\begin{array}{r} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

U

Α

B


D

Ε

C

Μ

Standard extruded heatsinks

High decorative surfaces	→	A 9
Order example	→	A 21
Heatsink as visual & decor-parts	→	A 10
Drilling pattern for Solid State Relais	→	A 12

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction $\begin{array}{l} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

A 34

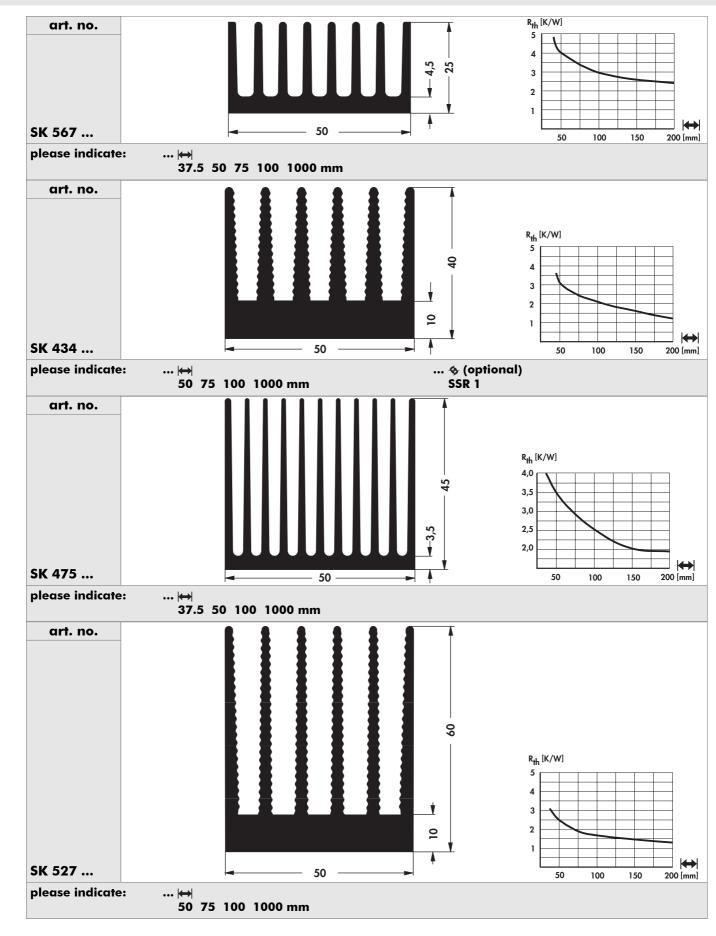
A

-

1

Ī

1


C

k

N

Standard extruded heatsinks

A 35

Downloaded from Arrow.com.

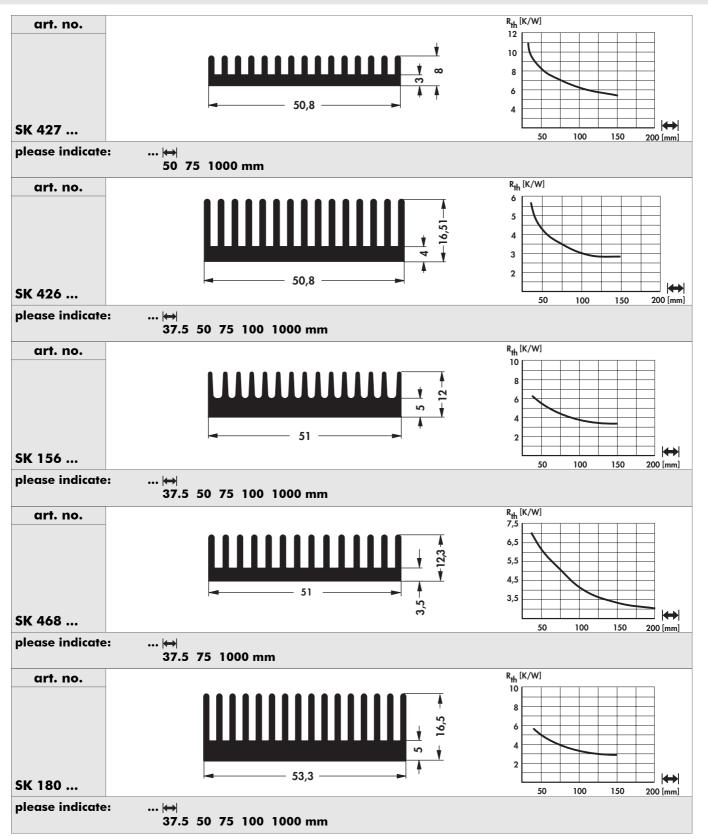
High decorative surfaces	→	A 9
Order example	→	A 21
Heatsink as visual & decor-parts	→	A 10
Drilling pattern for Solid State Relais	→	A 12

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction $\begin{array}{r} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

B

0

D


÷.

C

ł

Μ

Standard extruded heatsinks

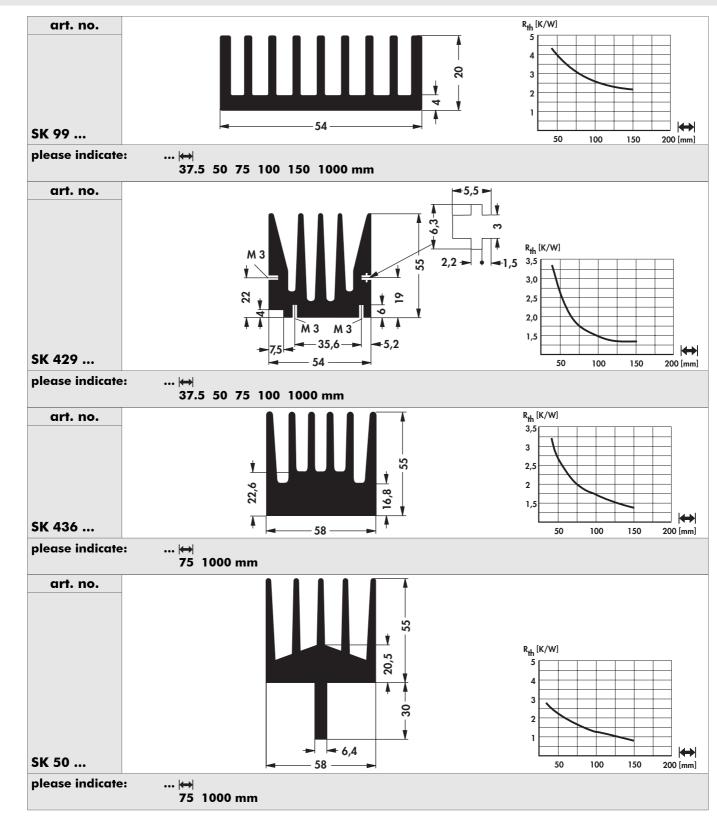
N

High decorative surfaces -	÷	A 9
Order example -	•	A 21
Heatsink as visual & decor-parts -	÷	A 10
Drilling pattern for Solid State Relais -	→	A 12

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction $\begin{array}{l} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

A 36

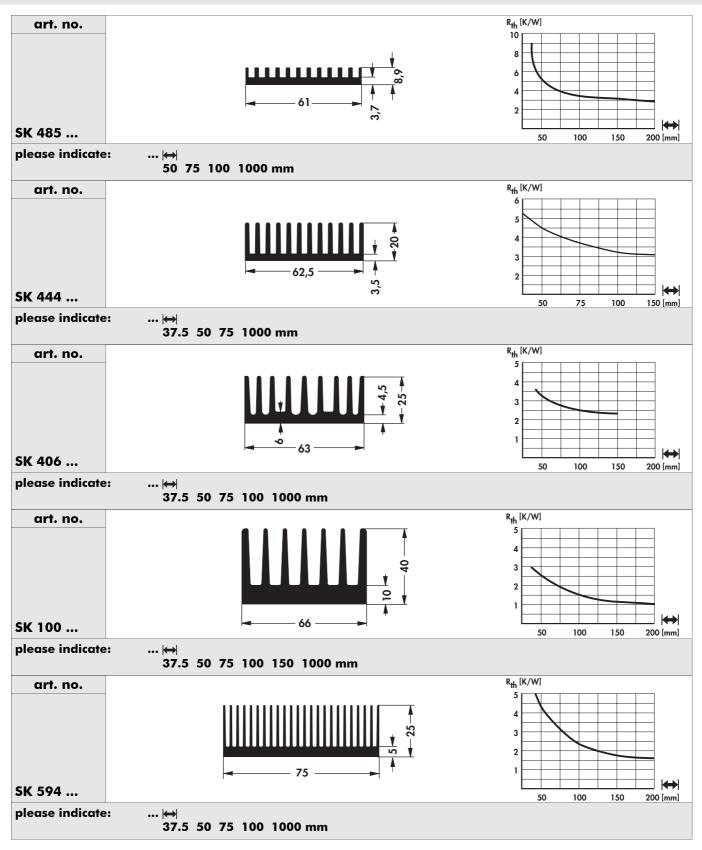
.


1

C

Downloaded from Arrow.com.

Standard extruded heatsinks


 $\begin{array}{r} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

D G Ν N

Α

B

Standard extruded heatsinks

C

High decorative surfaces \rightarrow	A 9	
Order example →	A 21	
Heatsink as visual & decor-parts \rightarrow	A 10	
Drilling pattern for Solid State Relais \rightarrow	A 12	

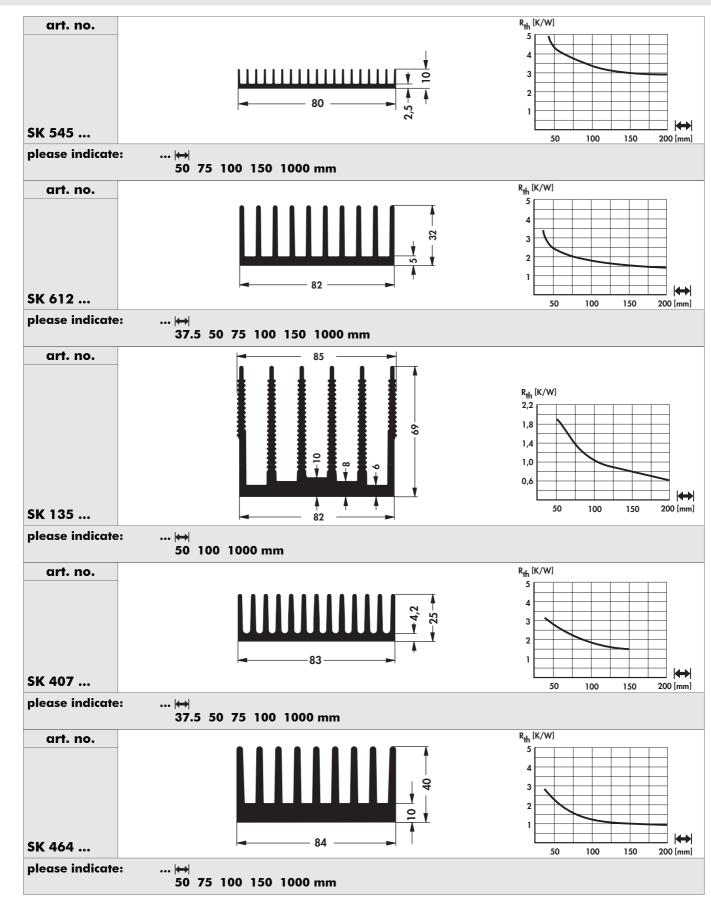
Heatsinks for Solid State Relay Special heatsink design Special profiles **Technical introduction**

 \rightarrow A 11 - 12 → A 137 - 138 → A 140 → A 2 – 8

Downloaded from Arrow.com.

A 38

1


-

1

E

Standard extruded heatsinks

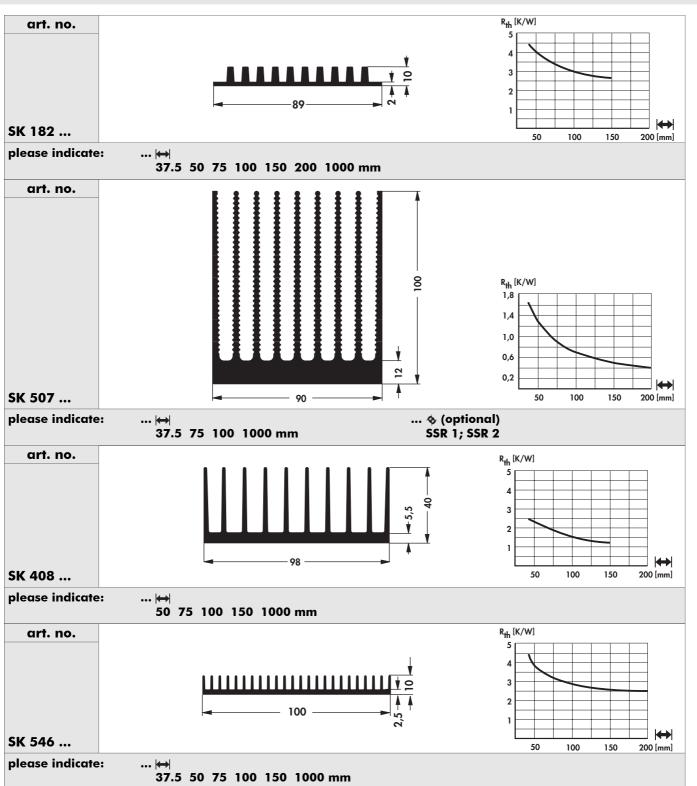
Downloaded from Arrow.com.

High decorative surfaces \rightarrow	A 9	He
Order example →	A 21	Sp
Heatsink as visual & decor-parts \rightarrow	A 10	Sp
Drilling pattern for Solid State Relais \rightarrow	A 12	Te

 $\begin{array}{r} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

А

P


0

D

C

Ν

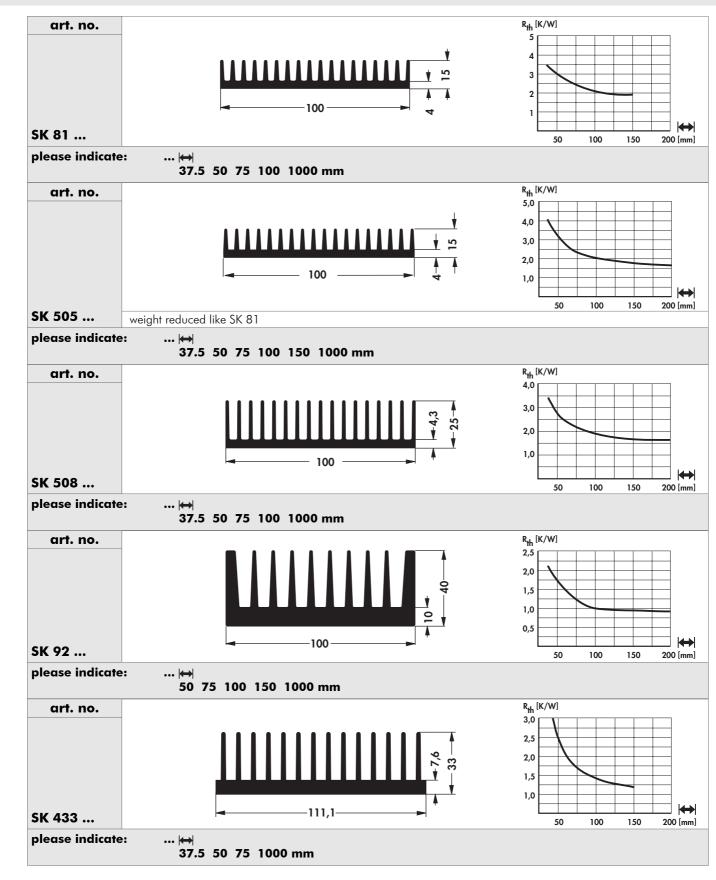
Standard extruded heatsinks

High decorative surfaces	→	A 9
Order example	→	A 21
Heatsink as visual & decor-parts	→	A 10
Drilling pattern for Solid State Relais	→	A 12

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction $\begin{array}{r} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

A 40

-


C

K

Downloaded from Arrow.com.

Standard extruded heatsinks

Α	41

High decorative surfaces	→	A 9
Order example	→	A 21
Heatsink as visual & decor-parts	→	A 10
Drilling pattern for Solid State Relais	;→	A 12

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction $\begin{array}{r} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

P

D

ŝ

Standard extruded heatsinks

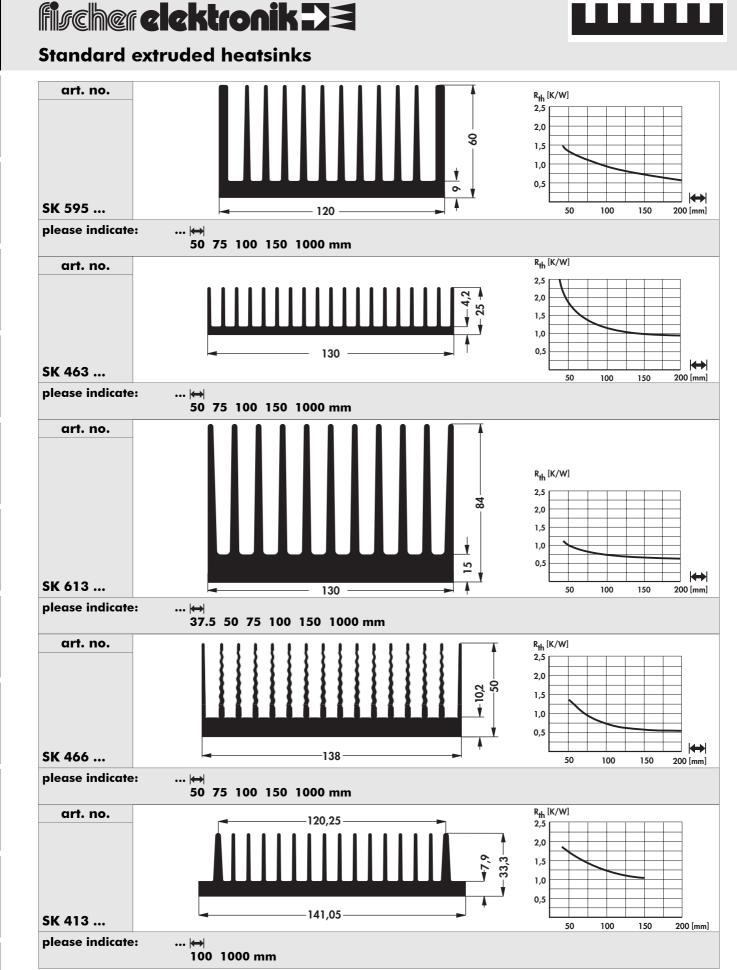
k

High decorative surfaces	→	A 9
Order example	→	A 21
Heatsink as visual & decor-parts	→	A 10
Drilling pattern for Solid State Relais	→	A 12

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction $\begin{array}{l} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

A 42

Downloaded from Arrow.com.


A

-

Ī

ŝ

C

N

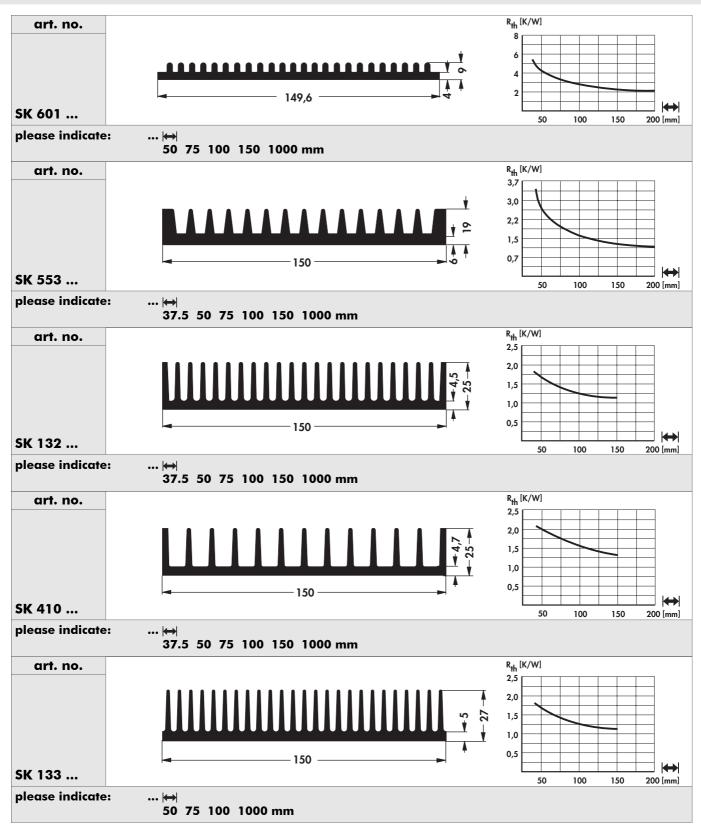
Α

P

0

D

C


A 43

High decorative surfaces→A 9HeatsOrder example→A 21SpeciHeatsink as visual & decor-parts→A 10SpeciDrilling pattern for Solid State Relais→A 12Techr

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction $\begin{array}{r} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

Downloaded from Arrow.com.

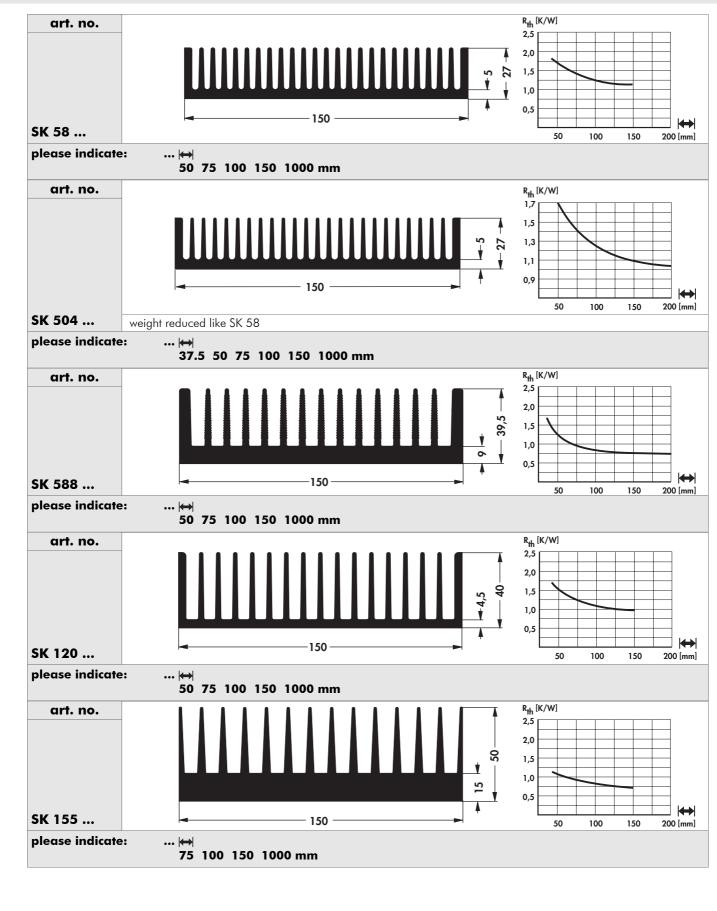
Standard extruded heatsinks

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction

A 44

-

ŝ


C

- 1

Downloaded from Arrow.com.

Standard extruded heatsinks

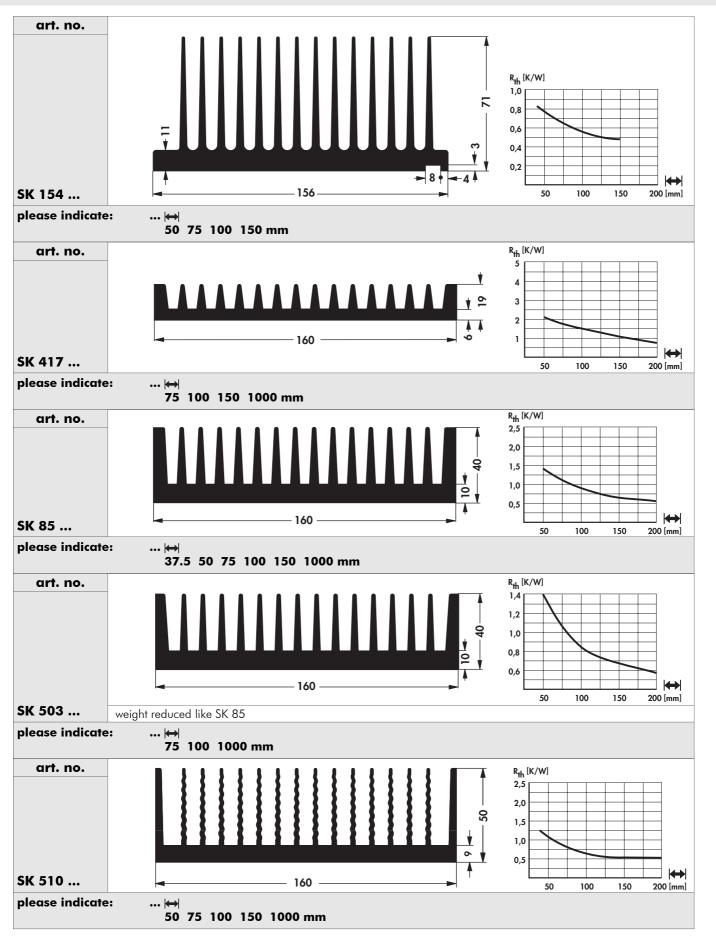
Ν

A 45

 High decorative surfaces
 →
 A 9

 Order example
 →
 A 21

 Heatsink as visual & decor-parts
 →
 A 10


 Drilling pattern for Solid State Relais →
 A 12

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction $\begin{array}{r} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

P

D

Standard extruded heatsinks

High decorative surfaces	→	A 9
Order example	→	A 21
Heatsink as visual & decor-parts	→	A 10
Drilling pattern for Solid State Relais	; →	A 12

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction

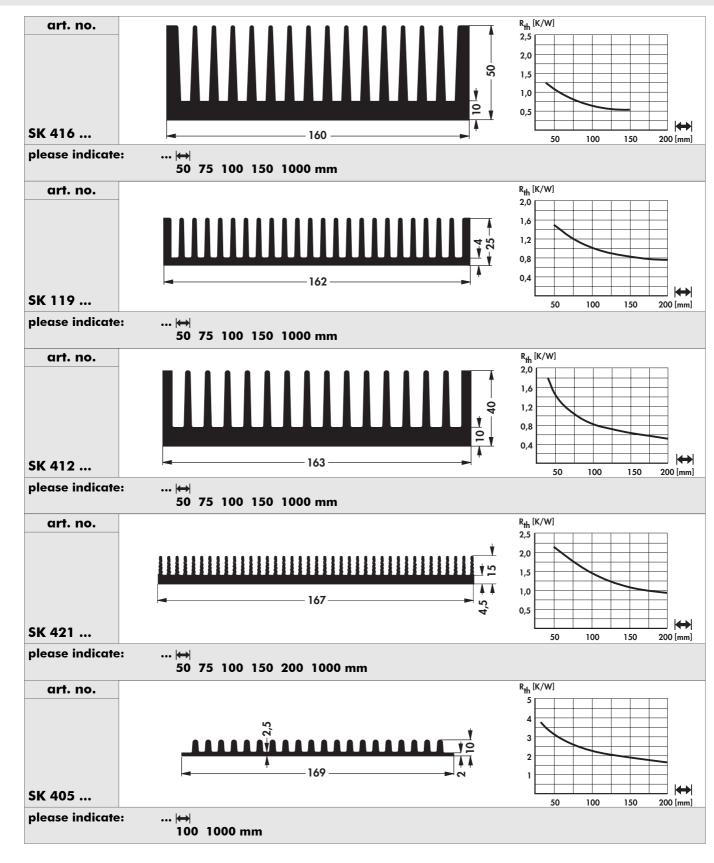
A 46

Downloaded from Arrow.com.

N

Δ

Ī

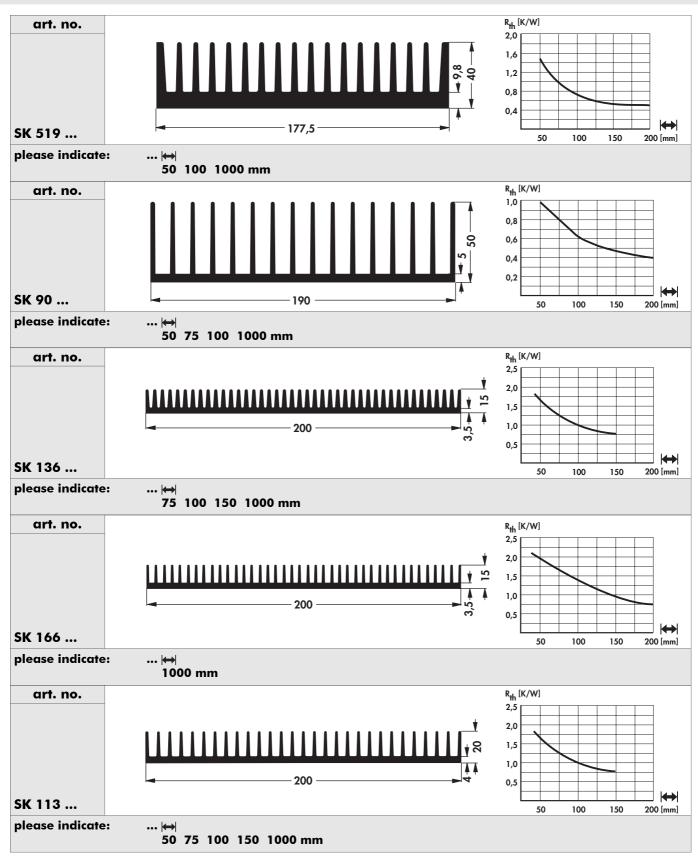

ŝ

C

Standard extruded heatsinks

Δ

D


÷,

C

High decorative surfaces \rightarrow	A 9
Order example \rightarrow	A 21
Heatsink as visual & decor-parts \rightarrow	A 10
Drilling pattern for Solid State Relais $ ightarrow$	A 12

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction $\begin{array}{r} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

Standard extruded heatsinks

High decorative surfaces	→	A 9
Order example	→	A 21
Heatsink as visual & decor-parts	→	A 10
Drilling pattern for Solid State Relais	→	A 12

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction

A 48

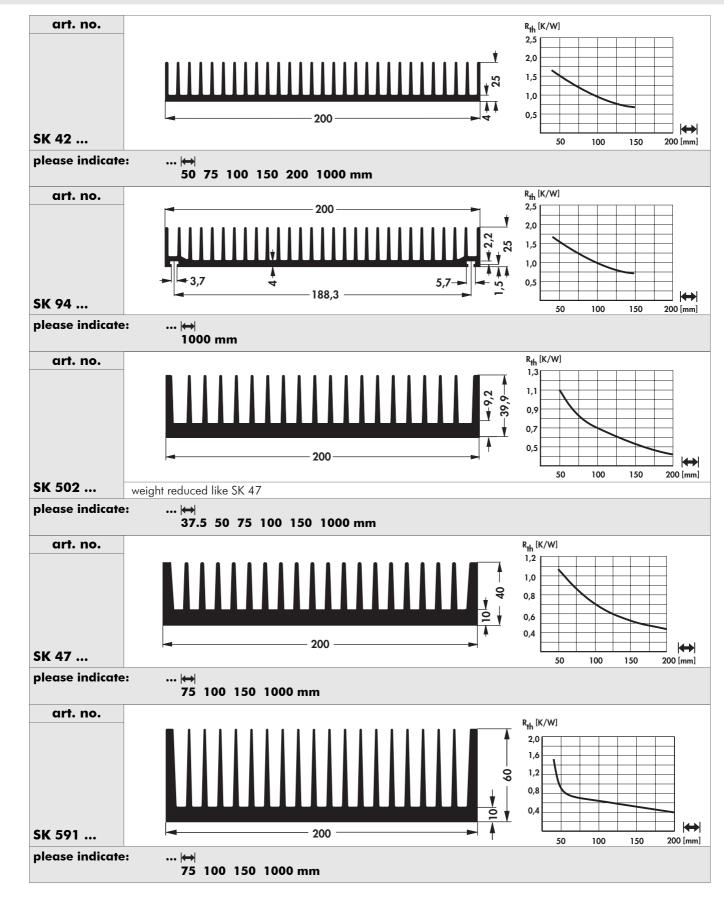
Downloaded from Arrow.com.

4

.

1

ŝ


C

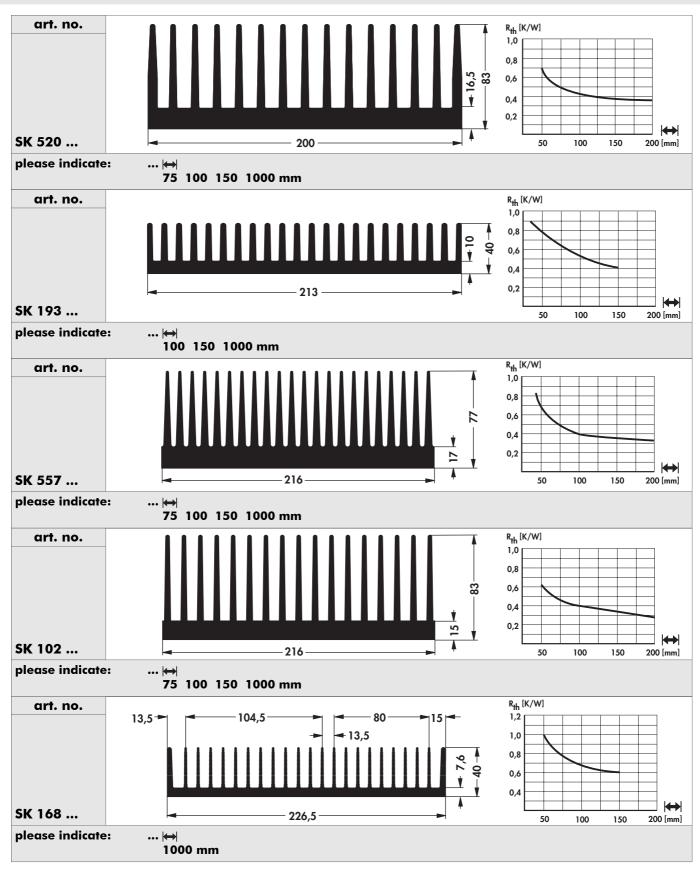
ļ

N

Standard extruded heatsinks

_	
Α	49

High decorative surfaces	\rightarrow	A 9
Order example	→	A 21
Heatsink as visual & decor-parts	→	A 10
Drilling pattern for Solid State Relais	→	A 12


Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction $\begin{array}{r} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

P

D

ŝ

Standard extruded heatsinks

High decorative surfaces \rightarrow A 9Order example \rightarrow A 21Heatsink as visual & decor-parts \rightarrow A 10Drilling pattern for Solid State Relais \rightarrow A 12

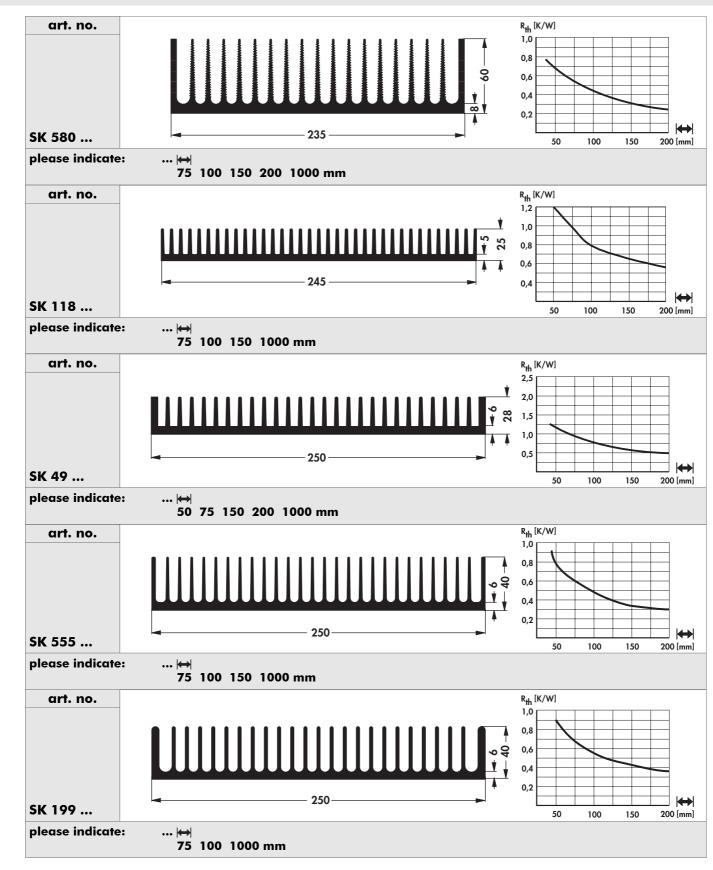
Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction

- $\begin{array}{r} \rightarrow \quad A \ 11 12 \\ \rightarrow \quad A \ 137 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 8 \end{array}$
- A 50

A

-

1

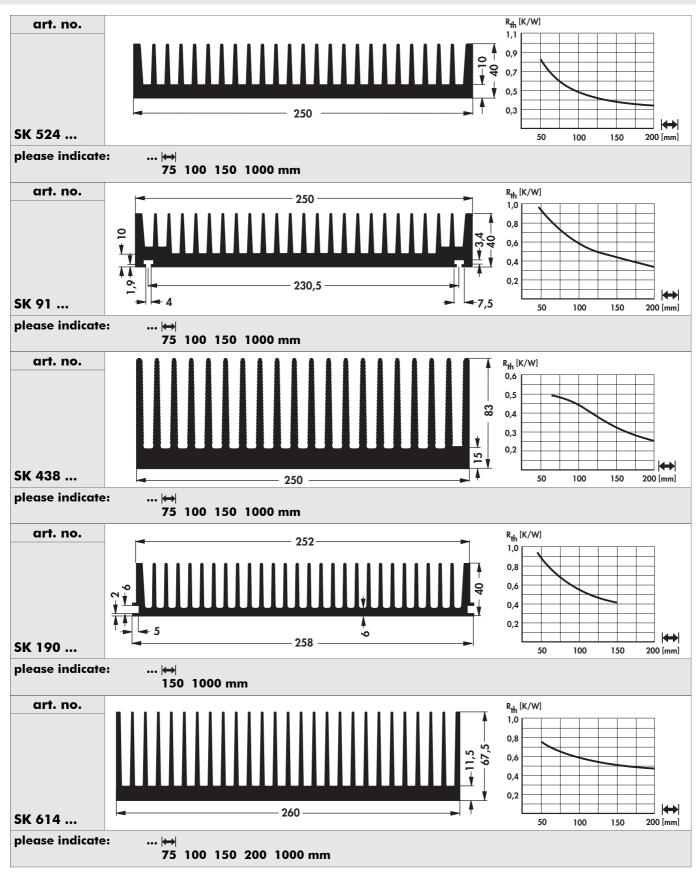

ŝ

C

Standard extruded heatsinks

Μ

High decorative surfaces	-	AY
Order example	→	A 21
Heatsink as visual & decor-parts	→	A 10
Drilling pattern for Solid State Relai	s →	A 12


Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction $\begin{array}{r} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

P

D

ŝ

Standard extruded heatsinks

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction

- $\begin{array}{r} \rightarrow \quad A \ 11 12 \\ \rightarrow \quad A \ 137 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 8 \end{array}$
- A 52

1

-

1

h

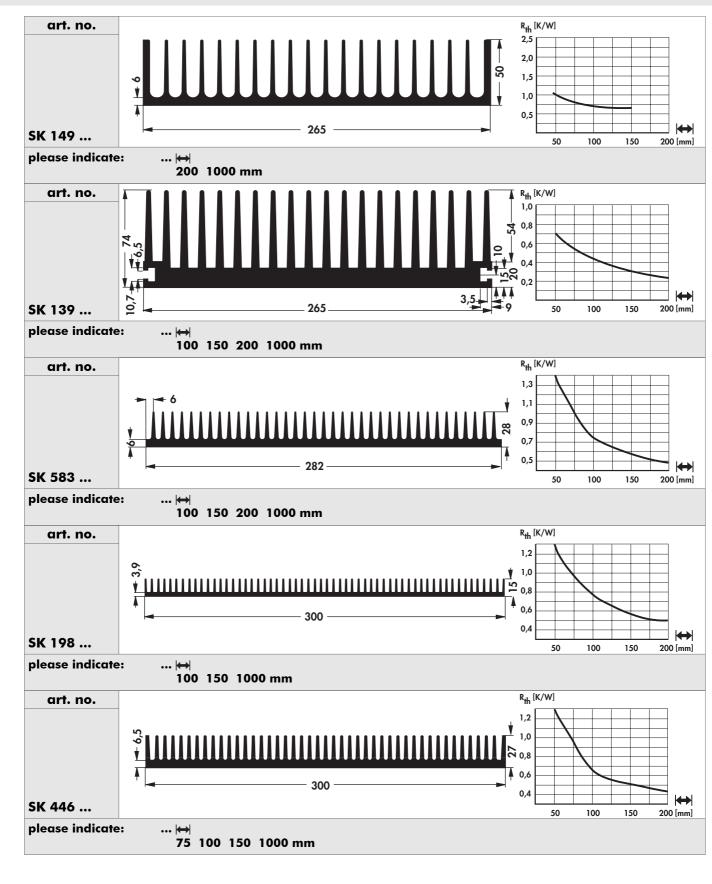
C

k

N

Standard extruded heatsinks

Δ

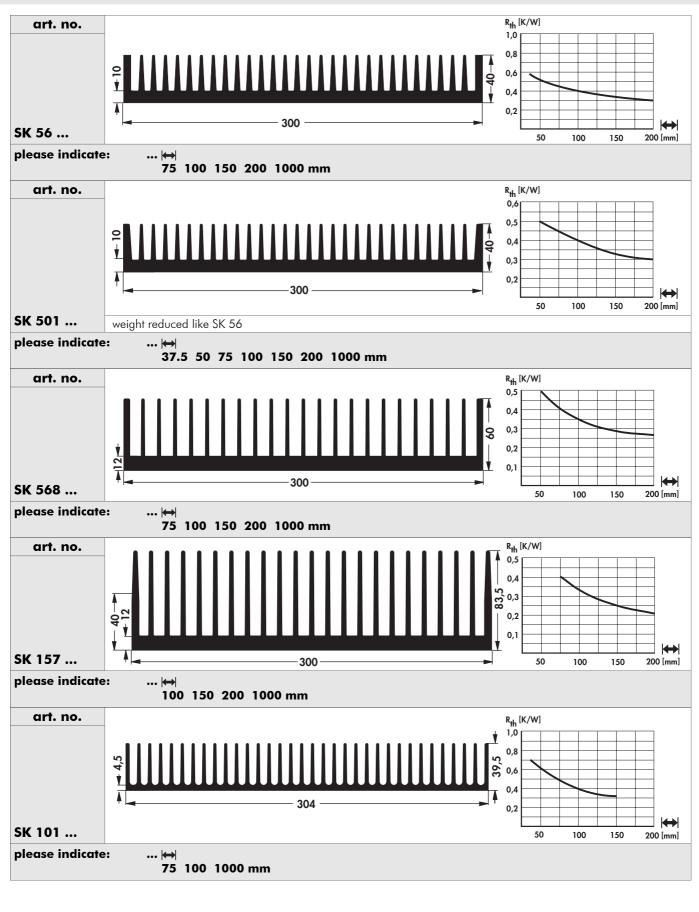

P

D

2

ŝ

C


A 53
 High decorative surfaces → A 9
 Order example → A 21
 Heatsink as visual & decor-parts → A 10
 Drilling pattern for Solid State Relais → A 12
 Technical introduction

 $\begin{array}{r} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

Ν

N

Standard extruded heatsinks

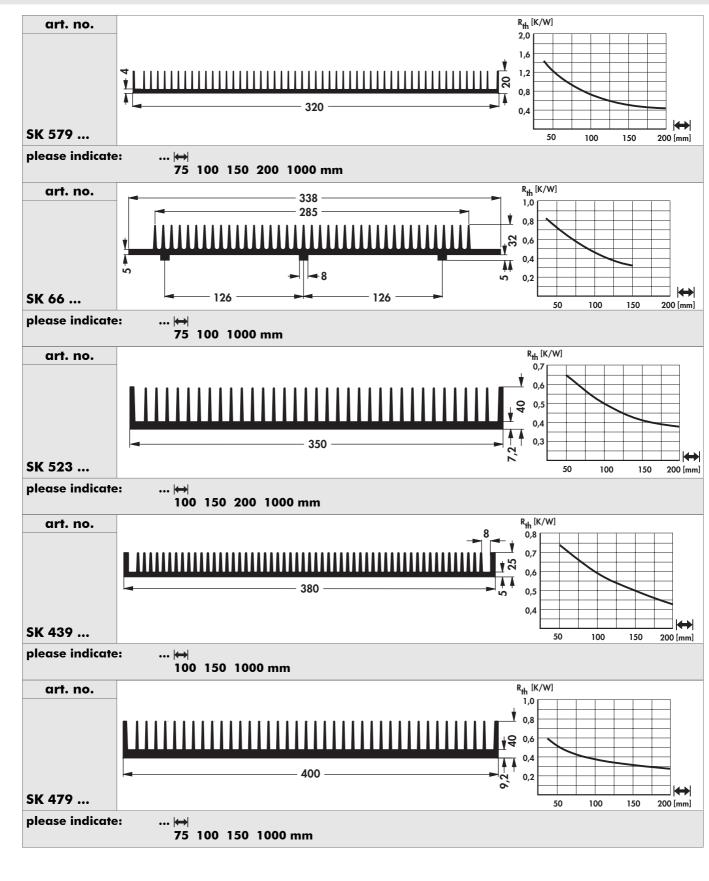
High decorative surfaces	→	A 9
Order example	→	A 21
Heatsink as visual & decor-parts	→	A 10
Drilling pattern for Solid State Relais	→	A 12

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction

- $\begin{array}{l} \rightarrow \quad A \ 11 12 \\ \rightarrow \quad A \ 137 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 8 \end{array}$
- A 54

Downloaded from Arrow.com.

4


-

h

C

Standard extruded heatsinks

M

... . .

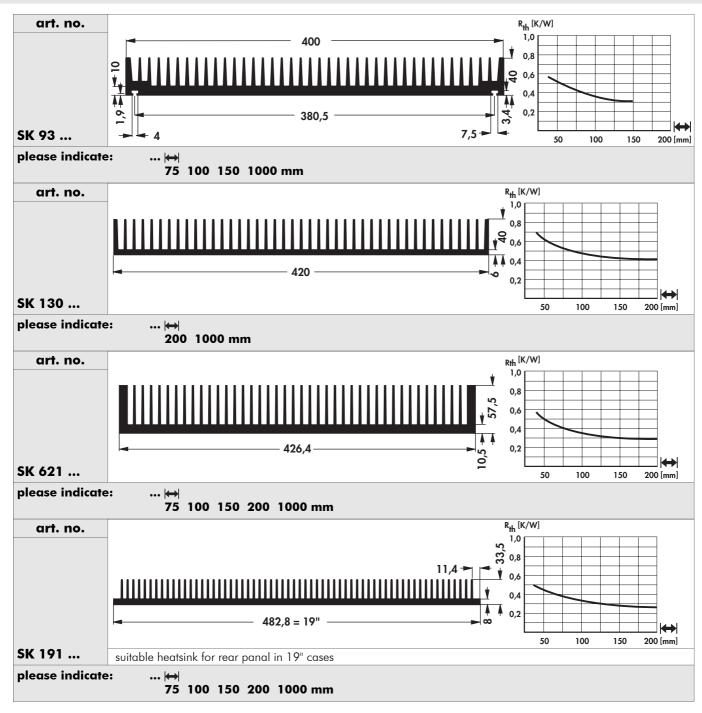
High decorative surfaces	-	AY	
Order example	→	A 21	
Heatsink as visual & decor-parts	; →	A 10	
Drilling pattern for Solid State R	elais →	A 12	

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction $\begin{array}{r} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

D

ŝ

1


-

E

E

C

Standard extruded heatsinks

K

l

N

High decorative surfaces \rightarrow A 9Order example \rightarrow A 21Heatsink as visual & decor-parts \rightarrow A 10Drilling pattern for Solid State Relais \rightarrow A 12

Heatsinks for Solid State Relay Special heatsink design Special profiles Technical introduction $\begin{array}{r} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

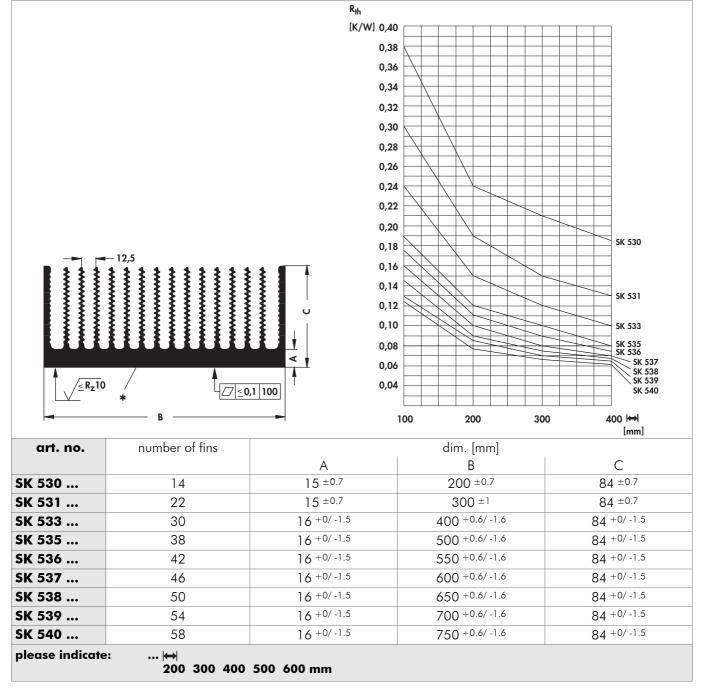
A 56

Downloaded from Arrow.com.

B

D

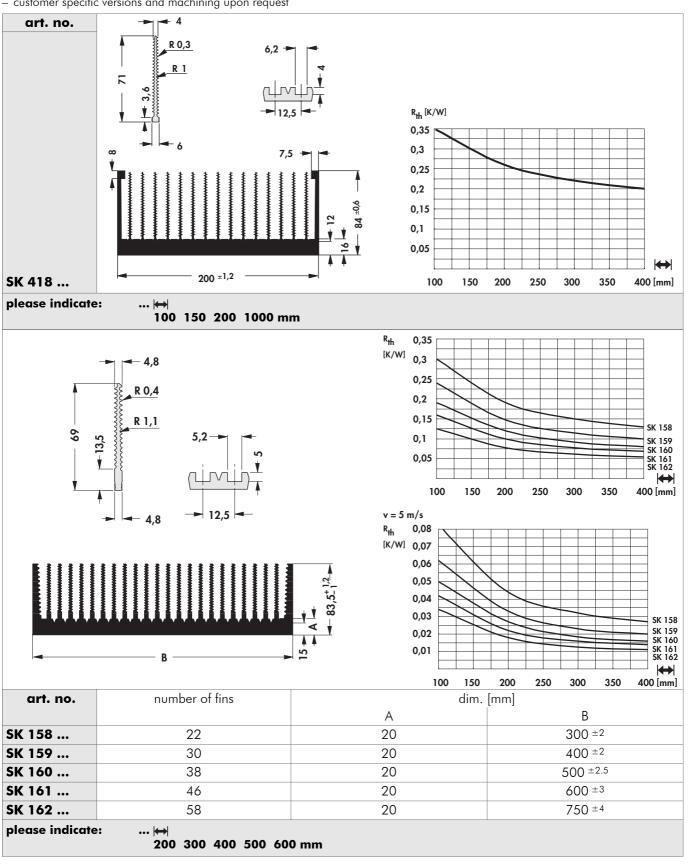
ŝ


C

fischer elektronik 23

Welded high perfomance heatsinks

- optimum fin geometry and fin quantity for free convection
- well suited for forced convection
- flat milled base (not SK 530, SK 531)
- -* = welded joint (not SK 530, SK 531)
- length according customer's details
- customer specific versions and machining on request



High decorative surfaces →	•	A 9
Heatsink profile-overview →	•	A 21
Heatsink as visual & decor-parts →	•	A 10
Drilling pattern for Solid State Relais →	•	A 12

heatsinks for Solid State Relais Special heatsink design Special profiles Technical introduction $\begin{array}{r} \rightarrow \quad A \ 11 - 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

High performance heatsinks with press-in fins

- other length according to customer's details
- customer specific versions and machining upon request

High decorative surfaces A 9 Heatsink profile-overview → A 21 Heatsink as visual & decor-parts → A 10 Drilling pattern for Solid State Relais \rightarrow A 12

heatsinks for Solid State Relais Special heatsink design . Special profiles **Technical introduction**

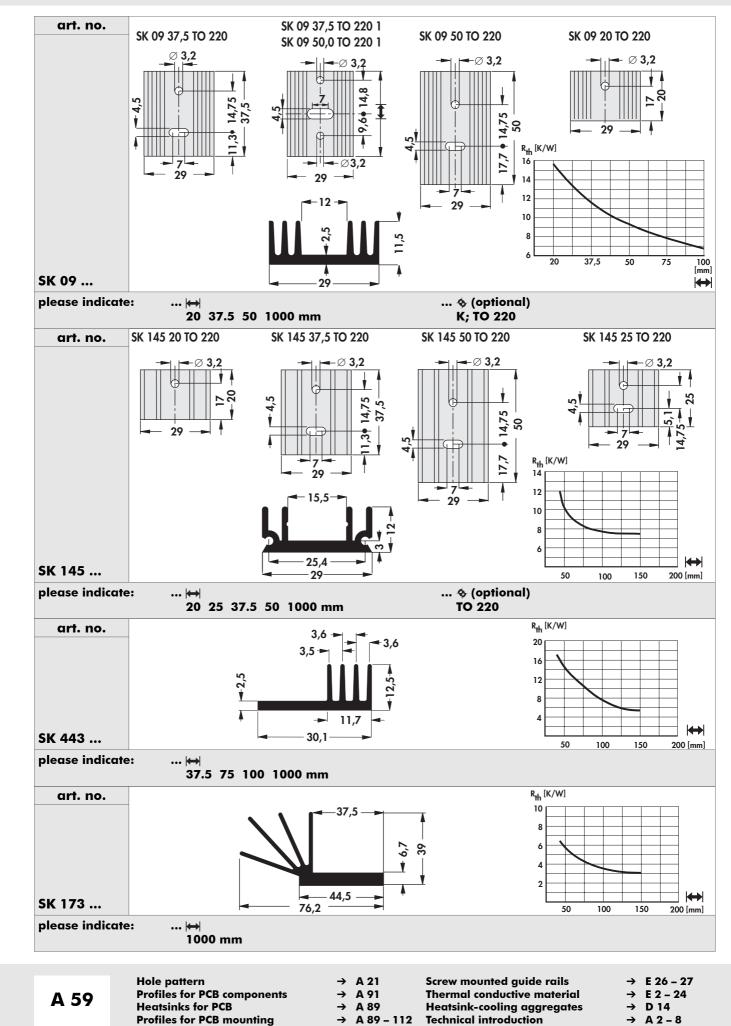
A 11 – 12 → → A 137 – 138 → A 140 → A 2 – 8

-

1

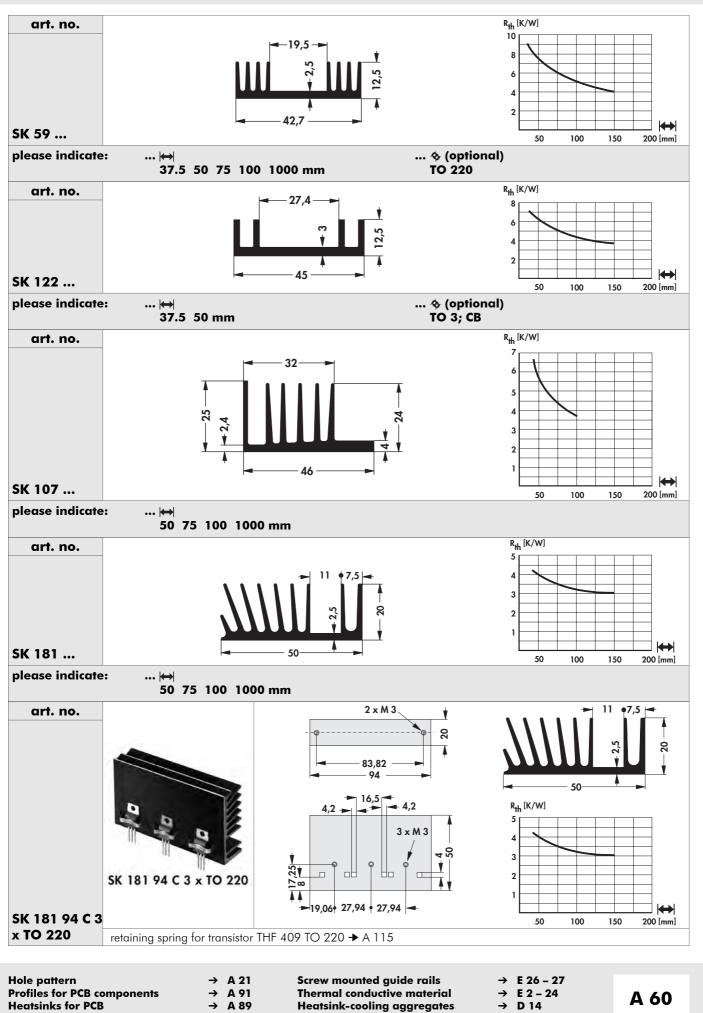
ŝ

C



Standard extruded heatsinks

Δ


.

C

Ν

Standard extruded heatsinks

Heatsinks for PCB

Profiles for PCB mounting

A 89

A 89 – 112

Technical introduction

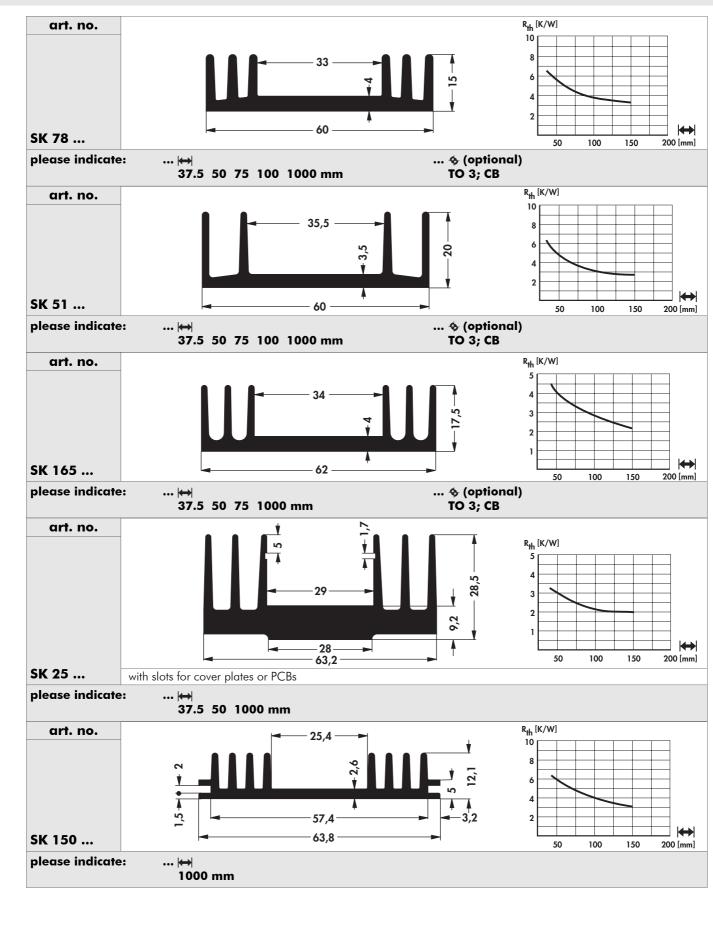
→

→

→ D 14

→

A 2 – 8


-

1

C

Standard extruded heatsinks

A 61

Downloaded from Arrow.com.

Hole pattern Profiles for PCB components Heatsinks for PCB Profiles for PCB mounting $\begin{array}{c} \rightarrow & A \ 21 \\ \rightarrow & A \ 91 \\ \rightarrow & A \ 89 \\ \rightarrow & A \ 89 \end{array}$

A 91Thermal conductive materialA 89Heatsink-cooling aggregatesA 89 – 112Technical introduction

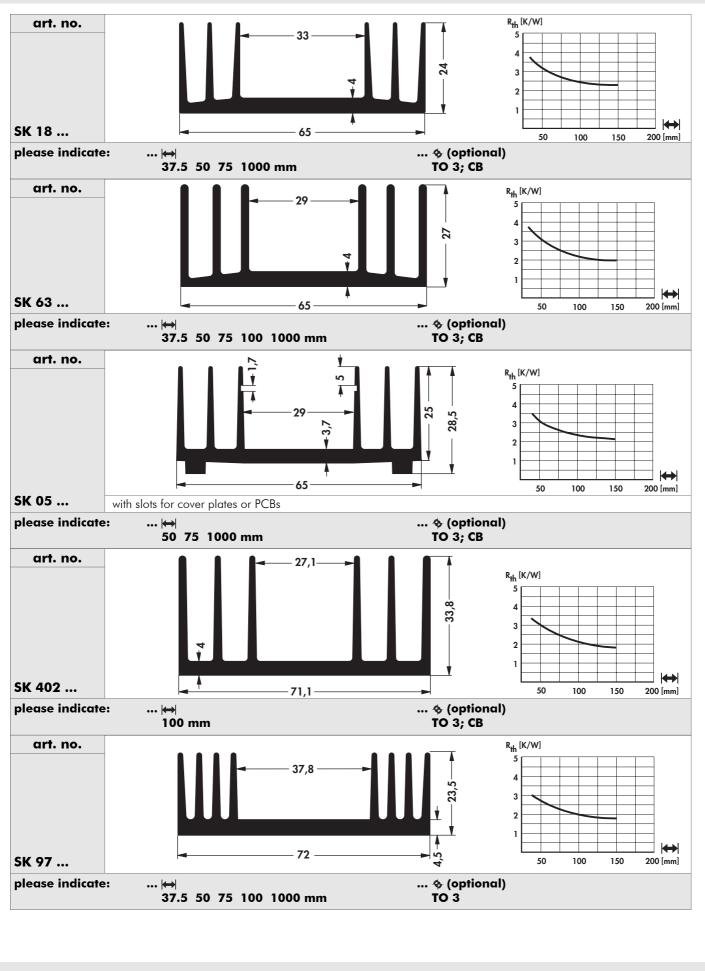
Screw mounted guide rails

 $\begin{array}{r} \rightarrow \quad E \ 26 - 27 \\ \rightarrow \quad E \ 2 - 24 \\ \rightarrow \quad D \ 14 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

D

C

Ν



-

ŝ

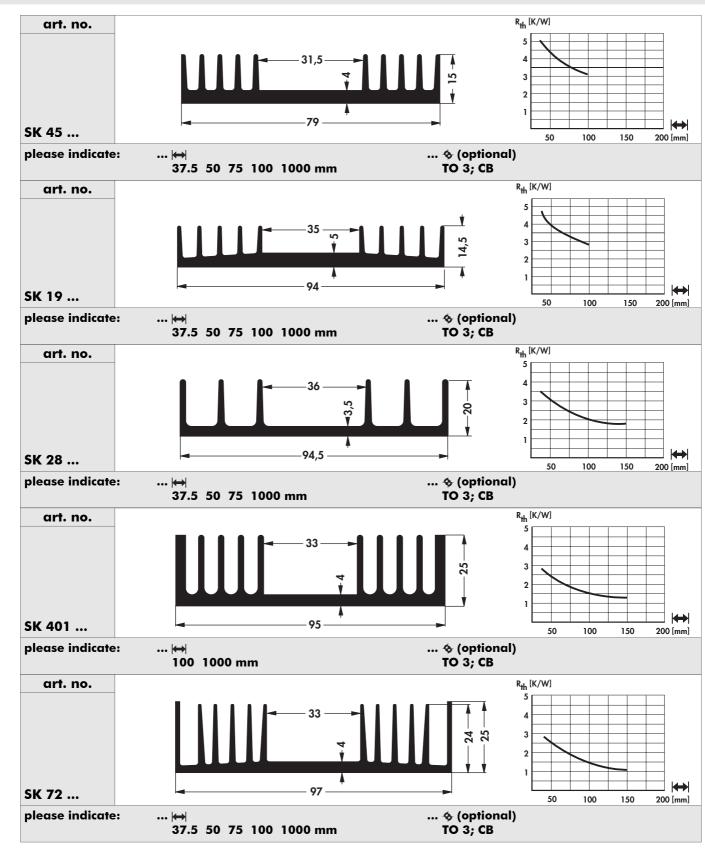
C

Standard extruded heatsinks

Hole pattern	
Profiles for PCB components	
Heatsinks for PCB	
Profiles for PCB mounting	

A 89 – 112

→


Screw mounted guide rails Thermal conductive material Heatsink-cooling aggregates Technical introduction

- $\begin{array}{r} \rightarrow \quad E \ 26 27 \\ \rightarrow \quad E \ 2 24 \\ \rightarrow \quad D \ 14 \\ \rightarrow \quad A \ 2 8 \end{array}$
- A 62

N

Standard extruded heatsinks

Ν

N

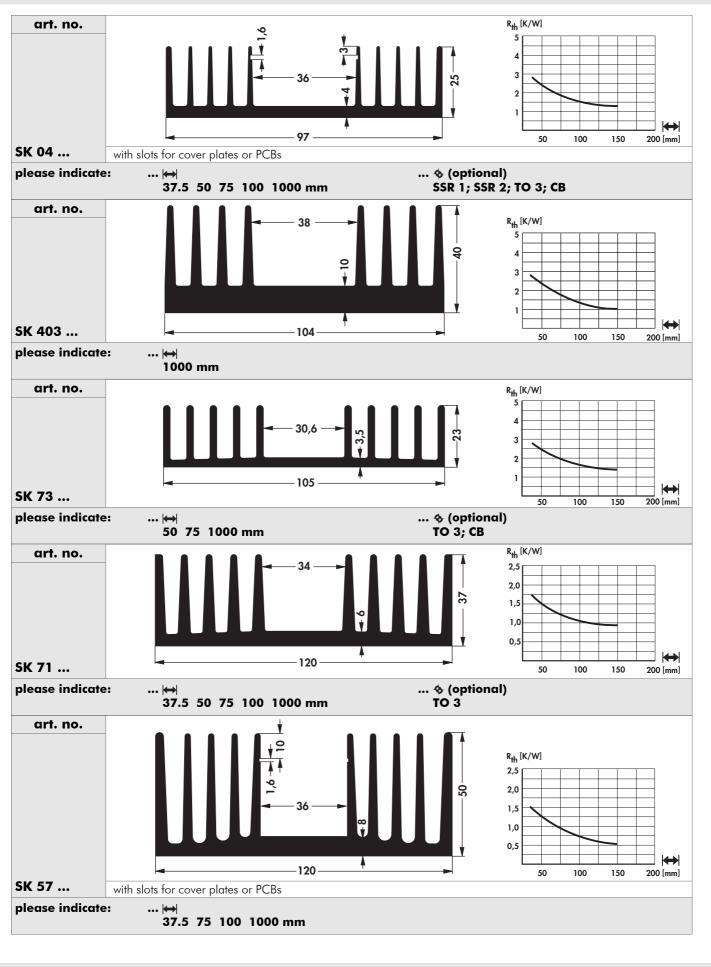
Δ

P

0

D

ŝ


C

A 63

Hole pattern Profiles for PCB components Heatsinks for PCB Profiles for PCB mounting $\begin{array}{l} \rightarrow \quad A \ 21 \\ \rightarrow \quad A \ 91 \\ \rightarrow \quad A \ 89 \\ \rightarrow \quad A \ 89 - 112 \end{array}$

Screw mounted guide rails Thermal conductive material Heatsink-cooling aggregates Technical introduction $\begin{array}{r} \rightarrow \quad E \ 26 - 27 \\ \rightarrow \quad E \ 2 - 24 \\ \rightarrow \quad D \ 14 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

Standard extruded heatsinks

Hole pattern
Profiles for PCB components
Heatsinks for PCB
Profiles for PCB mounting

A 89 – 112

→

Screw mounted guide rails Thermal conductive material Heatsink-cooling aggregates Technical introduction

- $\begin{array}{l} \rightarrow \quad E \ 26 27 \\ \rightarrow \quad E \ 2 24 \\ \rightarrow \quad D \ 14 \\ \rightarrow \quad A \ 2 8 \end{array}$
- A 64

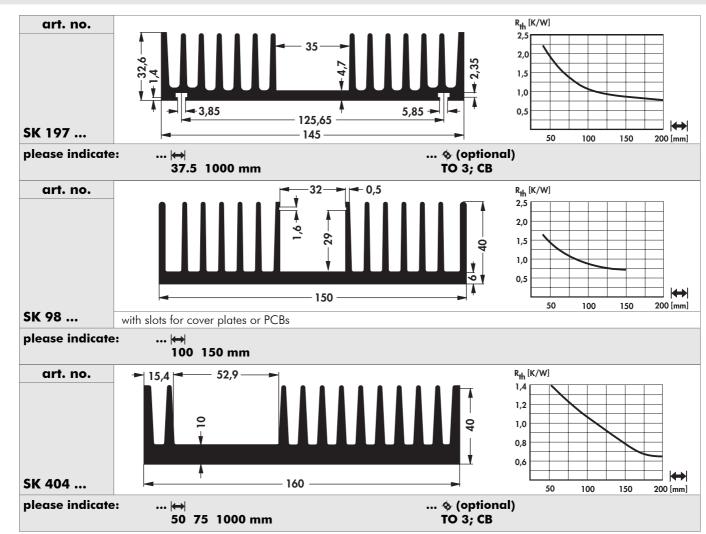
N

N

Downloaded from Arrow.com.

A

-


ŝ

ŝ

C

Standard extruded heatsinks

Α

C

G

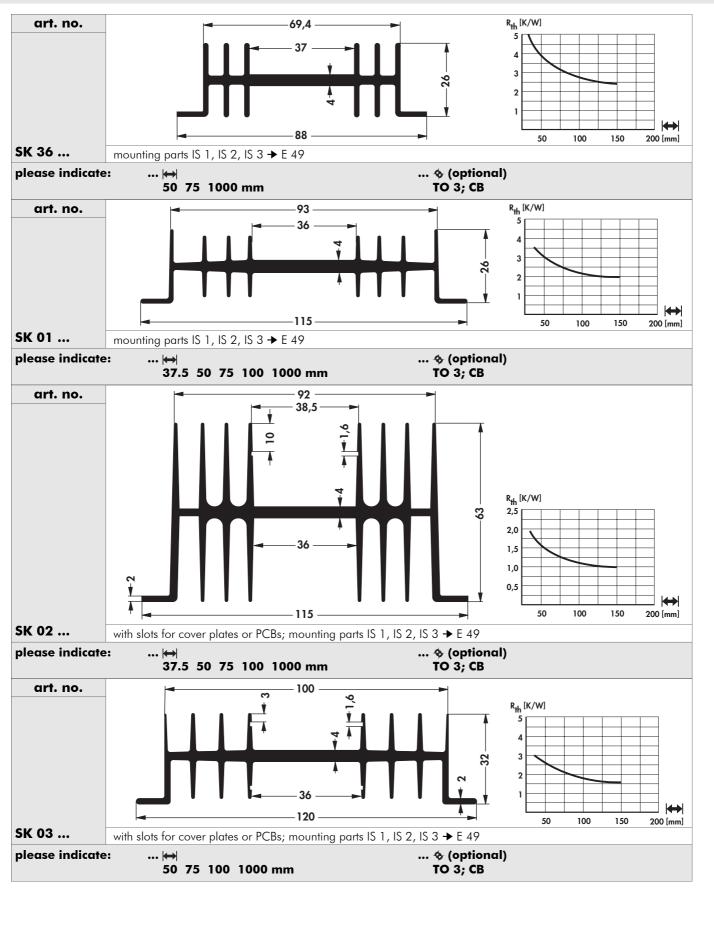
E

N

A 65

Hole pattern Profiles for PCB components Heatsinks for PCB Profiles for PCB mounting $\begin{array}{l} \rightarrow \quad A \ 21 \\ \rightarrow \quad A \ 91 \\ \rightarrow \quad A \ 89 \\ \rightarrow \quad A \ 89 - 112 \end{array}$

Screw mounted guide rails Thermal conductive material Heatsink-cooling aggregates Technical introduction $\begin{array}{r} \rightarrow \quad E \ 26 - 27 \\ \rightarrow \quad E \ 2 - 24 \\ \rightarrow \quad D \ 14 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

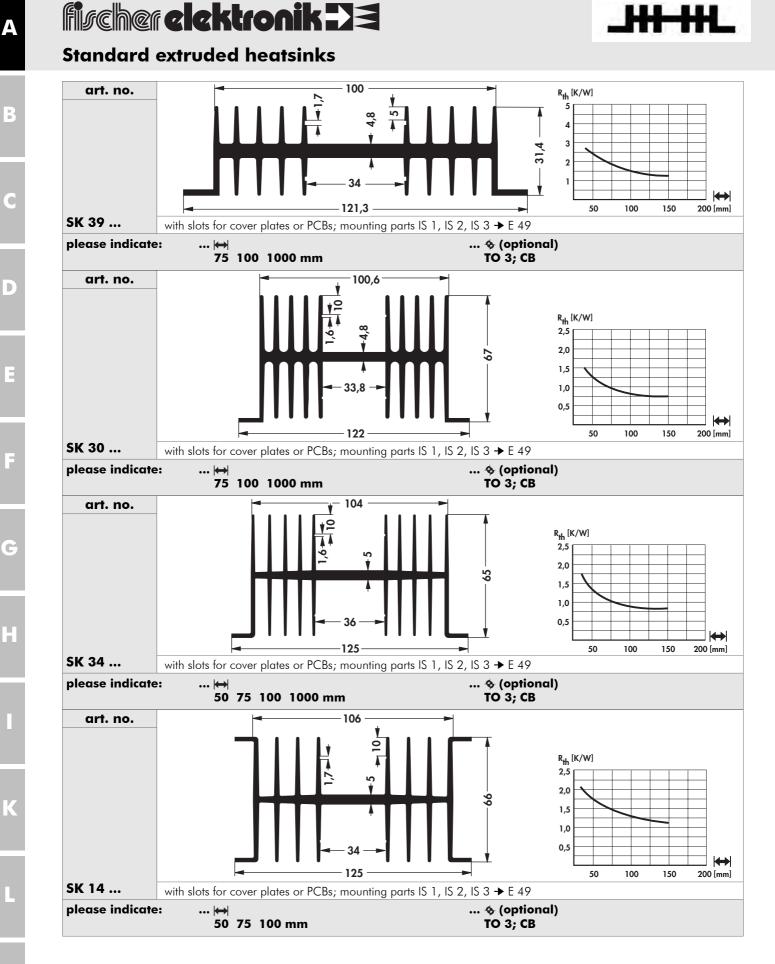

-

1

ŝ

C

Standard extruded heatsinks



 $\begin{array}{rcl} \mbox{Thermal conductive material} & \rightarrow & \mbox{E}\ 2-5 \\ \mbox{Mounting material for semiconduct.} & \rightarrow & \mbox{E}\ 44-48 \\ \mbox{Mounting parts for heatsinks} & \rightarrow & \mbox{E}\ 49-50 \\ \mbox{Distance sleeves for PCB's in HP grid} \rightarrow & \mbox{E}\ 39 \end{array}$

Order example Guide rails for PCBs Heatsink-cooling aggregates Technical introduction $\begin{array}{l} \rightarrow \quad A \ 21 \\ \rightarrow \quad E \ 26 - 27 \\ \rightarrow \quad D \ 14 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

A 66

N

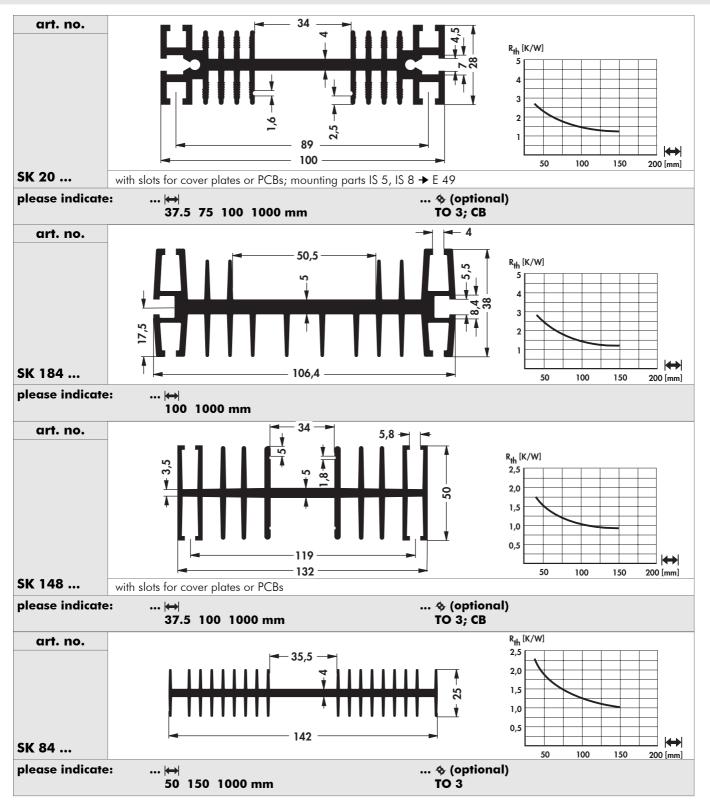
A 67

Downloaded from Arrow.com.

Thermal conductive material→E 2 -Mounting material for semiconduct.→E 44Mounting parts for heatsinks→E 49Distance sleeves for PCB's in HP grid →E 39

 $\begin{array}{r} \rightarrow \quad E \ 2 - 5 \\ \rightarrow \quad E \ 44 - 48 \\ \rightarrow \quad E \ 49 - 50 \\ \rightarrow \quad E \ 39 \end{array}$

Order example Guide rails for PCBs Heatsink-cooling aggregates Technical introduction $\begin{array}{l} \rightarrow \quad A \ 21 \\ \rightarrow \quad E \ 26 - 27 \\ \rightarrow \quad D \ 14 \\ \rightarrow \quad A \ 2 - 8 \end{array}$


1

-

ŝ

C

Standard extruded heatsinks

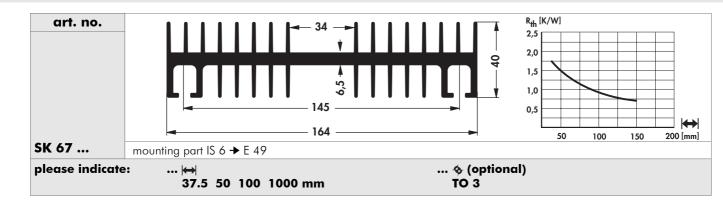
Guide rails for PCBs	→	E 26 – 30	Order example	÷	A
Mounting material for semiconduct.	→	E 44 – 48	Assignment table	\rightarrow	A
Mounting parts for heatsinks	→	E 49 – 50	Hole pattern	→	A
Heatsink-cooling aggregates	→	D 14	Technical introduction	→	A

A 68

N

Standard extruded heatsinks

Α

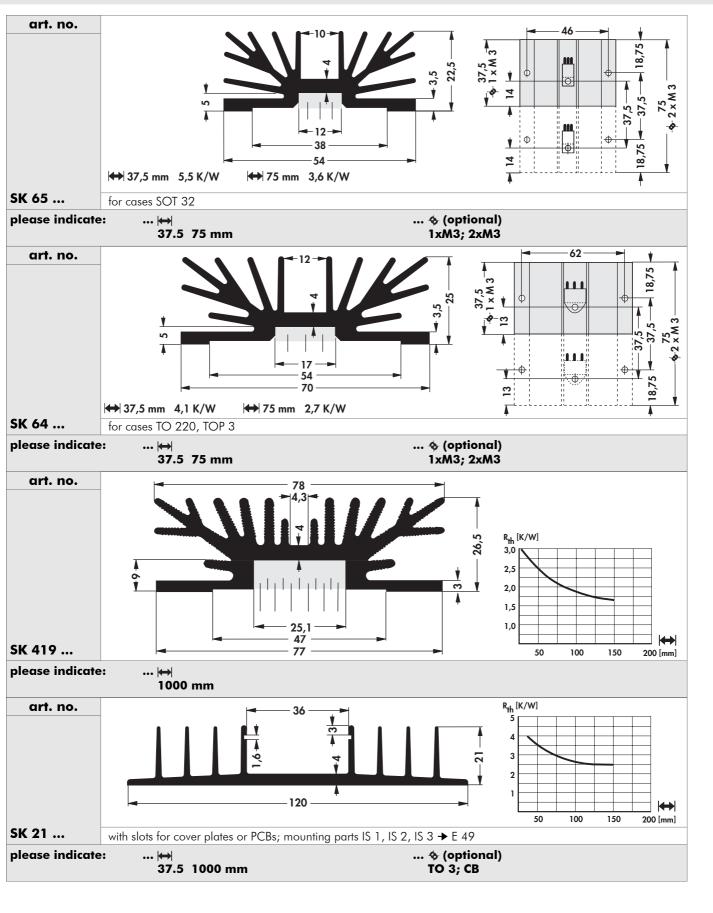

B

C

D

E

G


Guide rails for PCBs Mounting material for semiconduct. \rightarrow E 44 – 48 Mounting parts for heatsinks **Heatsink-cooling aggregates**

→ E 26 – 30 → E 49 – 50 → D 14

Order example Assignment table Hole pattern **Technical introduction** → A 21 → A 18 – 20 → A 21 → A 2 – 8

Ν

Standard extruded heatsinks

Mounting for TO 3 angle Order example Special heatsink design Heatsinks for DC/DC converter $\begin{array}{r} \rightarrow \quad A \ 125 \\ \rightarrow \quad A \ 21 \\ \rightarrow \quad A \ 137 - 7 \\ \rightarrow \quad A \ 113 - 7 \end{array}$

5 Insulting clamping parts Mica wafers

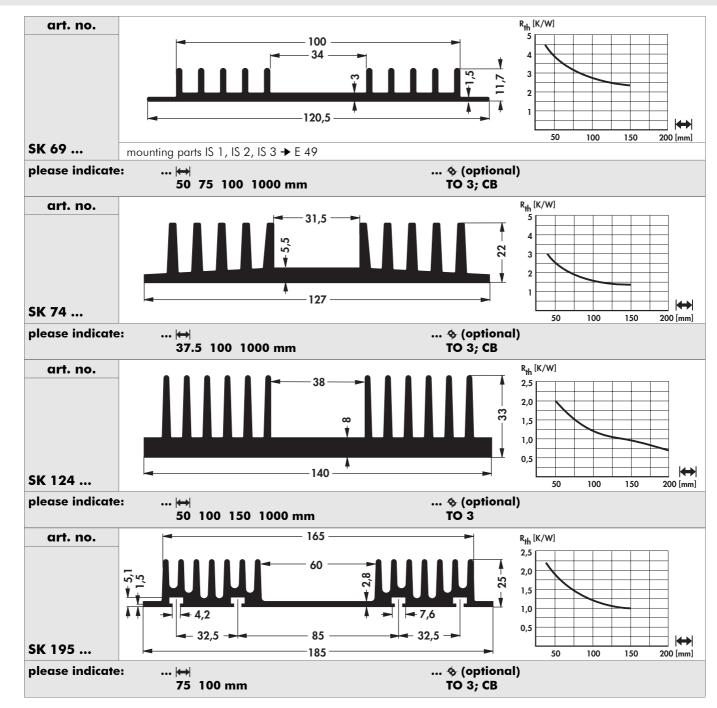
A 137 – 138 Insulator sleeves

A 113 – 114 Technical introduction

 $\begin{array}{rrr} \rightarrow & E \, 45 \\ \rightarrow & E \, 19 \\ \rightarrow & E \, 52 \\ \rightarrow & A \, 2 - 8 \end{array}$

A 70

-


Ī

C

Downloaded from Arrow.com.

Standard extruded heatsinks

C

D

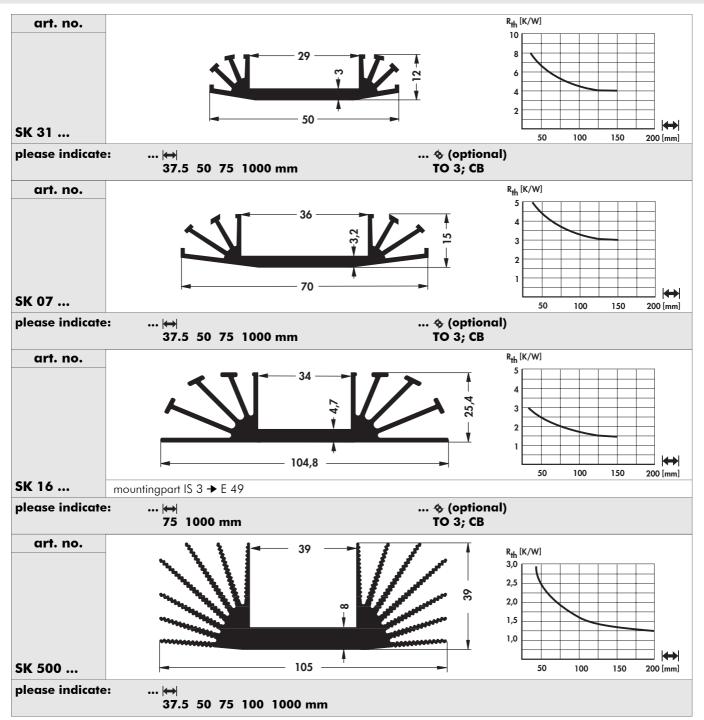
Ν

A 71

Mounting for TO 3 angle **Order example** Special heatsink design Heatsinks for DC/DC converter

→ E 45 → A 125 **Insulting clamping parts** → A 21 **Mica wafers** → A 137 – 138 Insulator sleeves → A 113 – 114 Technical introduction

→ E19 → E 52 → A 2 – 8


-

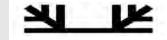
1

ŝ

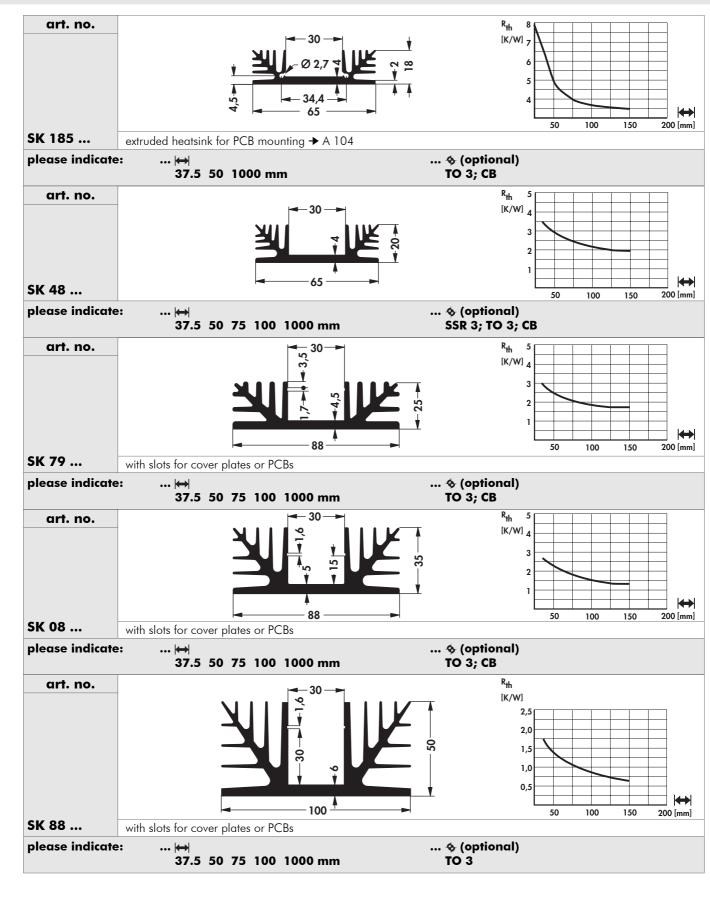
C

Standard extruded heatsinks

Special heatsink design Mounting for TO 3 angle **Special profiles** Fin coolers


A 129

→


→

A 137 – 138 Hole pattern Profiles for lock-in fixing spring A 125 A 140

- **Extruded heatsinks Technical introduction**
- A 21 → → A 84 – 88 → A 22 – 83 → A 2 – 8

Standard extruded heatsinks

Μ

A 73

Assignment table Standard aluminium profiles Extruded heatsinks High capacity cooling aggregat.

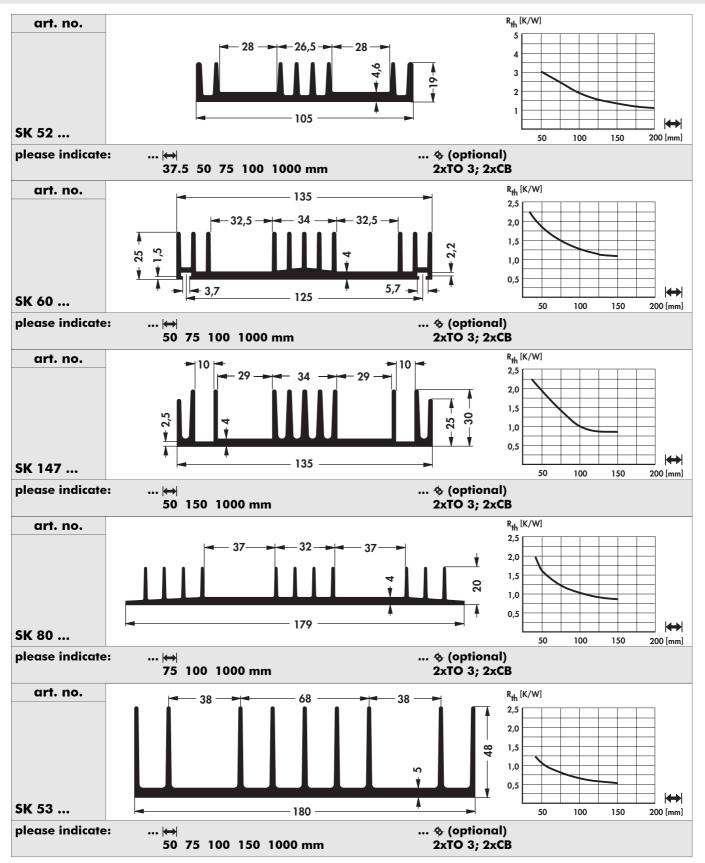
→

→

→

E 10 E 7 A 2 – 8

A 115 – 117


.

C

Downloaded from Arrow.com.

Standard extruded heatsinks

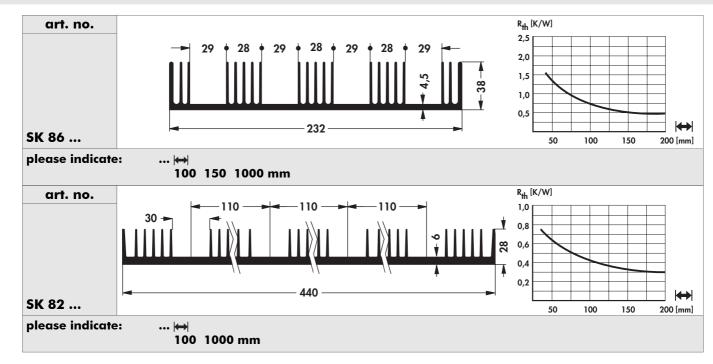
Hole pattern Standard aluminium profiles **Extruded heatsinks** Thermal conductive material

A 21 **→** →

→

- Heatsink as visual & decor-parts A 135 – 136 Assignment table →
 - A 22 83 Kapton insulator washers E 2 – 5
 - **Technical introduction**
- A 10 → → A 18 – 20 → E 16 → A 2 – 8
- A 74

Downloaded from Arrow.com.


-

1

1

Standard extruded heatsinks

A 75

Hole pattern Standard aluminium profiles **E**xtruded heatsinks Thermal conductive material

→ A 21 \rightarrow A 135 – 136 Assignment table → A 22 – 83 Kapton insulator washers → E2-5 **Technical introduction**

Heatsink as visual & decor-parts

→ A 10 → A 18 – 20 → E 16 → A 2 – 8

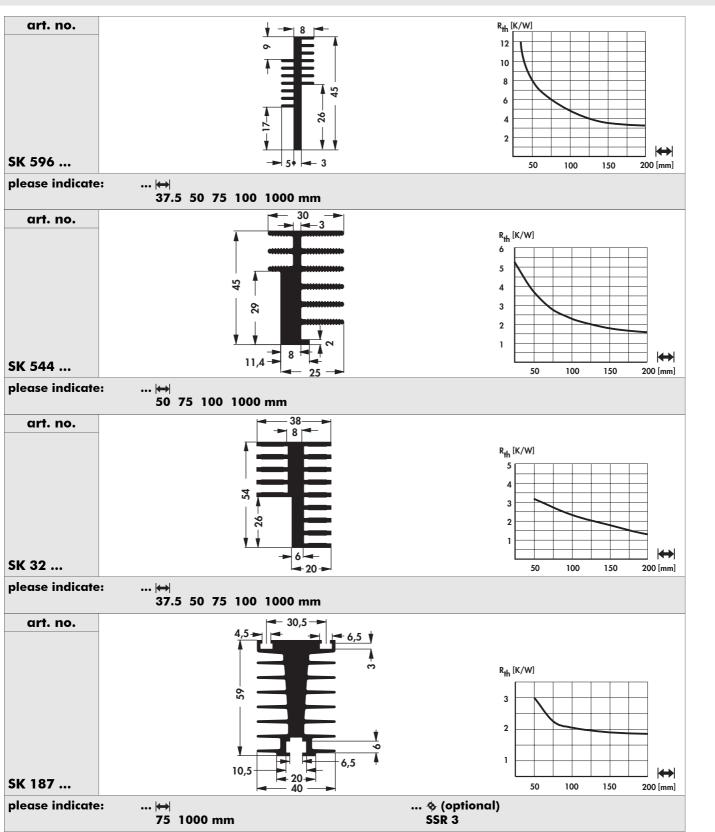
B

C

D

Ε

F


G

K

Ν

N

Standard extruded heatsinks

Hole pattern Standard aluminium profiles **Extruded heatsinks** Thermal conductive material

A 21 → → →

→

heatsinks for Solid State Relais A 135 – 136 Assignment table

Kapton insulator washers A 22 – 83 E 2 – 5

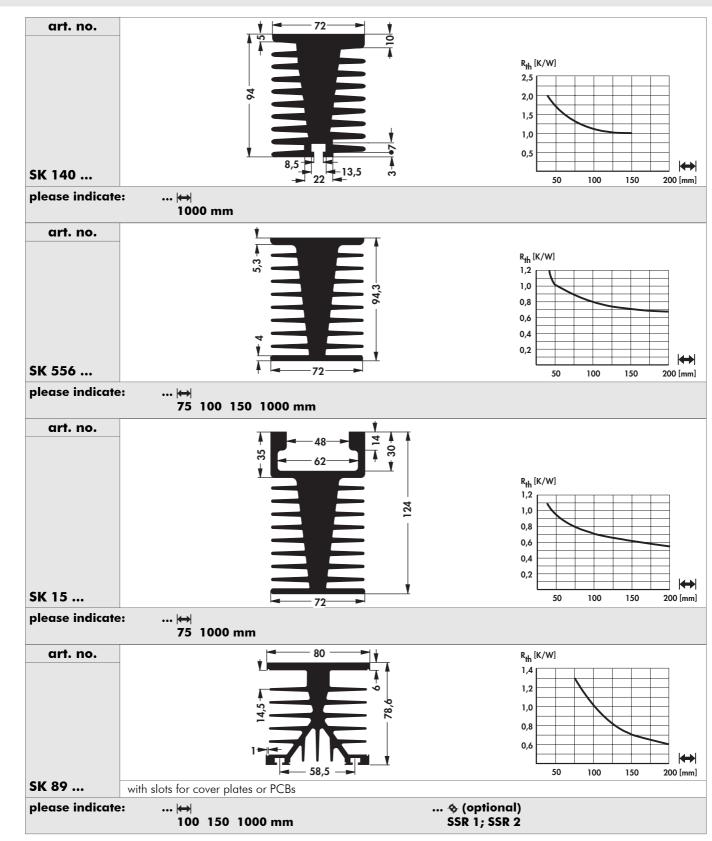
Technical introduction

→ A 11 - 12 → A 18 – 20 → E16 → A 2 – 8

A 76

Downloaded from Arrow.com.

-


1

Ī

ŝ

Standard extruded heatsinks

Δ

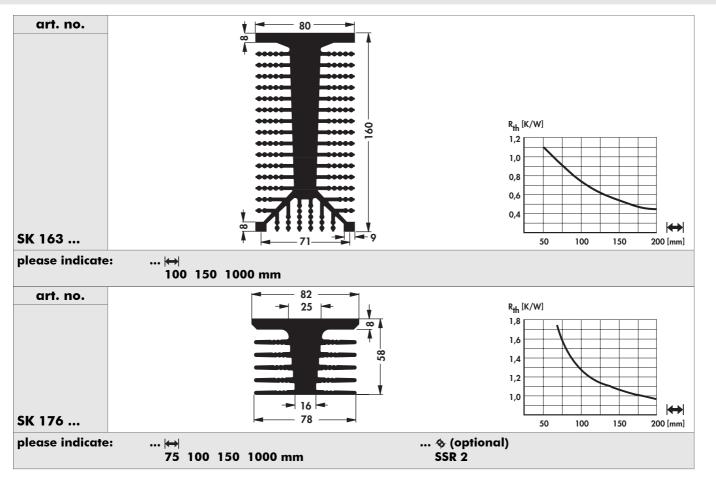
.

D

C

Ν

A 77


Hole pattern Standard aluminium profiles **Extruded heatsinks** Thermal conductive material

heatsinks for Solid State Relais A 21 → → A 135 – 136 Assignment table A 22 – 83 → → E2-5 **Technical introduction**

Kapton insulator washers

A 11 – 12 → → A 18 – 20 → E 16 → A 2 – 8

Standard extruded heatsinks

Hole pattern Standard aluminium profiles Extruded heatsinks Thermal conductive material

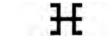
 $\begin{array}{ccc} & \rightarrow & A & 21 \\ \text{iles} & \rightarrow & A & 135 - 136 \\ & \rightarrow & A & 22 - 83 \\ \text{rial} & \rightarrow & E & 2 - 5 \end{array}$

A 21heatsinks for Solid State RelaisA 135 - 136Assignment tableA 22 - 83Kapton insulator washers

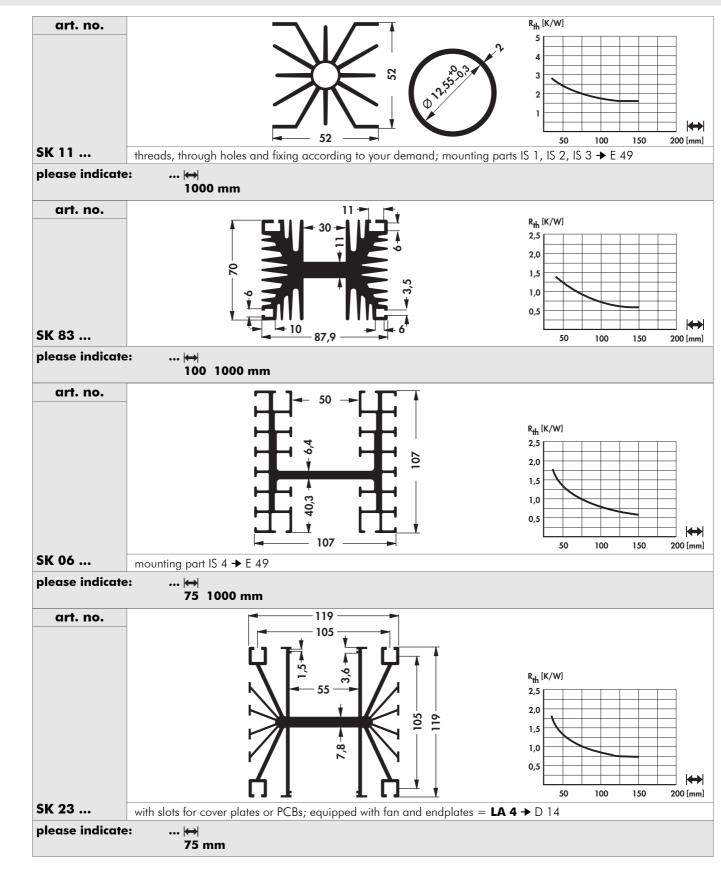
- 5 Technical introduction

A 78

Downloaded from Arrow.com.


Δ

1

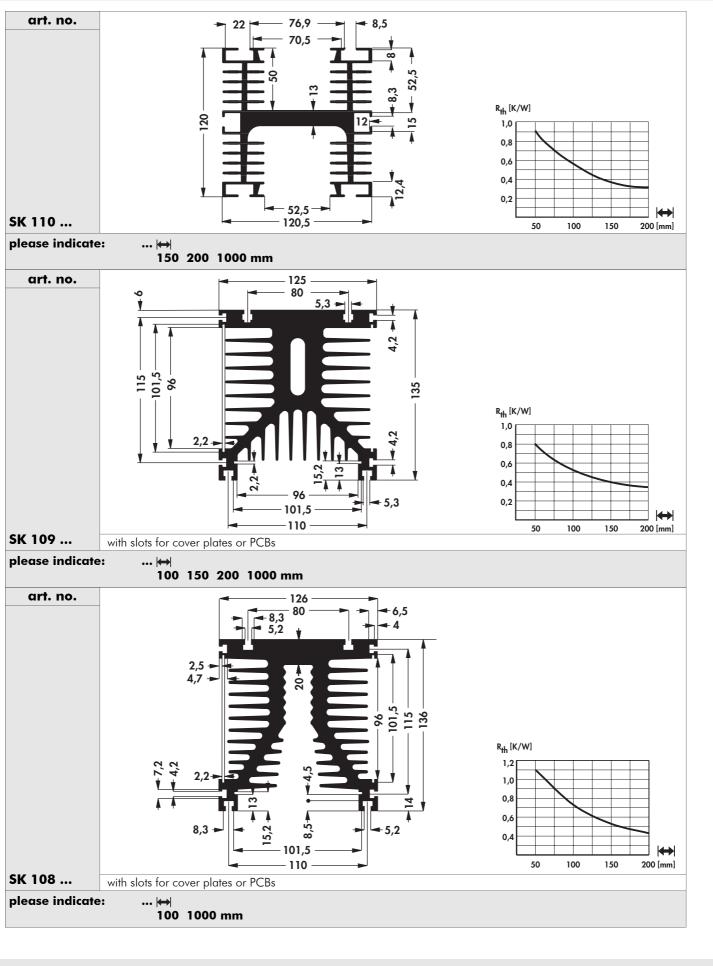

1

ŝ

ŝ

Standard extruded heatsinks

A 79


Profiles for PCB components High capacity heatsinks Mounting for TO 3 angle Heatsinks for PCB → A 91 → A 57 – 58 → A 125

→ A 89 - 112 T

heatsinks for lock-in retaining spring→A 85 - 88Heatsink-cooling aggregates→D 14Special heatsink design→A 137 - 138Technical introduction→A 2 - 8

D

Standard extruded heatsinks

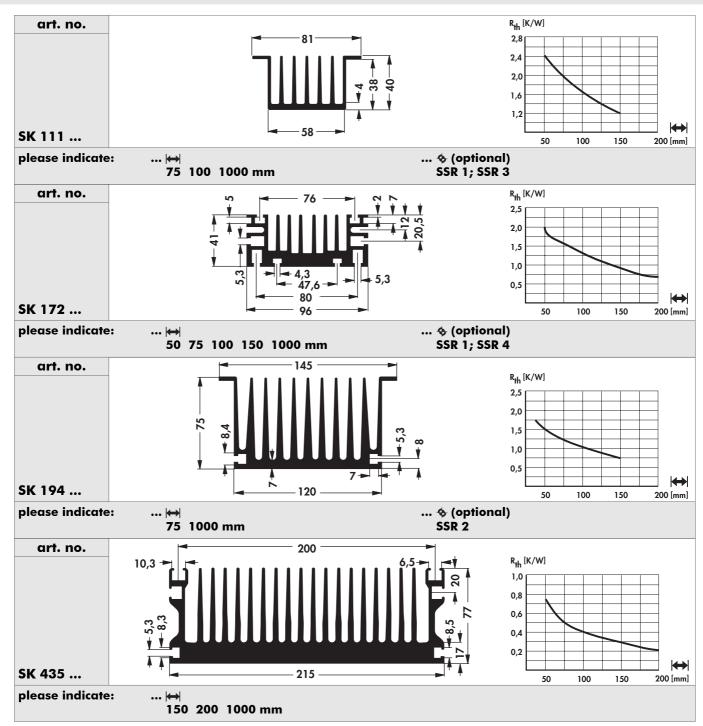
Profiles for PCB components High capacity heatsinks Mounting for TO 3 angle **Heatsinks for PCB**

→

→ A 57 – 58

- A 125 →
 - A 89 112 **Technical introduction**

heatsinks for lock-in retaining spring→ A 85 – 88 Heatsink-cooling aggregates Special heatsink design


→ D 14 A 137 – 138 → → A 2 – 8

A 80

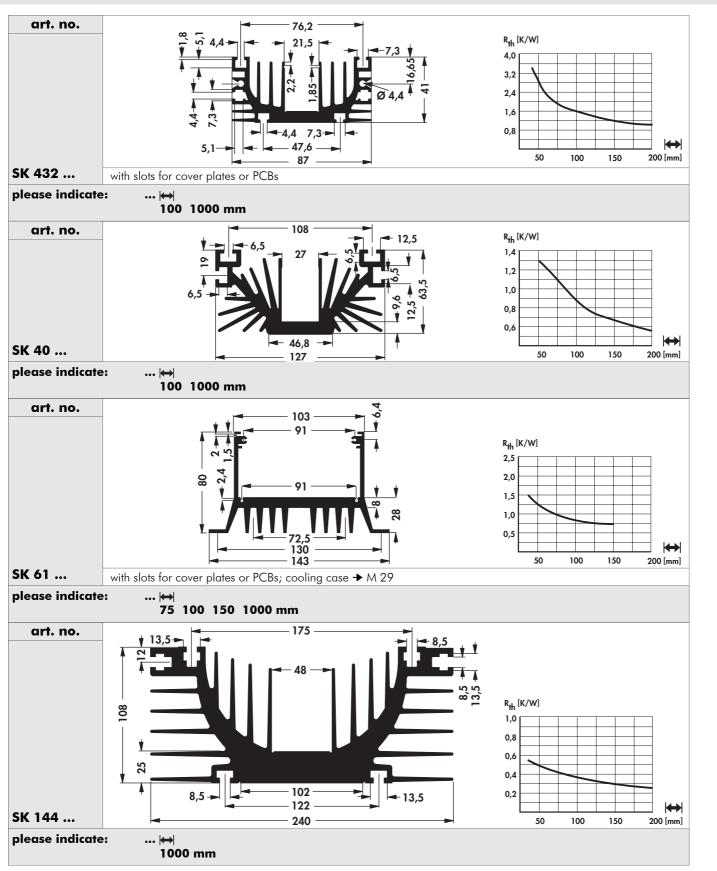
1

Standard extruded heatsinks

B

D

G


M

N

A 81

Downloaded from Arrow.com.

Standard extruded heatsinks

Extruded heatsinks High capacity heatsinks A 57 – 58 → Heatsinks for DC/DC converter → A 113 – 114 Die-cast heatsinks heatsinks for lock-in retaining spring \rightarrow A 85 – 88 **High decorative surfaces Heatsink profile-overview** A 13 – 17 **Technical introduction** →

A 22 – 83 → → A 125 → A 9 → A 2 – 8

A 82

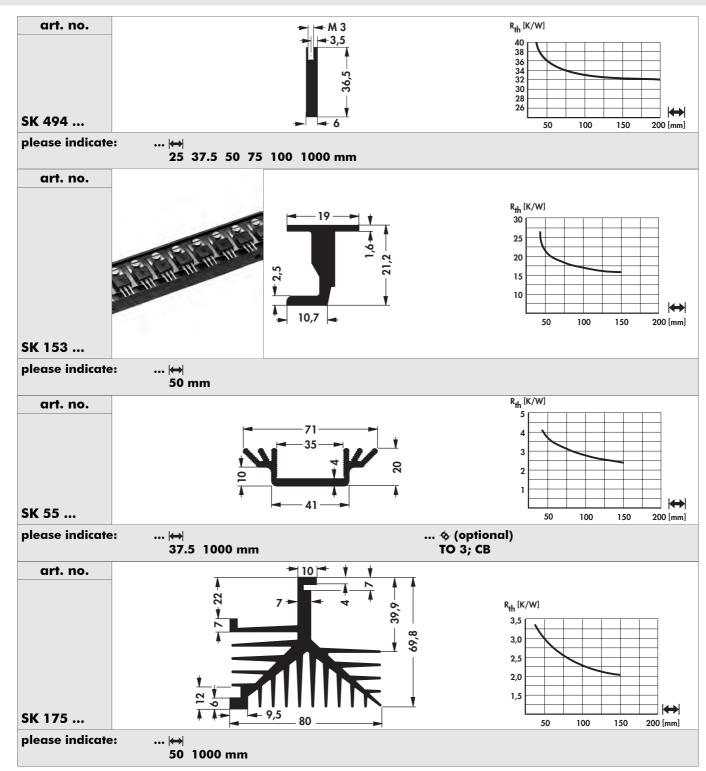
-

ŝ

ŝ

Standard extruded heatsinks

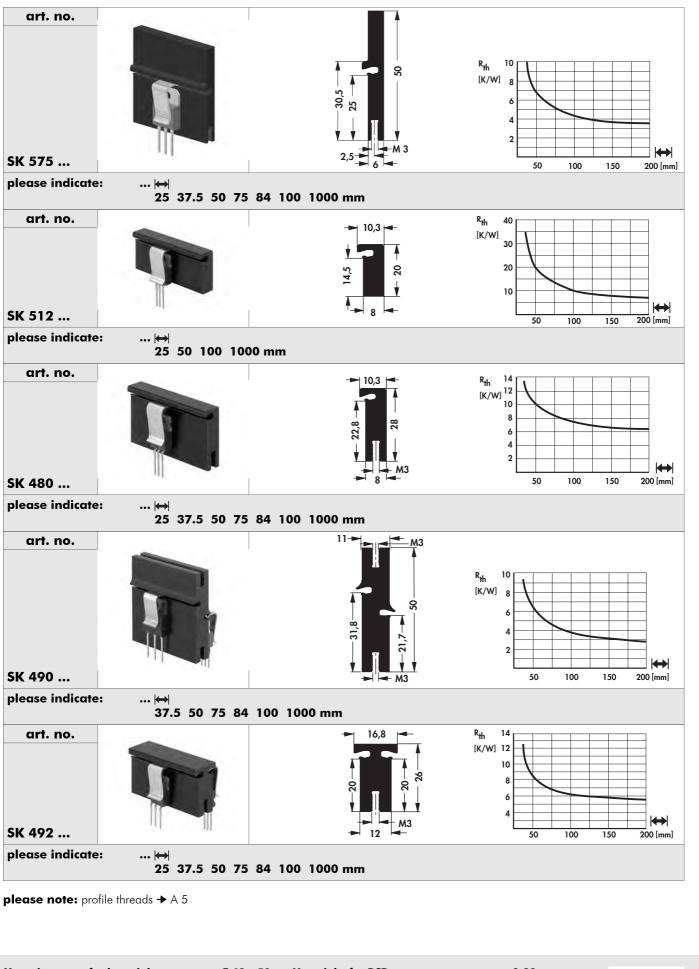
Δ


B

D

G

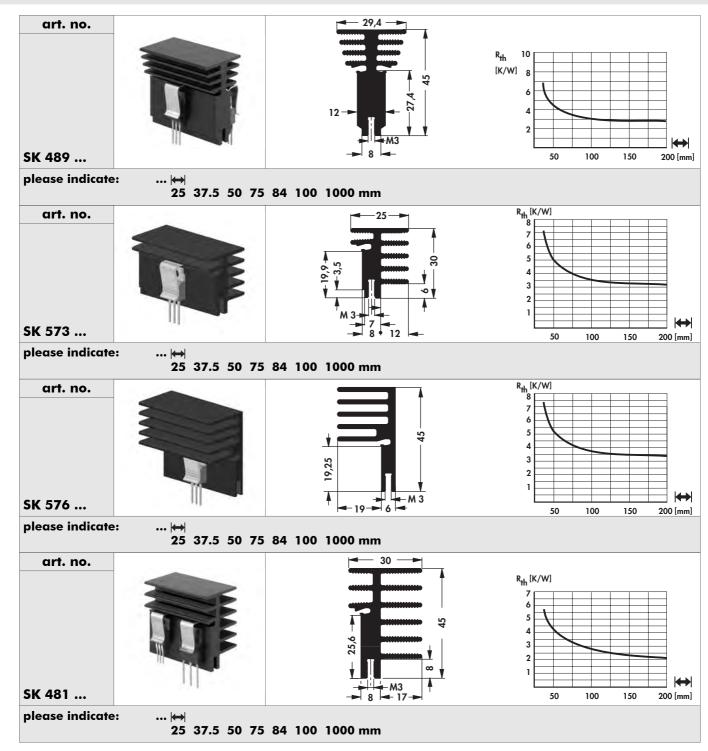
Ν


N

Downloaded from Arrow.com.

Extruded heatsinks for lock-in retaining spring

Insulating caps \rightarrow E 51 P	Heatsinks for PCB → A 89 Profiles for PCB components → A 91 Heatsinks with threaded rail → A 93 Technical introduction → A 2 - 8	A 84
--------------------------------------	--	------


Δ

-

1

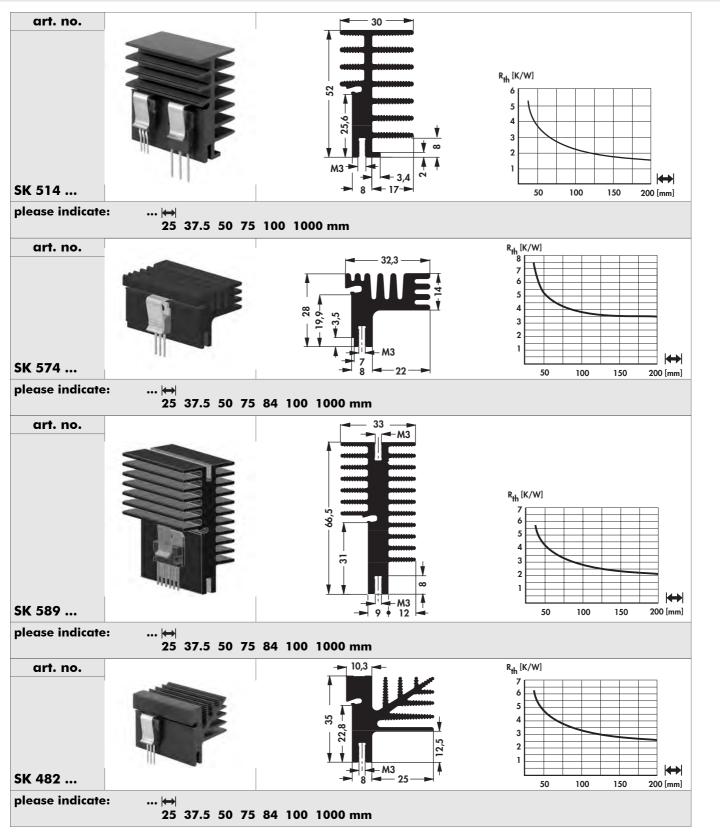
ŝ

Extruded heatsinks for lock-in retaining spring

please note: profile threads → A 5

Downloaded from Arrow.com.

A 85


Б

E

Ν

N

Extruded heatsinks for lock-in retaining spring

please note: profile threads → A 5

Mounting parts for heatsinks	→	E 49 – 50	Heatsinks for PCB	→	A 89
Insulating caps	→	E 51	Profiles for PCB components	→	A 91
Mounting pads	→	E 46	Heatsinks with threaded rail	→	A 93
Lock-in retaining spring for transistor	s→	A 119 – 121	Technical introduction	→	A 2 – 8

Downloaded from Arrow.com.

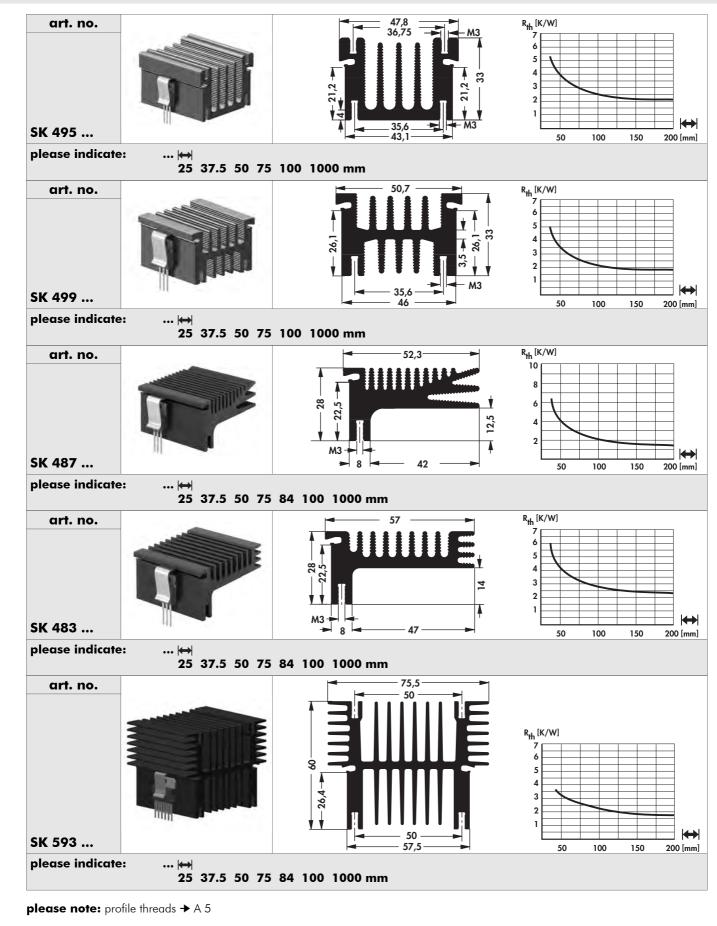
Δ

-

1

E

C


k

- 1

A 86

N

Extruded heatsinks for lock-in retaining spring

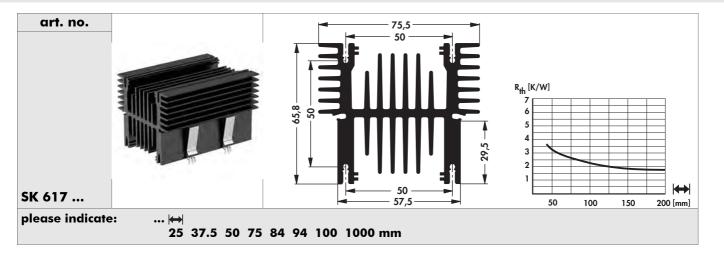
7 Insulating caps -	E 49 – 50 E 51 E 46 A 119 – 121	Heatsinks for PCB Profiles for PCB components Heatsinks with threaded rail Technical introduction	\rightarrow \rightarrow	A 89 A 91 A 93 A 2 - 8
---------------------	--	--	-----------------------------	---------------------------------

Downloaded from Arrow.com.

Μ

N

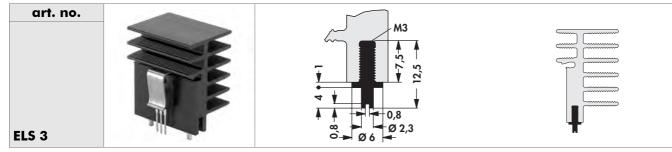
B


0

D

÷.

G


Extruded heatsinks for lock-in retaining spring

please note: profile threads → A 5

Screw-in solder pin ELS 3

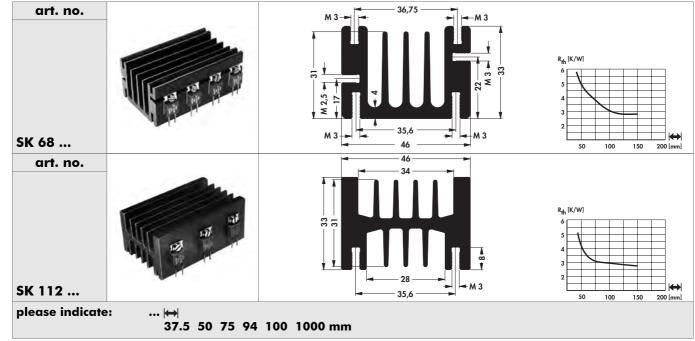
- screw in solder pin made of brass
- easy mounting
- secure hold
- surface coating suitable for soldering
- suitable for all heatsinks with M3 profile thread
- position in the threaded channel as required
- specific designs upon customer's request

Mounting parts for heatsinks \rightarrow E 49 - 50Heatsinks for PCBInsulating caps \rightarrow E 51Profiles for PCB componentsMounting pads \rightarrow E 46Heatsinks with threaded railLock-in retaining spring for transistorsA 119 - 121Technical introduction

Δ

-

1


1

ŝ

Extruded heatsinks for PCB mounting

Heatsinks for printed circuit boards

- matching cylindrial screws according to DIN 84 with zinc coated surface
- M 3 thread diameter: 2.90 ... 2.94 mm (art. no.: SZ M 3 x 8)
- screw-in solder pin M 3 (art. no.: ELS 3)

please note: profile threads → A 5

Ν

Ν

Lock-in retaining spring for transistor	s→	A 119 – 121	Miniature distance sleeves
Profiles for PCB components	→	A 91	Thermal conductive glue
Vibration dampers	→	E 41	Thermal conductive paste
Heatsinks with threaded rail	→	A 93	Technical introduction

 $\begin{array}{rrr} \rightarrow & E & 34 \\ \rightarrow & E & 23 - 24 \\ \rightarrow & E & 21 - 22 \\ \rightarrow & A & 2 - 8 \end{array}$

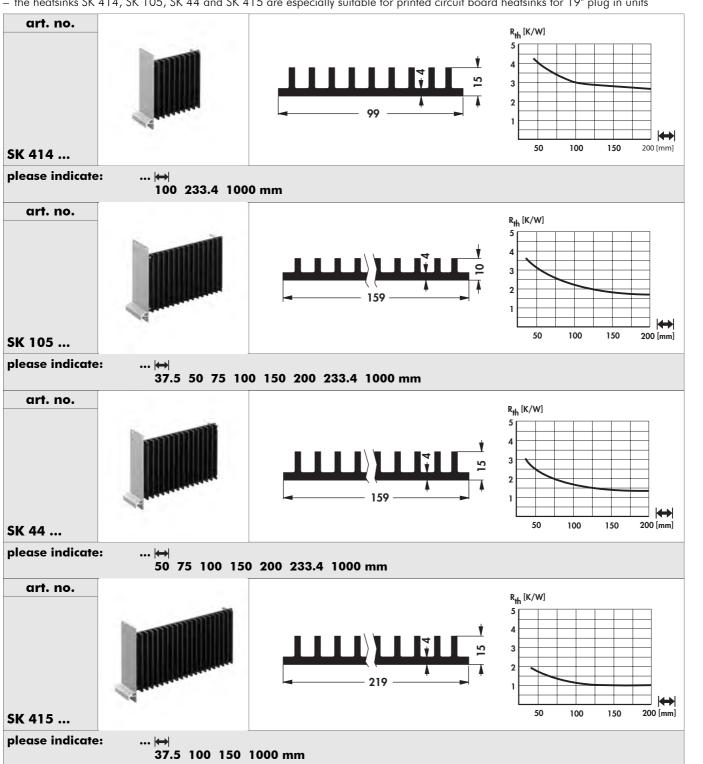
Downloaded from Arrow.com.

B

C

D

E


E

G

Extruded heatsinks for PCB mounting

Heatsinks for printed circuit boards

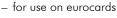
- the heatsinks SK 414, SK 105, SK 44 and SK 415 are especially suitable for printed circuit board heatsinks for 19" plug in units

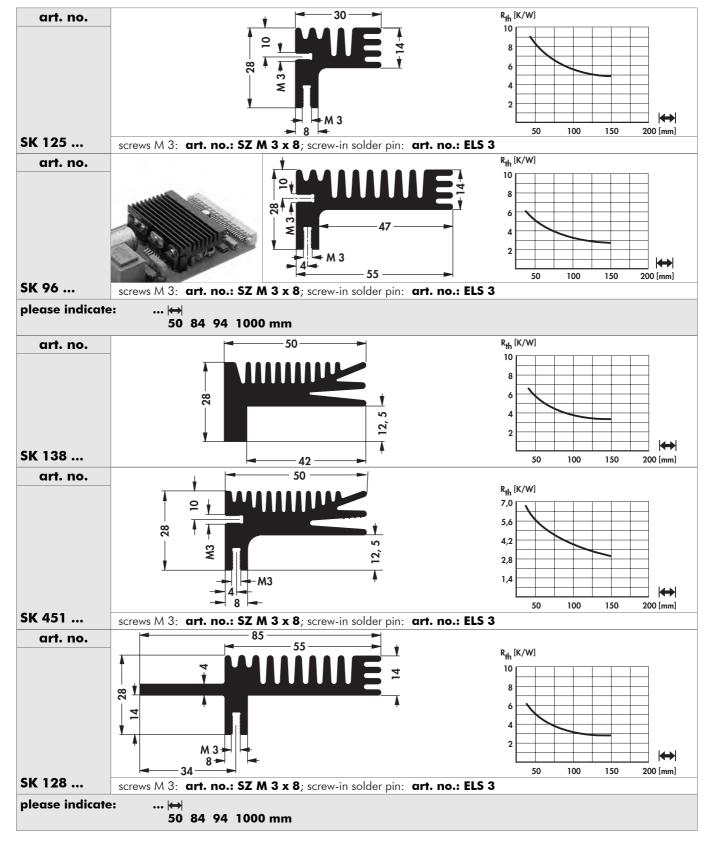
Lock-in retaining spring for transistors→ A 119 – 121 Thermal conductive material Heatsink profile overview → A 13 – 17 **Heatsinks** for PCB → A 89 Heatsinks with threaded rail → A 93

Profiles for lock-in fixing spring **Retaining springs for transistors Technical introduction**

E 2 – 23 → A 84 – 88 A 115 – 117 → → A 2 – 8

A 90


Downloaded from Arrow.com.


-

1

Extruded heatsinks for PCB mounting

Heatsinks for printed circuit boards

please note: profile pressed threads → A 5

A 91

Downloaded from Arrow.com.

Lock-in retaining spring for transistors→ A 119 – 121 Thermal conductive material Heatsink profile overview → Heatsinks for PCB → Heatsinks with threaded rail →

A 13 – 17 A 89 A 93

Profiles for lock-in fixing spring **Retaining springs for transistors Technical introduction**

E 2 – 23 → A 84 – 88 A 115 – 117 → → A 2 – 8


C

.

÷,

M

Extruded heatsinks for PCB mounting

please note: profile pressed threads → A 5

Lock-in retaining spring for transistors→ A 119 – 121 Thermal conductive material Heatsink profile overview → A 13 – 17 Heatsinks for PCB A 89 → Heatsinks with threaded rail → A 93

Profiles for lock-in fixing spring Retaining springs for transistors **Technical introduction**

 \rightarrow E 2 – 23 → A 84 – 88 A 115 – 117 → → A 2 – 8

A 92

Downloaded from Arrow.com.

-

1

Extruded heatsinks for PCB mounting

Heatsink for PCB with threaded rail

- transistor mounting onto the heatsink using a slide-in rail with M 3 thread
- easy positioning using a grid 6.35mm
- other rail grids upon request
- suitable for TO 220, TO 218, TO 247 and similar -
- suitable screws M 3 (art. no.: SZ M 3 x 8)
- screw-in solder pin M 3 (art. no.: ELS 3) - specific versions upon customer's request

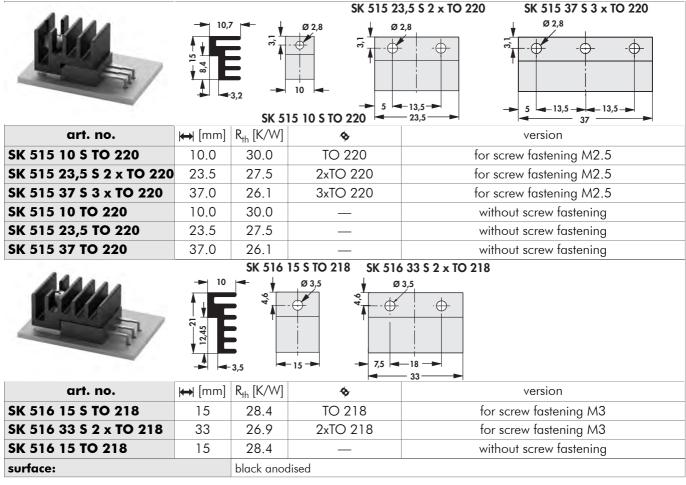
 specific versions upon custo 	mer s requi	est		
	₹ 			2 M3 → 6,35
art. no.	 ↔ [mm]	R _{th} [K/W]	\$	version
SK 517 50 GS	50	5.0	TO 220	with threaded rail
SK 517 75 GS	75	3.9	TO 220	with threaded rail
SK 517 84 GS	84	3.6	TO 220	with threaded rail
SK 517 50	50	5.0		without threaded rail
SK 517 75	75	3.9		without threaded rail
SK 517 84	84	3.6		without threaded rail
		45		$\begin{array}{c} & & & & \\ & & & \\$
art. no.	 ↔ [mm]	R_{th} [K/W]	\$	version
SK 518 50 GS	50	4.3	TO 220	with threaded rail
SK 518 75 GS	75	3.3	TO 220	with threaded rail
SK 518 84 GS	84	3.0	TO 220	with threaded rail
SK 518 50	50	4.3		without threaded rail
SK 518 75	75	3.3		without threaded rail
SK 518 84	84	3.0		without threaded rail

please note: profile threads → A 5

surface:

black anodised

Downloaded from Arrow.com.


Profiles for lock-in fixing spring → A 84 – 88 **Mica wafers** → E 19 Assignment table → A 18 – 20 Kapton insulator washers → E16 Thermal conductive material → E2-5 Thermal conductive paste → E 21 Lock-in retaining spring for transistors→ A 119 – 121 Technical introduction → A 2 – 8

E

Extruded heatsinks for PCB mounting

Attachable heatsinks for transistors

- compact heatsink in transistor dimensions
- for horizontal and vertical transistors
- can be screwed or glued
- specific versions upon customer's request

Attachable extruded heatsinks for transistors with thin bottom plate (0.5 mm)

	10, ++ 8 + + 8 + + +	-3,95		5 05 23,5 S 2 2,8
art. no.	 ↔ [mm]	R _{th} [K/W]	\$	version
SK 515 05 10 S	10.0	30.0	TO 220	for screw fastening M2.5
SK 515 05 23,5 S 2	23.5	27.5	2xTO 220	for screw fastening M2.5
SK 515 05 37 S 3	37.0	26.1	3xTO 220	for screw fastening M2.5
SK 515 05 10	10.0	30.0	—	without screw fastening
SK 515 05 23,5	23.5	27.5	_	without screw fastening

 Profiles for lock-in fixing spring
 →
 A 84 – 88
 Mica wafers

 Assignment table
 →
 A 18 – 20
 Kapton insulator washers

 Thermal conductive material
 →
 E 2 – 5
 Thermal conductive paste

 Lock-in retaining spring for transistors→
 A 119 – 121
 Technical introduction

37.0

26.1

black anodised

Downloaded from Arrow.com.

SK 515 05 37

surface:

without screw fastening

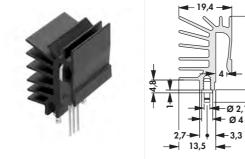
E 19

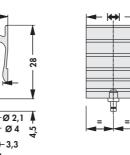
E 16

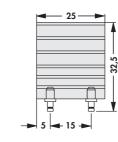
E 21

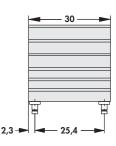
A 2 – 8

A 94

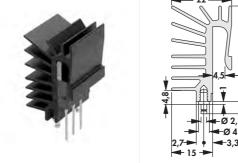

-

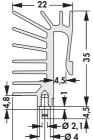

D

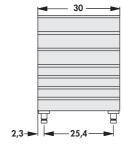

Extruded heatsinks for PCB mounting


Attachable heatsinks for transistors

- extruded heatsink with intergrated spring locking function
- simple assembly by pushing the heatsink onto the transistor
- optimum heat transfer between component and heatsink
- solderable pin for PCB mountingspecific versions upon customer's request







art. no.	for transistor	 ↔ [mm]	R _{th} [K/W]	spring force [N]	version
SK 525 15	TO 220	15	13.3	54	without solder pins
SK 525 30	TO 220	30	7.8	100	without solder pins
SK 525 15 ST	TO 220	15	13.3	54	with 1 solder pin
SK 525 20 ST	TO 220	20	10.7	70	with 1 solder pin
SK 525 25 ST	TO 220	25	9.0	85	with 2 solder pins
SK 525 30 ST	TO 220	30	7.8	100	with 2 solder pins

	◄ 15 ►				
art. no.	for transistor	 ↔ [mm]	R _{th} [K/W]	spring force [N]	version
SK 526 30 ST	TO 247	30	6.3	100	with 2 solder pins
surface:	black and	black anodised			

Downloaded from Arrow.com.

Profiles for lock-in fixing spring **Assignment table** Thermal conductive material Attachable heatsinks

→ A 84 - 88 → A 18 – 20 → E2-5 → C 10 – 16

Mica wafers Kapton insulator washers Thermal conductive paste **Technical introduction**

→ E19 → E 16 → E 21 → A 2 – 8

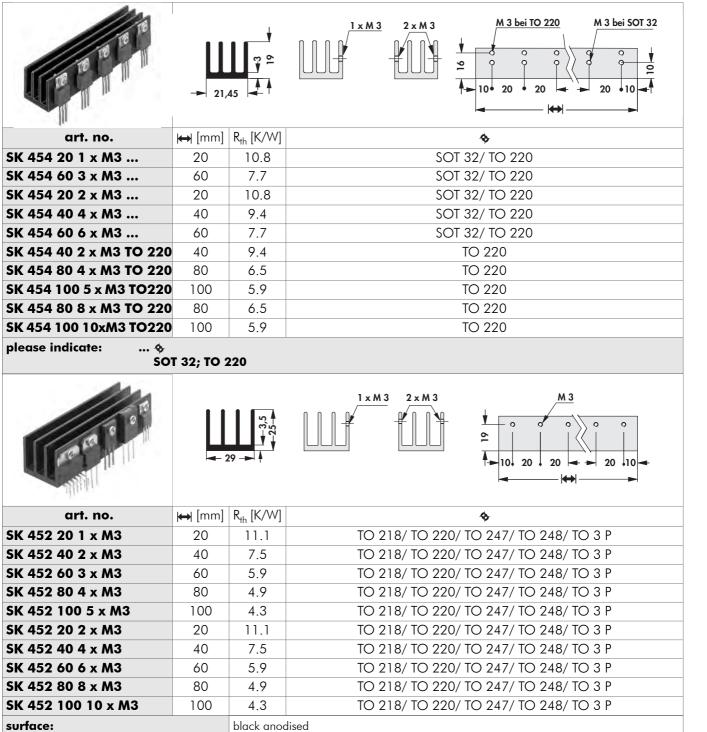
C

Б

E

E

G


Ν

N

Extruded heatsinks for PCB mounting

Extruded heatsinks for transistors

- compact PCB heatsink
- effective heat dissipation for single and double row transistor mounting
- profile **SK 454 →** A 24
- profile **SK 452 →** A 27
- specific versions upon customer's request

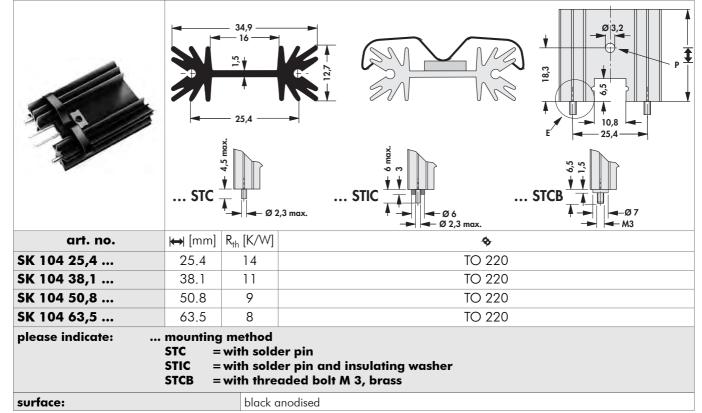
Downloaded from Arrow.com.

C 10 – 16

Mica wafers Kapton insulator washers Thermal conductive paste

Technical introduction

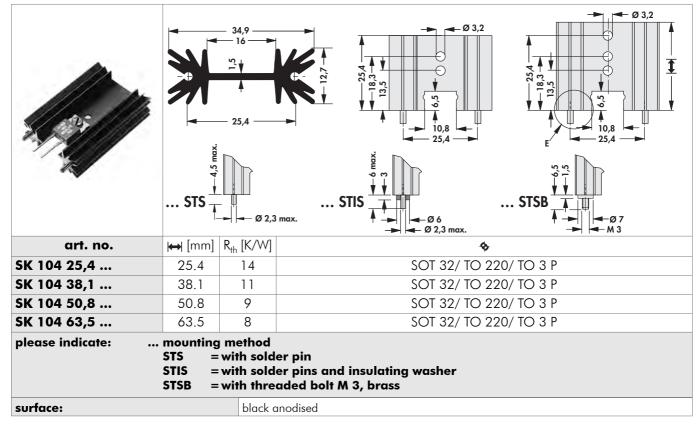
 $\begin{array}{l} \rightarrow \quad E \ 19 \\ \rightarrow \quad E \ 16 \\ \rightarrow \quad E \ 21 \\ \rightarrow \quad A \ 2 - 8 \end{array}$


A 96

N

A

Extruded heatsinks for PCB mounting


- for semiconductor clip-mounting
- special lengths and transistor drillings upon request
- \mathbf{P} = raised retaining stud, \mathbf{E} = mounting method

- for semiconductor screw-mounting

- special lengths and transistor drillings on request

- E = mounting method

Α	97

A 84 – 88 A 18 – 20 E 2 – 5 → C 10 – 16 →

Mica wafers

Technical introduction

E 19 Kapton insulator washers E 16 Thermal conductive paste E 21 → A 2 – 8

C

Downloaded from Arrow.com.

Extruded heatsinks for PCB mounting

- horizontal for semiconductor screw-mounting
- special lengths and transistor drillings on request

	15 15 25		3,2 3,2 5,2 4 5,2 5,2 6 10,8 10,8 4 10,8 5,2 10,8 5,2 10,8 5,2 10,8	
art. no.	 ↔ [mm]	R _{th} [K/W]	\$	÷
SK 104 25,4 LS	25.4	14	SOT 32/ TO 2	220/ TO 3 P
SK 104 38,1 LS	38.1	11	SOT 32/ TO 2	220/ TO 3 P
SK 104 50,8 LS	50.8	9	SOT 32/ TO 2	220/ TO 3 P
surface:		black a	inodised	

K

4

C

D

E

E

C

ì

p

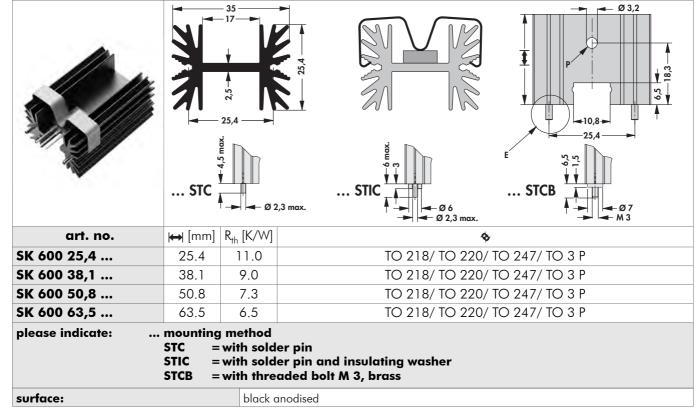
N

Profiles for lock-in fixing spring Assignment table Thermal conductive material Attachable heatsinks

→ A 84 – 88 → A 18 – 20 → E2-5 → C 10 – 16

Mica wafers Kapton insulator washers Thermal conductive paste **Technical introduction**

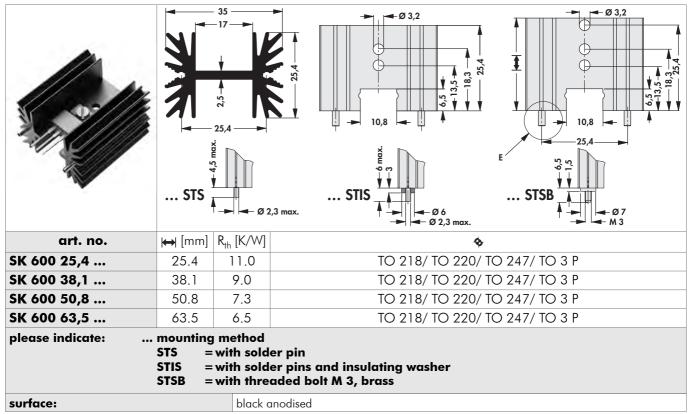
→ E19 → E16 $\begin{array}{l} \rightarrow \quad \mathbf{E} \ \mathbf{21} \\ \rightarrow \quad \mathbf{A} \ \mathbf{2} - \mathbf{8} \end{array}$


A 98

Ν

Downloaded from Arrow.com.

Extruded heatsinks for PCB mounting


- for semiconductor clip-mounting
- special lengths and transistor drillings on request
- **P** = raised retaining stud, **E** = mounting method

- for semiconductor screw-mounting

- special lengths and transistor drillings on request

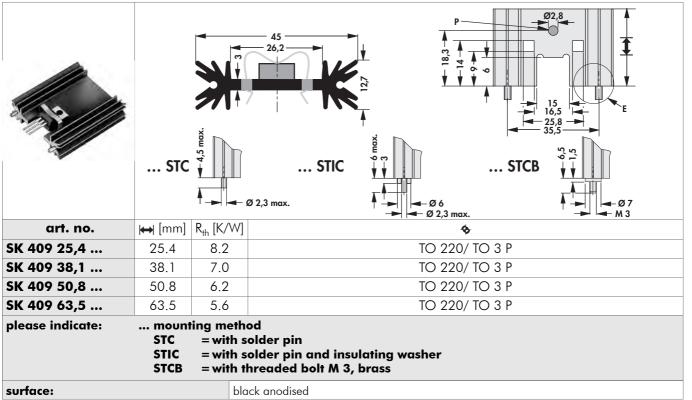
– E = mounting method

A 99

Profiles for lock-in fixing spring Assignment table Thermal conductive material Attachable heatsinks A 84 - 88A 18 - 20A 2 - 5C 10 - 16 Mica wafers→Kapton insulator washers→Thermal conductive paste→Technical introduction→

E 19

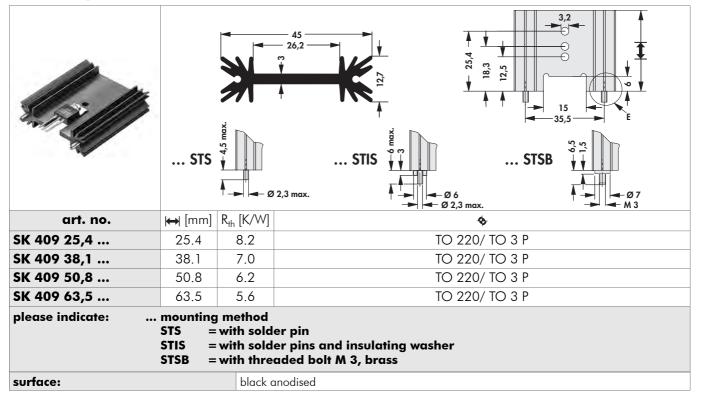
E 16


E 21

A 2 – 8

M

Extruded heatsinks for PCB mounting

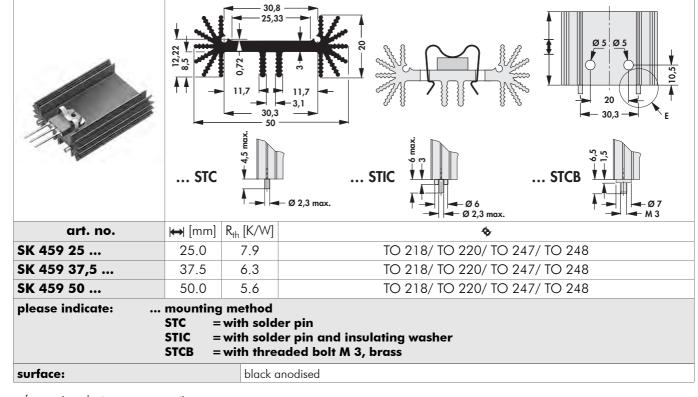

- $\mbox{ for semiconductor clip-mounting }$
- special lengths and transistor drillings on request
- **P** = raised retaining stud, **E** = mounting method

- for semiconductor screw-mounting

- special lengths and transistor drillings on request

 $-\mathbf{E} = mounting method$

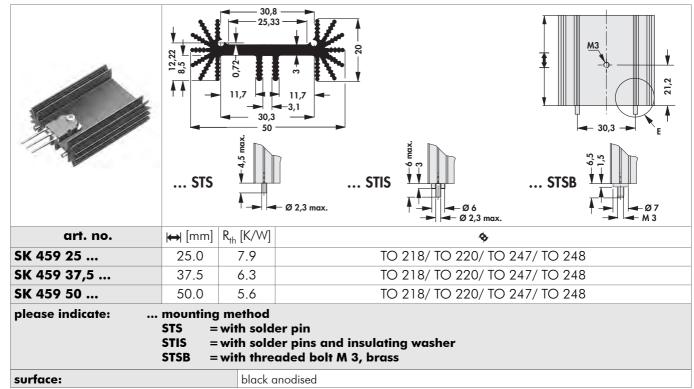
-


1

C

N

Extruded heatsinks for PCB mounting

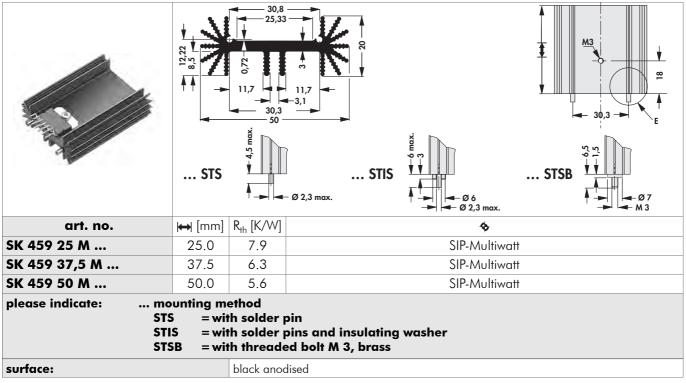

- for semiconductor clip-mounting
- special lengths and transistor drillings on request
- E = mounting method

for semiconductor screw-mounting

special lengths and transistor drillings on request

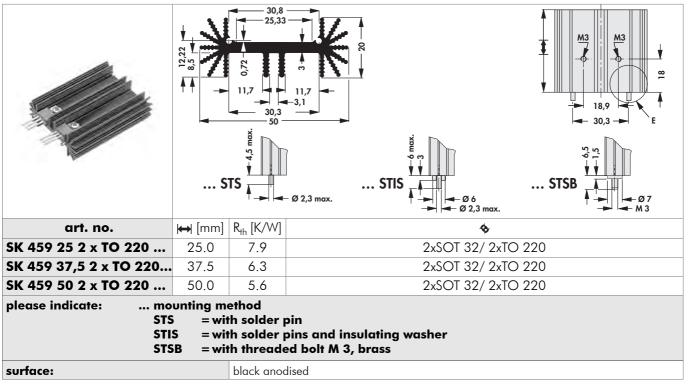
- E = mounting method

Μ


A 101

Profiles for lock-in fixing spring Assignment table Thermal conductive material Attachable heatsinks A 84 - 88A 18 - 20A 2 - 5C 10 - 16

Mica wafers Kapton insulator washers Thermal conductive paste Technical introduction $\begin{array}{r} \rightarrow \quad E \ 19 \\ \rightarrow \quad E \ 16 \\ \rightarrow \quad E \ 21 \\ \rightarrow \quad A \ 2 - 8 \end{array}$


Extruded heatsinks for PCB mounting

- for semiconductor screw-mounting
- special lengths and transistor drillings on request
- $-\mathbf{E} = mounting method$

- for semiconductor screw-mounting

- with **combination-hole pattern** for mounting of 2 x TO 220 or 2 x SOT 32
- special lengths and transistor drillings on request
- $-\mathbf{E} = mounting method$

Profiles for lock-in fixing spring
Assignment table
Thermal conductive material
Attachable heatsinks

Downloaded from Arrow.com.

C 10 - 16

Mica wafers Kapton insulator washers Thermal conductive paste

Technical introduction

 $\begin{array}{l} \rightarrow \quad E \ 19 \\ \rightarrow \quad E \ 16 \\ \rightarrow \quad E \ 21 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

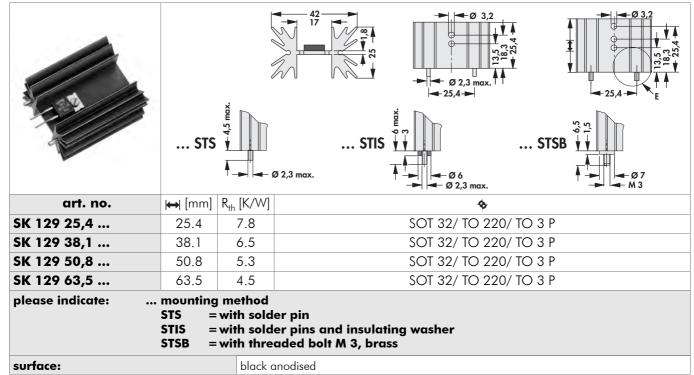
A 102

N

Δ

-

Extruded heatsinks for PCB mounting


- for semiconductor clip-mounting
- special lengths and transistor drillings on request
- **P** = raised retaining stud, **E** = mounting method

	STC		$\begin{array}{c} 42 \\ 17 \\ 17 \\ 17 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$
art. no.	 ↔ [mm]	R _{th} [K/W]	\$
SK 129 25,4	25.4	7.8	TO 220
SK 129 38,1	38.1	6.5	TO 220
SK 129 50,8	50.8	5.3	TO 220
SK 129 63,5	63.5	4.5	TO 220
please indicate:	STIC =	with sold with sold	er pin er pin and insulating washer aded bolt M 3, brass
surface:		blacks	anodised

for semiconductor screw-mounting

- special lengths and transistor drillings on request

– E = mounting method

Μ

A 103

Profiles for lock-in fixing spring Assignment table Thermal conductive material Attachable heatsinks $\begin{array}{r} \rightarrow \quad A \ 84 - 88 \\ \rightarrow \quad A \ 18 - 20 \\ \rightarrow \quad E \ 2 - 5 \\ \rightarrow \quad C \ 10 - 16 \end{array}$

Mica wafers Kapton insulator washers Thermal conductive paste Technical introduction $\begin{array}{c} \rightarrow \quad E \ 19 \\ \rightarrow \quad E \ 16 \\ \rightarrow \quad E \ 21 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

D

Extruded heatsinks for PCB mounting

- for semiconductor clip-mounting
- profile **SK 185 →** A 73
- special lengths and drillings on request
- **L** = solderable pins

110		ZU.		Ø 5 Ø 5 Ø 3,1 max. Ø 3,1 max.		
art. no.	 ↔ [mm]	R _{th} [K/W]	\$	version		
SK 185 25 STC TO 220	25.0	7.9	TO 220	with solder pins		
SK 185 37,5 STC TO 220	37.5	6.4	TO 220	with solder pins		
SK 185 50 STC TO 220	50.0	4.9	TO 220	with solder pins		
SK 185 50 C TO 220	50.0	4.9	TO 220	without solder pins		
surface:	surface:					

- for semiconductor screw-mounting

- profile **SK 185 →** A 73

- special lengths and drillings on request

 $-\mathbf{L} =$ solderable pins

	4,5			$ \begin{array}{c} \bullet & & & & \\ \bullet & & & & \\ \bullet & & & & \\ \bullet & $		
art. no.	₩ [mm]	R _{th} [K/W]	\$	version		
SK 185 25 STS TO 220	25.0	7.9	TO 220	with solder pins		
SK 185 37,5 STS TO 220	37.5	6.4	TO 220	with solder pins		
SK 185 50 STS TO 220	50.0	4.9	TO 220	with solder pins		
SK 185 25 TO 220	25.0	7.9	TO 220	without solder pins		
SK 185 37,5 TO 220	37.5	6.4	TO 220	without solder pins		
SK 185 50 TO 220	50.0	4.9	TO 220	without solder pins		
surface:		black anoc	black anodised			

Downloaded from Arrow.com.

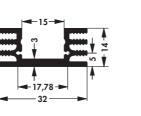
- Δ

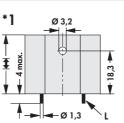
- C

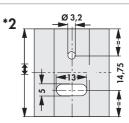
D

ŀ

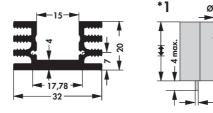
G

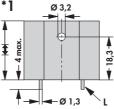

k

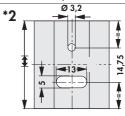

N


Extruded heatsinks for PCB mounting

- for semiconductor screw-mounting
- hole pattern is centered to the total length of the heatsink
- special lengths and drillings on request
- ***1** = versions with solder pins; ***2** = versions without solder pins
- L = solderable pins







1			
₩ [mm]	R _{th} [K/W]	•	version
25.0	12.5	TO 220/*1	with solder pins
37.5	10.0	TO 220/*1	with solder pins
50.0	8.5	TO 220/*1	with solder pins
25.0	12.5	—	without solder pins
25.0	12.5	TO 220/*2	without solder pins
37.5	10.0	—	without solder pins
37.5	10.0	TO 220/*2	without solder pins
50.0	8.5	—	without solder pins
50.0	8.5	TO 220/*2	without solder pins
75.0	7.0	—	without solder pins
1000.0		_	without solder pins
	25.0 37.5 50.0 25.0 37.5 37.5 50.0 50.0 75.0	37.510.050.08.525.012.537.510.037.510.050.08.550.08.575.07.0	25.0 12.5 TO 220/*1 37.5 10.0 TO 220/*1 50.0 8.5 TO 220/*1 25.0 12.5 — 25.0 12.5 TO 220/*2 37.5 10.0 — 37.5 10.0 — 37.5 10.0 TO 220/*2 37.5 10.0 TO 220/*2 50.0 8.5 — 50.0 8.5 TO 220/*2 75.0 7.0 —

art. no.	 ↔ [mm]	R_{th} [K/W]	\$	version		
SK 76 25 STS TO 220	25.0	10.0	TO 220/*1	with solder pins		
SK 76 37,5 STS TO 220	37.5	8.0	TO 220/*1	with solder pins		
SK 76 50 STS TO 220	50.0	7.0	TO 220/*1	with solder pins		
SK 76 25	25.0	10.0		without solder pins		
SK 76 25 TO 220	25.0	10.0	TO 220/*2	without solder pins		
SK 76 37,5	37.5	8.0		without solder pins		
SK 76 37,5 TO 220	37.5	8.0	TO 220/*2	without solder pins		
SK 76 50	50.0	7.0	7.0 — without solder pins			
SK 76 50 TO 220	50.0	7.0	TO 220/*2	without solder pins		
SK 76 75	75.0	5.9		without solder pins		
SK 76 1000	1000.0	—		without solder pins		
surface:		black anodised				

B

Б

G

H

N

Profiles for lock-in fixing spring **Assignment table** Thermal conductive material Attachable heatsinks

→ A 84 – 88 → A 18 – 20 → E2-5 → C 10 – 16

Mica wafers Kapton insulator washers Thermal conductive paste **Technical introduction**

→ E19 → E16 → E 21 → A 2 – 8

Extruded heatsinks for PCB mounting

- for semiconductor clip-mounting
- profile **SK 145 →** A 73
- special lengths and drillings on request
- $-\mathbf{L} =$ solderable pins

				20,5 → Ø 4,5 ↓ Ø 2,8 max. 25,4 →	
art. no.	 ↔ [mm]	R_{th} [K/W]	\$	version	
SK 145 25 STC	25	13.5	TO 218/ TO 220/ TO 247/ TO 248	with solder pins	
SK 145 30 STC	30	12.4	TO 218/ TO 220/ TO 247/ TO 248	with solder pins	
SK 145 50 STC	50	10.0	TO 218/ TO 220/ TO 247/ TO 248	with solder pins	
surface:	*	black anodised			

- for semiconductor screw-mounting

- profile **SK 145 →** A 73

special lengths and drillings on request
L = solderable pins

S		25,4 – 29 –		Ø 3,2	
art. no.	₩ [mm]	R _{th} [K/W]	\$	version	
SK 145 25 STS TO 220	25.0	13.5	TO 218/ TO 220/ TO 247/ TO 248	with solder pins	
SK 145 37,5 STS TO 220	37.5	12.0	TO 218/ TO 220/ TO 247/ TO 248	with solder pins	
SK 145 50 STS TO 220	50.0	10.0	TO 218/ TO 220/ TO 247/ TO 248	with solder pins	
surface:	black anodised				

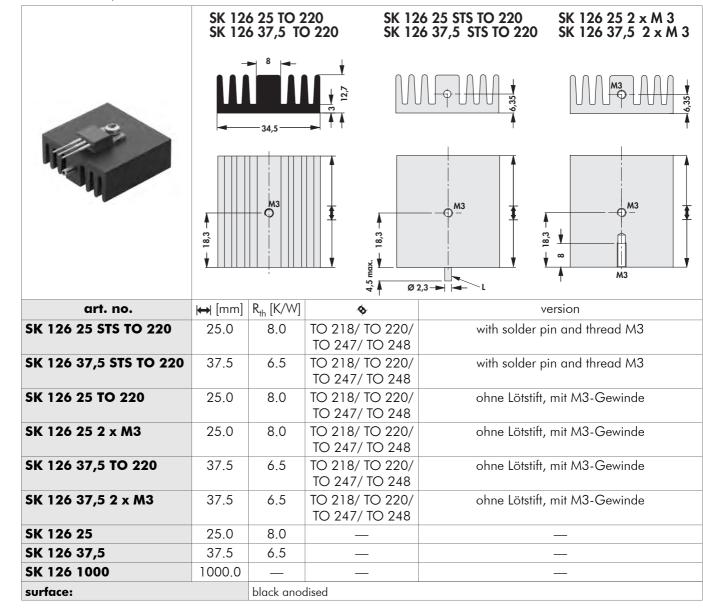
Downloaded from Arrow.com.

→ E19 → E16 → E 21 → A 2 – 8 N

C

E

E


C

k

Extruded heatsinks for PCB mounting

- special lengths and drillings on request

– L = solderable pins

A 107

Profiles for lock-in fixing spring Assignment table Thermal conductive material Attachable heatsinks $\begin{array}{r} \rightarrow \quad A \ 84 - 88 \\ \rightarrow \quad A \ 18 - 20 \\ \rightarrow \quad E \ 2 - 5 \\ \rightarrow \quad C \ 10 - 16 \end{array}$

Mica wafers Kapton insulator washers Thermal conductive paste Technical introduction $\begin{array}{c} \rightarrow \quad E \ 19 \\ \rightarrow \quad E \ 16 \\ \rightarrow \quad E \ 21 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

C

Downloaded from Arrow.com.

Extruded heatsinks for PCB mounting

- special lengths and drillings on request

- **L** = solderable pins

	4 5 10 12		SK 95 15 STS SOT	₹ 32 S SK 9	M3 M3 Ø 1,3 P5 25 STS TO 220	SK 95 25 STS SOT 32
art. no.	 ↔ [mm]	R _{th} [K/W]			•	
SK 95 15 STS SOT 32 S	15	38.5			SOT 32	
SK 95 25 STS SOT 32	25	36.0			SOT 32	
SK 95 25 STS TO 220	25	36.0			TO 220	
A CAR	\$ <u>₽</u> ↓ SK 95 1.	10,6 12,6 13 5 SOT 32 S	SK 95 25 SOT 32	SK 95 25 TO 22		9 ⁷ 3 3 5 ⁷ 5 ⁷ 5 ⁷ 5 ⁷ 5 ⁸ 5 ⁸ 5 ⁸ 5 ⁸ 5 ⁸ 5 ⁸ 5 ⁸ 5 ⁸
art. no.	 ↔ [mm]	R_{th} [K/W]			•	
SK 95 15 SOT 32 S	15	38.5			SOT 32	
SK 95 25 SOT 32	25	36.0	SOT 32			
SK 95 25 TO 220	25	36.0	TO 220			
SK 95 25 1x M2,5 1x M3	25	36.0	1xM2.5/ 1xM3 (TO 220)			
SK 95 25 2 x M3	25 36.0			2xM3 (TO 220)		
SK 95 15	15	38.5				
SK 95 25	25	36.0				
SK 95 1000	1000	—				
surface:		black anoc				
type of thread:		not anodis	ed			

Profiles for lock-in fixing spring Assignment table Thermal conductive material Attachable heatsinks $\begin{array}{r} \rightarrow \quad A \ 84 - 88 \\ \rightarrow \quad A \ 18 - 20 \\ \rightarrow \quad E \ 2 - 5 \\ \rightarrow \quad C \ 10 - 16 \end{array}$

Mica wafers Kapton insulator washers Thermal conductive paste Technical introduction $\begin{array}{l} \rightarrow \quad E \ 19 \\ \rightarrow \quad E \ 16 \\ \rightarrow \quad E \ 21 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

A 108

N

A

C

D

E

E

C

ì

K

p

N

Downloaded from Arrow.com.

Extruded heatsinks for PCB mounting

- single solder pin

profile SK 437 → A 24
 special lengths and drillings on request

_ **L** = solderable pin

			S, 4 S, 5 S, 5
art. no.	 ⇔ [mm]	R _{th} [K/W]	\$
SK 437 25 STC	25	24	TO 218/ TO 220/ TO 247/ TO 248
SK 437 30 STC	30	22	TO 218/ TO 220/ TO 247/ TO 248
SK 437 35 STC	35	18	TO 218/ TO 220/ TO 247/ TO 248
SK 437 50 STC	50	14	TO 218/ TO 220/ TO 247/ TO 248
			16
art. no.	 ⇔ [mm]	R_{th} [K/W]	\$
SK 437 25 STS	25	24	TO 218/ TO 220/ TO 247/ TO 248
SK 437 30 STS	30	22	TO 218/ TO 220/ TO 247/ TO 248
SK 437 35 STS	35	18	TO 218/ TO 220/ TO 247/ TO 248
SK 437 50 STS	50	14	TO 218/ TO 220/ TO 247/ TO 248
surface:		black o	nodised

- double solder pin

- profile **SK 437 →** A 24

- special lengths and drillings on request

- **L** = solderable pin

			xpm ypm ypm ypm ypm ypm ypm ypm y
art. no.	 ↔ [mm]	R _{th} [K/W]	\$
SK 437 25 STC 2	25	24	TO 218/ TO 220/ TO 247/ TO 248
SK 437 30 STC 2	30	22	TO 218/ TO 220/ TO 247/ TO 248
SK 437 35 STC 2	35	18	TO 218/ TO 220/ TO 247/ TO 248
art. no.	 ← [mm]	R _{th} [K/W]	\$
SK 437 25 STS 2	25	24	TO 218/ TO 220/ TO 247/ TO 248
SK 437 30 STS 2	30	22	TO 218/ TO 220/ TO 247/ TO 248
SK 437 35 STS 2	35	18	TO 218/ TO 220/ TO 247/ TO 248
surface:		black a	Inodised

A 109

Downloaded from Arrow.com.

Profiles for lock-in fixing spring Assignment table Thermal conductive material Attachable heatsinks

→ A 84 - 88 → A 18 – 20 → E2-5 → C10-16

Mica wafers Kapton insulator washers Thermal conductive paste **Technical introduction**

→ E19 → E16 → E 21 → A 2 – 8

Б

Ś

H

Ν

N

Extruded heatsinks for PCB mounting

- special versions on customer's request

 $-\mathbf{L} =$ solderable pin

R.			Si S			
art. no.	 ↔ [mm]	R_{th} [K/W]	\$			
SK 470 25 STS	25	29.0	SOT 32/ TO 220			
SK 470 30 STS	30 27.2 SOT 32/ TO 220					
SK 470 35 STS	35 25.6 SOT 32/ TO 220					
SK 470 50 STS	50	23.2	SOT 32/ TO 220			
			$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $			
art. no.	 ↔ [mm]	R _{th} [K/W]	\$			
SK 469 25 STS	25	15.3	SOT 32/ TO 220			
SK 469 30 STS	30	14.3	SOT 32/ TO 220			
SK 469 35 STS	35	13.0	SOT 32/ TO 220			
SK 469 50 STS	50	10.6	SOT 32/ TO 220			
surface:		black a	anodised			

– as mounting- and connecting piece

- for clamp mounting of the transistors
- triple unit can be seperated
- solder pin mounting possible
- special versions on customer's request

CICICI		Ø 2,	6 - 20,4 - 20,4 - 20,4 - 20,4 - 15 - 20 - 15 - 20 - 2 - 2
art. no.	 ↔ [mm]	R _{th} [K/W]	\$
SK 484 25	25.0	6.0	TO 218/ TO 220/ TO 247/ TO 264/ TO 3 P
SK 484 37,5	37.5	4.5	TO 218/ TO 220/ TO 247/ TO 264/ TO 3 P
SK 484 50	50.0	3.7	TO 218/ TO 220/ TO 247/ TO 264/ TO 3 P
SK 484 75	75.0	2.8	TO 218/ TO 220/ TO 247/ TO 264/ TO 3 P

Profiles for lock-in fixing spring Assignment table Thermal conductive material Attachable heatsinks

→ A 84 – 88

- → A 18 20
- → E 2 – 5 → C 10 – 16

Kapton insulator washers Thermal conductive paste

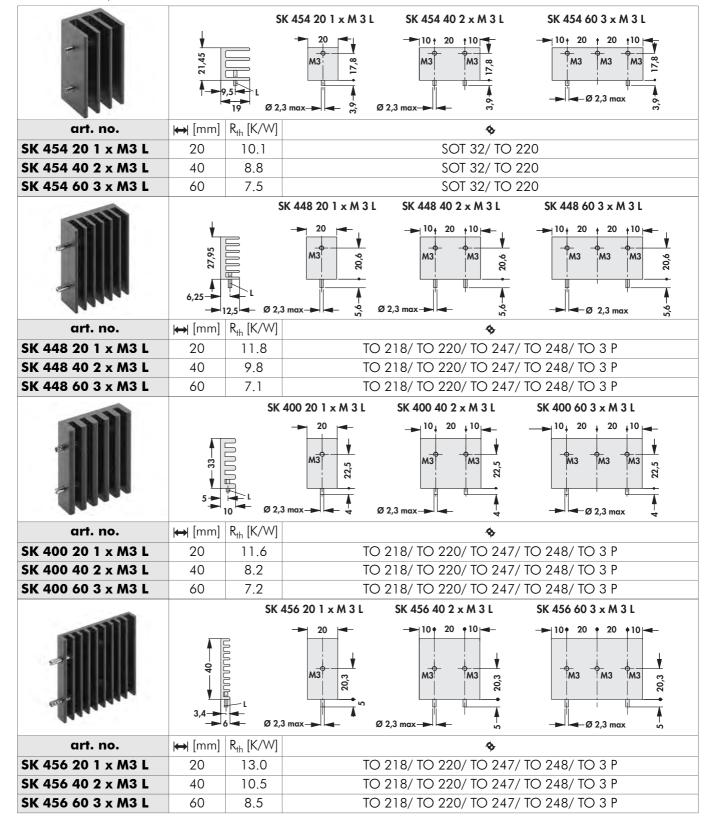
Mica wafers

Technical introduction

E 19 → E16 → E 21 → A 2 – 8

N

C


l

C

k

Extruded heatsinks for PCB mounting

- compact PCB heatsinks
- especially suitable for vertical PCB mounting in housings, racks etc.
- easy solder fixing
- special versions on customer's request
- L = solderable pin

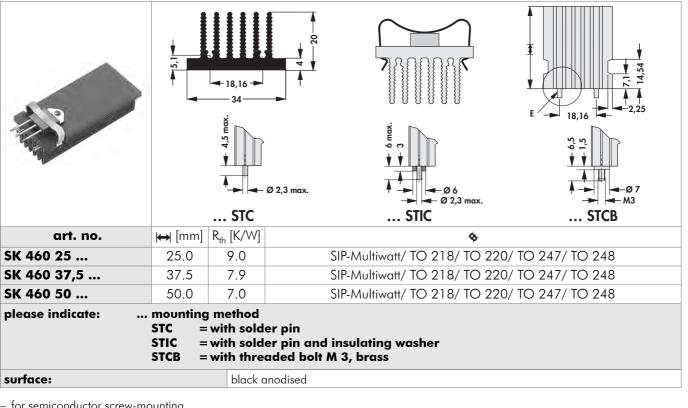
A 111

Profiles for lock-in fixing spring Assignment table Thermal conductive material Attachable heatsinks

→ A 84 – 88 → A 18 – 20

 $\begin{array}{r} \rightarrow \quad \mathbf{E} \ \mathbf{2} \ - \ \mathbf{5} \\ \rightarrow \quad \mathbf{C} \ \mathbf{10} \ - \ \mathbf{16} \end{array}$

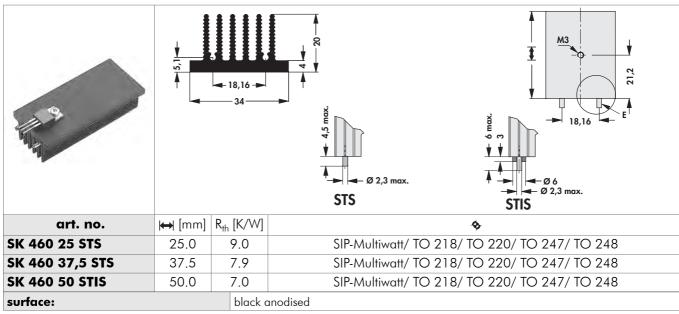
Kapton insulator washers Thermal conductive paste Technical introduction


Mica wafers

 $\begin{array}{c} \rightarrow \quad E \ 19 \\ \rightarrow \quad E \ 16 \\ \rightarrow \quad E \ 21 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

÷,

Extruded heatsinks for PCB mounting


- for semiconductor clip-mounting
- special lengths and transistor drillings on request
- $-\mathbf{E} = mounting method$

- for semiconductor screw-mounting

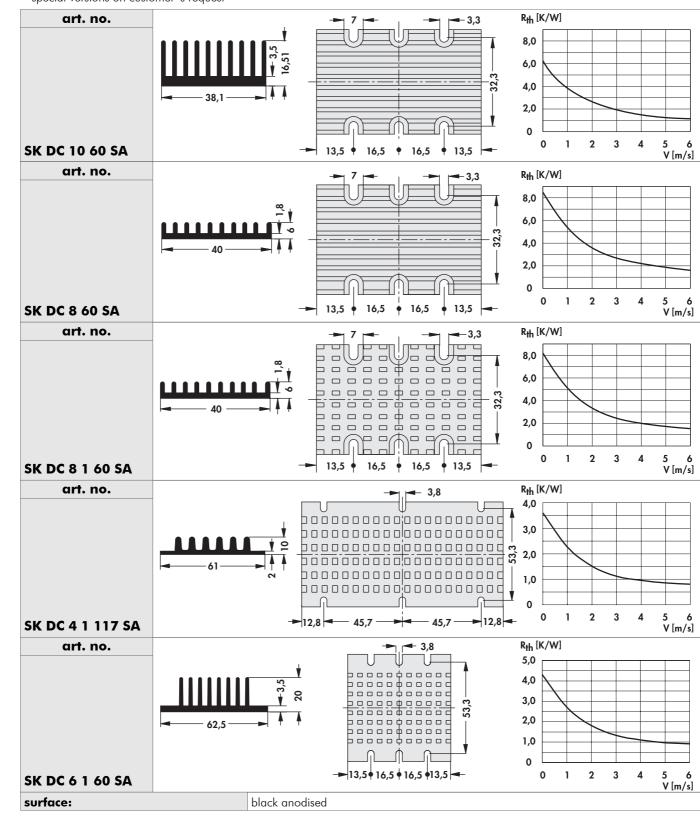
- special lengths and transistor drillings on request

 $-\mathbf{E} = mounting method$

A 84 – 88 A 18 – 20 E 2 – 5 ->

C 10 - 16

Mica wafers Kapton insulator washers Thermal conductive paste


- **Technical introduction**
- E 19 E 16 E 21 -> A 2 – 8

-

D

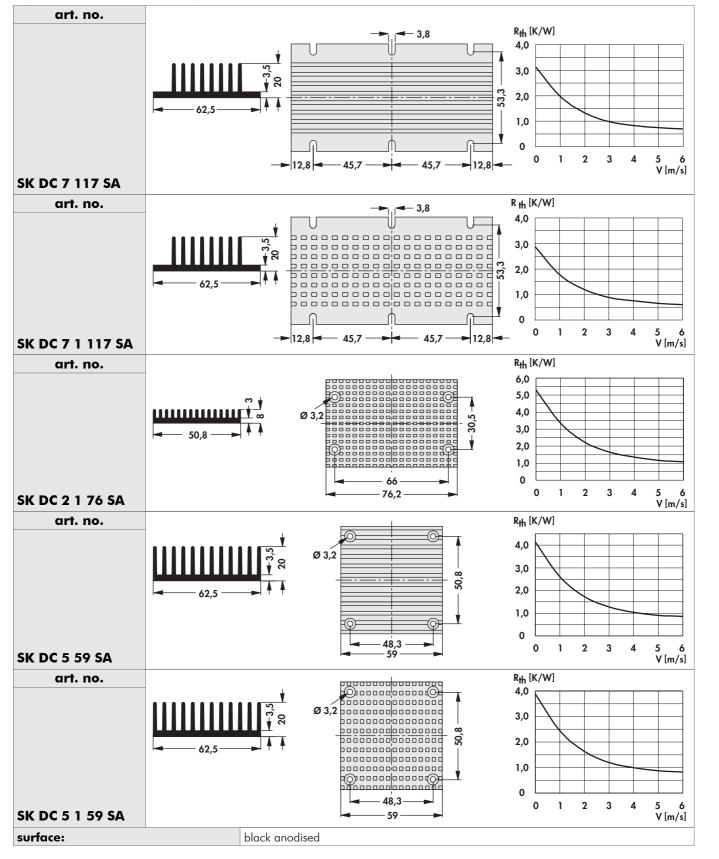
Extruded heatsinks for DC/DC converter

- special versions on customer's request

Heatsink profile-overview Drilling pattern for Solid State Relais \rightarrow A 12 Heatsinks for Solid State Relais → **Special profiles** →

→ A 13 – 17 A 11 – 12 A 140

Standard aluminium profiles Extruded heatsinks Profiles for PCB mounting Technical introduction


A 135 – 136 → → A 22 – 83 A 89 – 112 → → A 2 – 8

Downloaded from Arrow.com.

A 113

Extruded heatsinks for DC/DC converter

- special versions on customer's request

Heatsink profile-overview \rightarrow A 13 - 17Drilling pattern for Solid State Relais \rightarrow A 12Heatsinks for Solid State Relais \rightarrow A 11 - 12Special profiles \rightarrow A 140

Standard aluminium profiles Extruded heatsinks Profiles for PCB mounting Technical introduction $\begin{array}{l} \rightarrow \quad A \ 135 - 136 \\ \rightarrow \quad A \ 22 - 83 \\ \rightarrow \quad A \ 89 - 112 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

A 114

N

A

-

Ī

C

Downloaded from Arrow.com.

Retaining springs for transistors

A

B

C

D

E

F

G

R

Κ

Μ

N

art. no.	for transistor- housing	suitable for heatsinks	plate thick- ness [mm]	material	· \$ -
THF 129 TO 220	TO 220	FK 219/ FK 222/ SK 129	1-2	spring steel, corrosion protec- ted	
THF 104	TO 220/ TO 247/ TO 248/ TO 3 P	SK 104	1-2	stainless steel	
THF 409 TO 220	TO 220/ TO 247/ TO 248/ TO 3 P	SK 409	1.5-3.0	stainless steel	
THF 409 SOT 32	TO 126/ SOT 32/ SOT 82	SK 409	2-3	stainless steel	
THF 220	TO 220	FK 219/ FK 222	1-2	spring steel, corrosion protec- ted	
THF 247	TO 220/ TO 247/ TO 248/ TO 3 P	SK 484	2	stainless steel	
THF 247 4	TO 218/ TO 220/ TO 247/ TO 248/ TO 3 P	SK 460	4	stainless steel	
THF 220 17	TO 218/ TO 220/ TO 247/ TO 248/ TO 3 P	UK 35	1.0-1.5	stainless steel	$\begin{array}{c} & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & &$
THF 409 220 1	TO 218/ TO 220/ TO 247/ TO 248/ TO 3 P	SK 409/ SK 459	2-3	stainless steel	
THF 409 220 2	TO 218/ TO 220/ TO 247/ TO 248/ TO 3 P	SK 145/ SK 185/ SK 437	4	stainless steel	
THF 249	TO 220	FK 249	1.0-1.5	spring steel, corrosion protec- ted	
THF 600	TO 218/ TO 220/ TO 247/ TO 3 P	SK 600	2.5	spring steel, corrosion protec- ted	

A 115

Mica wafers Kapton insulator washers Heatsinks for PCB Profiles for lock-in fixing spring

→ E19 → E16 → A 84 – 88

Thermal conductive material Insulating caps → A 89 – 112 Thermal conductive paste **Technical introduction**

→ E2-5 → E 51 → E 21

Downloaded from Arrow.com.

→ A2-8

Retaining springs for transistors

- universal **retaining spring** for transistor housings types TO 218, TO 220, TO 247, TO 264, SOT 32 and various SIP Multiwatt etc.

- utility patent 200 14 739.0
- fast and easy mounting of the transistors
- number of retaining spring elements can be chosen (n = max. 10)
- **THFMG** with thread M 4

- specific versions and modifications on customer's request

art. no.	for transistor- housing	spring force [N]	material	�
THFM	TO 218/ TO 220/ TO 247/ TO 264/ SOT 32/ SIP Multiwatt	60 ±5	stainless steel	$\begin{array}{c} 10,4 \\ \hline \\ 10,4 \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
THFMG	TO 218/ TO 220/ TO 247/ TO 264/ SOT 32/ SIP Multiwatt	60 ±5	stainless steel	10,4 $25 = 17,5$ $17,5$ $M 4$ $7,5$ $M 4$ $3,5$ $15 = 11$ $14 = 3,5$ $6,5$
please indicate	e: nun	nber of ret	aining-spring eleme	ents

1 - 10

art. no.	for transistor- housing	spring force [N]	material	\$	
THFK 220	TO 220	79	stainless steel		5
THFK 247	TO 218/ TO 247	119	stainless steel	Q4,2 Q4,2	

Mica wafers Kapton insulator washers Heatsinks for PCB Profiles for lock-in fixing spring

Downloaded from Arrow.com.

 $\begin{array}{l} \rightarrow \quad E \ 19 \\ \rightarrow \quad E \ 16 \\ \rightarrow \quad A \ 89 \ -112 \\ \rightarrow \quad A \ 84 \ -88 \end{array}$

Thermal conductive material Insulating caps Thermal conductive paste

38 Technical introduction

 $\begin{array}{r} \rightarrow \quad E \ 2 - 5 \\ \rightarrow \quad E \ 51 \\ \rightarrow \quad E \ 21 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

A 116

1

Retaining springs for transistors

- able to slide on the transistor and mounting plate
- easy mounting
- high pressure force and firm grip
 specific versions upon customer's request

art. no.	for transistor- housing	plate thick- ness [mm]	hold- ing force [N]	material			•
THFA 1	TO 220	2	20	stainless steel	F	10,7	
THFA 2	TO 220	6.5	20	spring steel, corrosion protected		0,5 0,5 6,3 	
THFA 3	TO 220	5.5	33	spring steel, corrosion protected			
THFA 4	TO 218/ TO 247	6.5	59	spring steel, corrosion protected		6,3 - 13,2	<u>د ال م</u> در 92

,	Mica wafers Lock-in retaining spring for transistor	-	E 19 A 119 – 121	Thermal conductive material Mounting parts for heatsinks	-	E 2 – 5 E 49 – 50
	Heatsinks for PCB	→	A 89 – 91	Thermal conductive paste	\rightarrow	E 21 – 22
	Mounting material for semiconduct.	→	E 44 – 48	Technical introduction	→	A 2 – 8

B

D

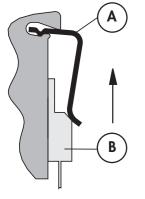
E

G

Κ

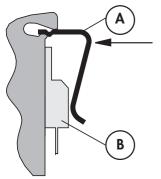
L

N

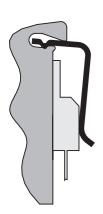

A 117

Retaining springs for transistors

- universal lock-in retaining spring for types TO 218, TO 220, TO 247, TO 264 and various SIP-Multiwatt etc. transistor housings
- clip fastening also for power transistors without holes, MAX types etc.
- easy assembly and secure hold when using a special groove geometry in heatsinks, housing parts etc.
- optimal heat transfer between component and cooling element
- various spring clip shapes available for fastening the components (see sketch)
- the range of suitable heat sinks is continuously extended
- versions specifically designed to meet customers requirements on request


Installation

THFU 1



- insert the lock-in retaining spring for transistors THFU 1 (A) into the groove of the profile
- **push** transistor (B) below the springinu

THFU 2, THFU 3, THFU 4, THFU 5, THFU 6, THFU 7

- place transistor (B) onto the mounting area
- press the lock-in retaining spring for transistors THFU 2 7 (A) into the groove of the profile (a suitable installation aid will facilitate pressing in)

 Once in place, the spring will keep its position and fix the transistor with a high contact pressure on the installation surface (the spring remains in its position and it can neither be moved in a lengthwise direction nor fall it can out of the groove in a cross direction).

material:	stainless steel	
material thickness:	0.8 mm	

Mica wafers	→	E 19	Thermal conductive material	→	E 2 – 5	
Lock-in retaining spring for transistors	⇒	A 119 – 121	Mounting parts for heatsinks	→	E 49 – 50	A 118
Heatsinks for PCB	→	A 89 – 91	Thermal conductive paste	→	E 21 – 22	AIIU
Mounting material for semiconduct.	→	E 44 – 48	Technical introduction	→	A 2 – 8	

-

Lock-in retaining spring for transistors

art. no.	for transistor- housing	suitable for heatsinks	spring force [N]	materi- al		•
THFU 1	TO 218/ TO 220/ TO 247/ TO 262/ TO 3 P/ SOT 199/ SOT 429	SK 480/ SK 481/ SK 482/ SK 483/ SK 487/ SK 489/ SK 490/ SK 490/ SK 492/ SK 492/ SK 492/ SK 512/ SK 512/ SK 514/ SK 573/ SK 573/ SK 575/ SK 575/ SK 576/ SK 593/ SK 593/ SK 617/ LAM 3 K/ LAM 5 K/ LAM 5 K/ LA 27 K	60 ±5	stain- less steel		
THFU 2	TO 218/ TO 220/ TO 247/ TO 262/ TO 3 P/ SOT 199/ SOT 429	SK 480/ SK 481/ SK 482/ SK 483/ SK 487/ SK 489/ SK 490/ SK 490/ SK 492/ SK 492/ SK 495/ SK 499/ SK 512/ SK 514/ SK 573/ SK 573/ SK 574/ SK 575/ SK 576/ SK 589/ SK 593/ SK 617/ LAM 3 K/ LAM 5 K/ LAM 5 K/ LA 27 K	60 ±5	stain- less steel		

B

C

D

Ε

F

G

E

Κ

N

A 119

Heatsinks for PCB Heatsink profile-overview Assignment table Profiles for lock-in fixing spring → A 89 – 93 → A 13 – 17

Mounting parts for heatsinks Profiles for PCB mounting Thermal conductive material **Technical introduction**

→ E 49 – 50 → A 89 - 112 → E 2 – 24 → A2-8

Downloaded from Arrow.com.

Lock-in retaining spring for transistors

			1	1	
art. no.	for transistor-	suitable for	spring	materi-	•
THFU 3	housing TO 218/ TO 220/ TO 247/ TO 262/ TO 3 P/ SOT 199/ SOT 429	solidiste for heatsinks SK 480/ SK 481/ SK 481/ SK 482/ SK 482/ SK 487/ SK 487/ SK 487/ SK 487/ SK 487/ SK 490/ SK 490/ SK 492/ SK 497/ SK 573/ SK 573/ SK 575/ SK 576/ SK 593/ SK 617/ LAM 3 K/ LAM 5 K/ LAM 5 K/ LA 27 K	force [N] 50 ±5	al stain- less steel	
THFU 4	TO 218/ TO 202/ TO 220/ TO 248/ TO 262/ TO 264/ TO 3 P/ SOT 199	SK 480/ SK 481/ SK 482/ SK 483/ SK 487/ SK 489/ SK 490/ SK 499/ SK 499/ SK 514/ SK 575/ SK 589/ SK 593/ SK 617/ LAM 5 K/ LA 27 K	32 ±5	stain- less steel	
THFU 5	TO 218/ TO 202/ TO 220/ TO 247/ TO 248/ TO 262/ TO 264/ TO 3 P/ SOT 199/ SOT 429	SK 490/ SK 589/ SK 617/ LAM 5 K/ LA 27 K	25 ^{±5}	stain- less steel	

Heatsinks for PCB Heatsink profile-overview Assignment table Profiles for lock-in fixing spring → A 89 – 93

→ A 13 – 17

Profiles for PCB mounting $\begin{array}{l} \rightarrow & A & 18 - 20 \\ \rightarrow & A & 84 - 88 \end{array}$ Thermal conductive material

Technical introduction

Mounting parts for heatsinks

→ E 49 – 50 → A 89 - 112 → E2-24 → A2-8

A 120

Ν

N

C

D

E

E

C

ł

E

k

Downloaded from Arrow.com.

Lock-in retaining spring for transistors

- THFU for transistors with low component height

Α

B

C

D

E

F

G

H

art. no.	for transistor-	suitable for	spring	materi-			•
	housing	heatsinks	force [N]	al			•
THFU 6	TO 126/	SK 480/	65 ±5	stain-			
	TO 218/	SK 481/		less			
	TO 220/	SK 482/		steel			
	TO 225/	SK 483/					
	TO 247/	SK 487/					
	TO 248/	SK 489/					
	TO 251/	SK 490/					
	TO 3 P/	SK 492/					
	SOT 32	SK 495/				→ 10,5 →	
		SK 499/					
		SK 512/				III	
		SK 514/				8.0 -14,7	
		SK 573/			111		
		SK 574/					
		SK 575/					
		SK 576/					
		SK 589/					
		SK 593/					
		SK 617/					
		LAM 3 K/					
		LAM 4 K/					
		LAM 5 K/					
		LA 27 K					
THFU 7	eSIP	SK 480/	46 ±5	stain-			
		SK 482/		less			
		SK 483/		steel		10,4	
		SK 487/					
		SK 490/				80-1-16,9-	
		SK 492/			and the second second	8'0	
		SK 495/					
		SK 573/			and the second sec		
		SK 574/			i li l	 3,6	
		SK 576/					
		LAM 3 K					

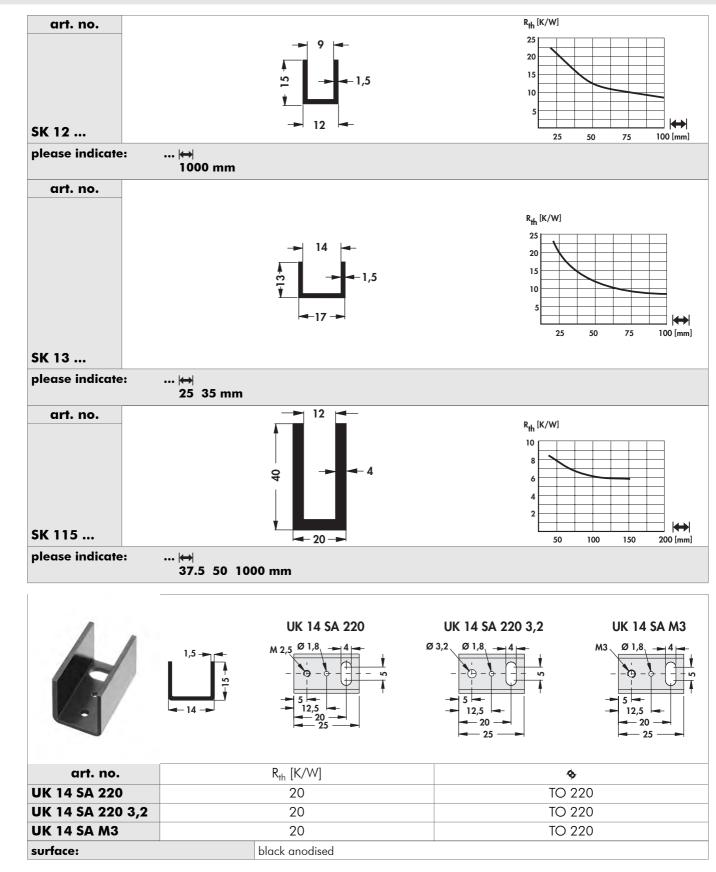
M

N

Κ

П

A 121


Heatsinks for PCB Heatsink profile-overview Assignment table Profiles for lock-in fixing spring $\begin{array}{r} \rightarrow \quad A \ 89 - 93 \\ \rightarrow \quad A \ 13 - 17 \\ \rightarrow \quad A \ 18 - 20 \\ \rightarrow \quad A \ 84 - 88 \end{array}$

Mounting parts for heatsinks Profiles for PCB mounting Thermal conductive material Technical introduction $\begin{array}{r} \rightarrow \quad E \ 49 - 50 \\ \rightarrow \quad A \ 89 - 112 \\ \rightarrow \quad E \ 2 - 24 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

N

U-Extruded heatsinks

N

A 123

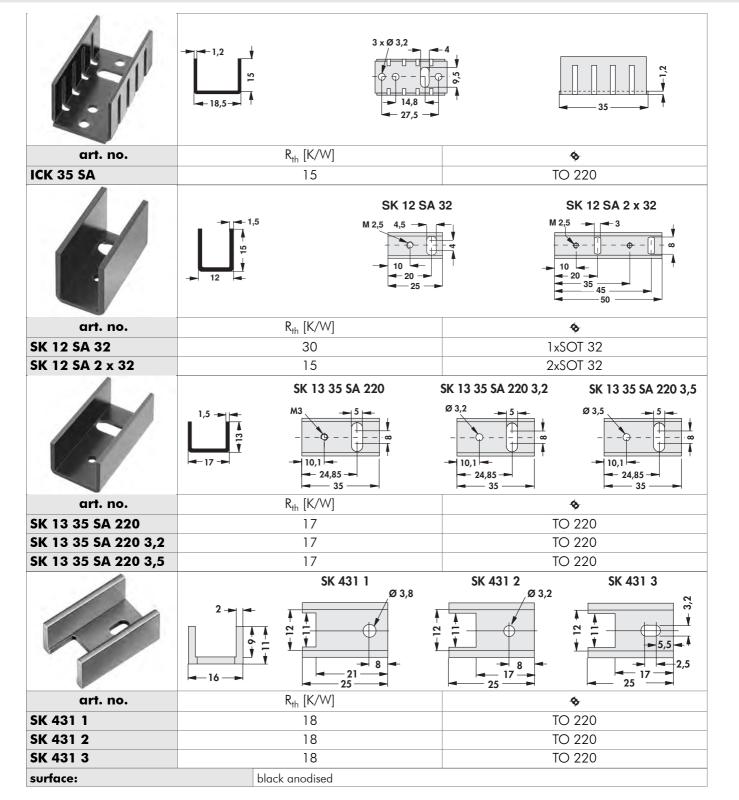
Downloaded from Arrow.com.

Profiles for PCB components Heatsink profile-overview Heatsinks for PCB Hole pattern $\begin{array}{r} \rightarrow \quad A \ 91 \\ \rightarrow \quad A \ 13 - 17 \\ \rightarrow \quad A \ 89 - 91 \\ \rightarrow \quad A \ 21 \end{array}$

Profiles for PCB mounting Extruded heatsinks Retaining springs for transistors Technical introduction $\begin{array}{l} \rightarrow \quad A \ 89 - 112 \\ \rightarrow \quad A \ 22 - 83 \\ \rightarrow \quad A \ 115 - 117 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

P

0


D

÷.

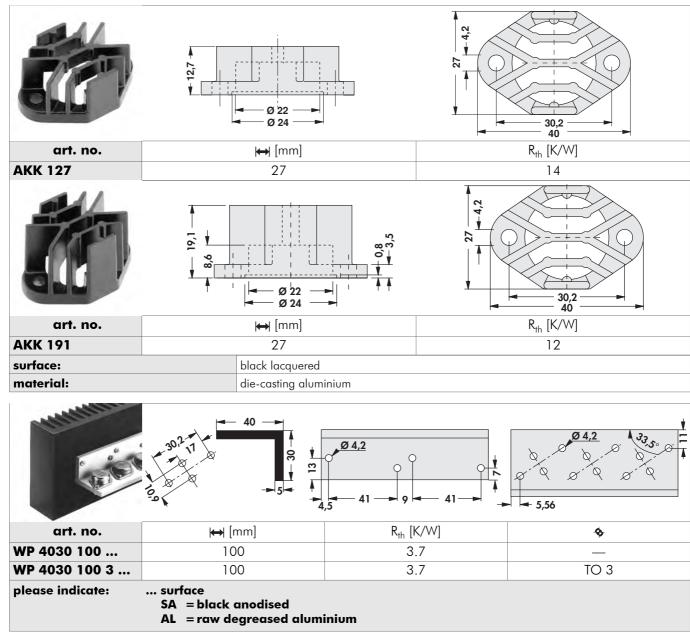
C

ł

U-Extruded heatsinks

→ A 21 **Profiles for PCB mounting Extruded heatsinks**

- **Retaining springs for transistors**
- **Technical introduction**
- → A 89 112 → A 22 – 83 → A 115 – 117 → A 2 – 8
- A 124


-

1

C

Die-cast heatsinks

Setup heatsinks and angle for TO 3

socket: TF 3 2 → E 50

Ν

A 125

Mounting for TO 3 angle **Order example** Standard aluminium profiles **Heatsinks for PCB**

→ A 125 → A 21 A 135 – 136 Heatsink profile-overview → → A 89 – 112 Technical introduction

Heatsinks for DC/DC converter Profiles for lock-in fixing spring

A 113 – 114 → → A 84 – 88 A 13 – 17 → → A 2 – 8

Downloaded from Arrow.com.

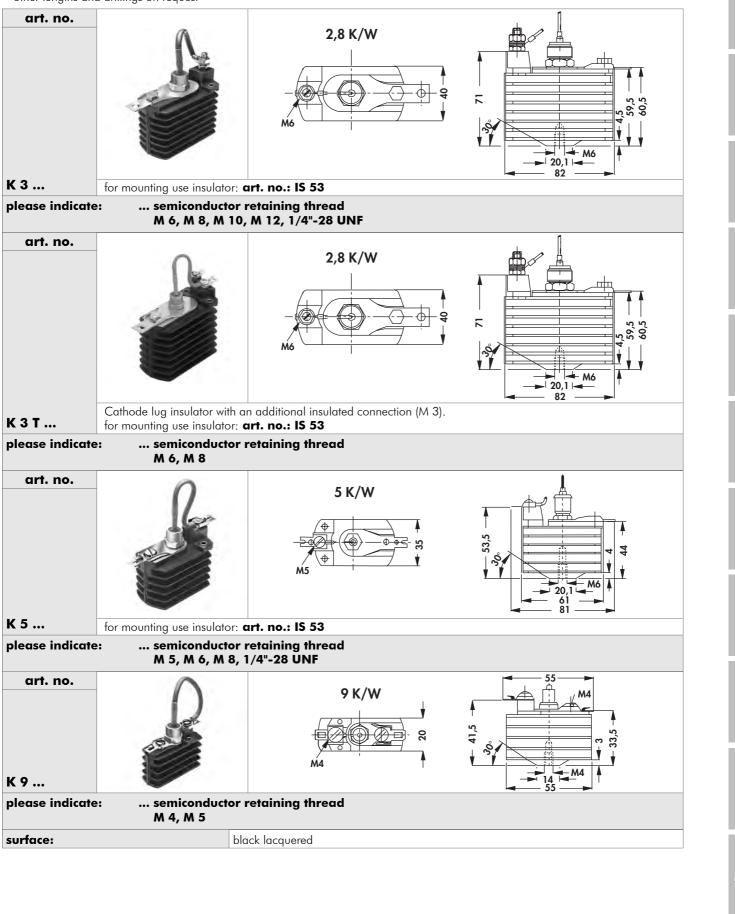
B

C

Б

E

E


G

H

Die-cast heatsinks

Die-cast acc. to german standard DIN 41882

- other lengths and drillings on request

Mounting for TO 3 angle **Special profiles** Standard aluminium profiles **Heatsinks for PCB**

→

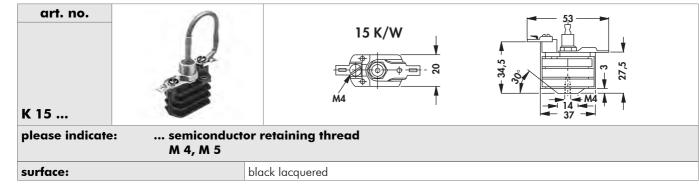
→

Heatsinks for DC/DC converter Profiles for lock-in fixing spring A 135 – 136 Heatsink profile-overview A 89 – 112 **Technical introduction**

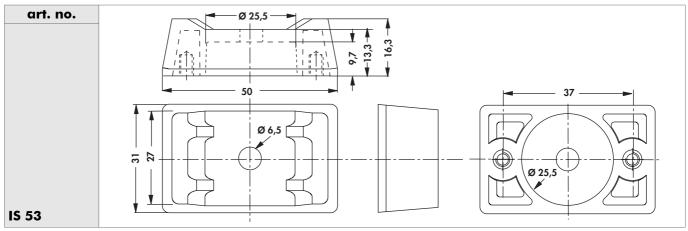
A 113 – 114 A 84 – 88 A 13 – 17 → → A 2 – 8

1

ł


C

A 126


Die-cast heatsinks

Die-cast acc. to german standard DIN 41882

- other lengths and drillings on request

Mounting parts for heatsinks

B

C

D

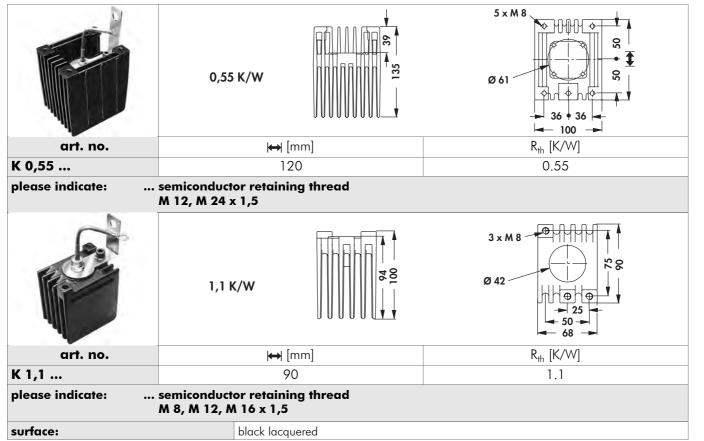
Ε

Ν

N

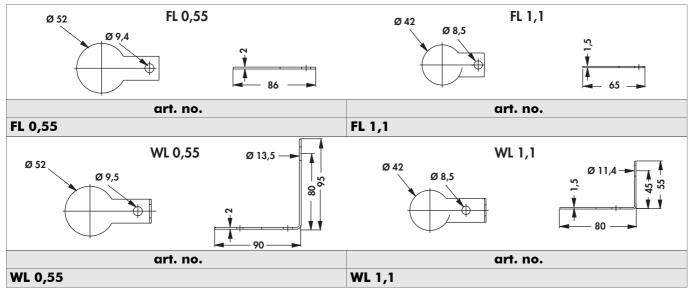
A 127

Mounting for TO 3 angle **Special profiles** Standard aluminium profiles **Heatsinks for PCB**


→ A 125 → A 21 → A 89 – 112 Technical introduction

Heatsinks for DC/DC converter Profiles for lock-in fixing spring → A 135 – 136 Heatsink profile-overview

→ A 113 - 114 → A 84 – 88 A 13 – 17 → → A 2 – 8


Die-cast heatsinks

- completely milled mounting surface for semiconductors with square bottom plates
- the mounting surface can be equipped with threads for fastening semiconductors with screwed glands (semiconductor thread tapping)
- threads from M 4 to M 32 x 1.5 or 4 x threads for semiconductors with clamping plate mounting are available
- strap fastening thread M 8
- delivery without anode strap
- other lengths and drillings on request

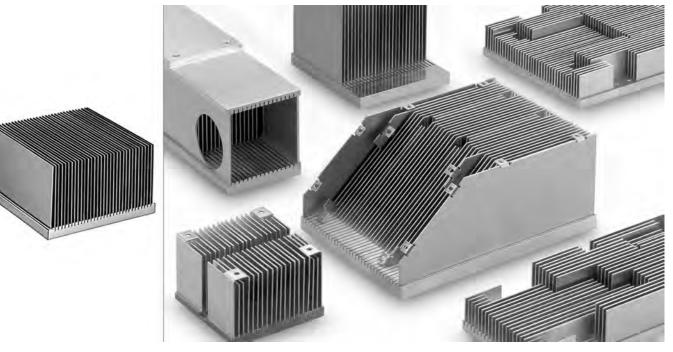
Accessories

anode end strap made of tin-plated cathode copper

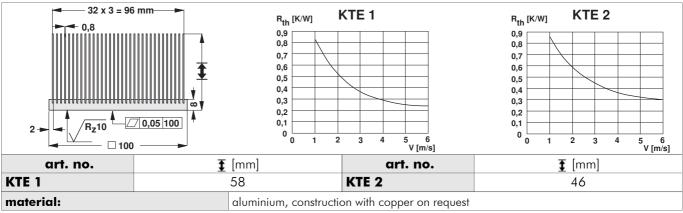
Mounting for TO 3 angle **Special profiles** Standard aluminium profiles **Heatsinks for PCB**

A 125 A 21

→


Heatsinks for DC/DC converter Profiles for lock-in fixing spring A 135 – 136 Heatsink profile-overview

- A 89 112 **Technical introduction**
- A 113 114 A 84 – 88 A 13 – 17 → → A 2 – 8

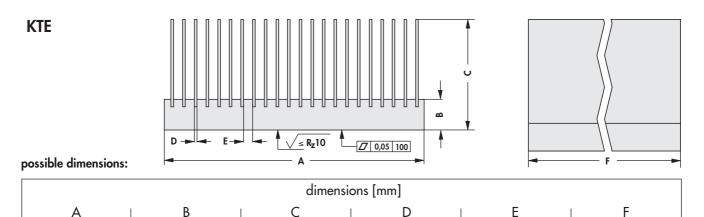

A 128

C

Standard fin coolers for thermoelectrical elements

- fin coolers in special design
- especially suitable for thermoelectric elements (Peltier-elements) and similar power modules
- compact design with reduced volume
- large surface, therefore more efficient than extruded profiles
- particularly low heat resistance with forced air cooling
- ideally fitted fins from a heat engineer's point of view
- accurately flat milled surfaces
- very low roughness
- machining for module mounting according to drawing
- heat bridges (spacing bridges) on request
- lapped surface on request
- customer specific special design

→


C

A 129

Fluid coolers Standard aluminium profiles High capacity cooling aggregat. Heatsink profile-overview A 131 – 133 Drilling pattern for Solid State A 135 – 136 Special heatsink design D 26 – 29 Special profiles A 13 – 17 Technical introduction $\begin{array}{l} \rightarrow \quad A \ 12 \\ \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

Fin coolers KTE/KTED custom design

max. 30

please indicate with your order:

max. 400

dimensions [mm]									
A	В	C	D	E	F				
material:	material: aluminium, construction with copper upon request								

ò **R_z10**

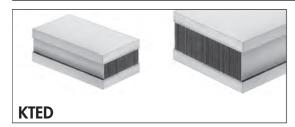
E-⇒

D-

0.8 / 1 / 1.5 / 2

min. 2

8


-

_____ ≤ 0,2 100

____ ″ **0,2** 100

≤ R_z10

max. 150

- fin coolers in special design -
- _ for forced convection, thus particularly low thermal resistance
- two opposite bottom plates as mounting surfaces for power modules and similar
- mounting surfaces precisely flat milled
- compact design with reduced volume _
- ideally fitted fins from a heat engineering point of view _
- lapped finish on request _
- additional machining according to customer's requirements _
- fan versions on request _
- _ special constructions to customer's indications

possible dimensions:

	dimensions [mm							
A	В	B 1	C	D	Е	F		
max. 400	max. 30	max. 30	max. 150	0.8 / 1 / 1.5 / 2	min. 2	max. 400		

please indicate with your order:

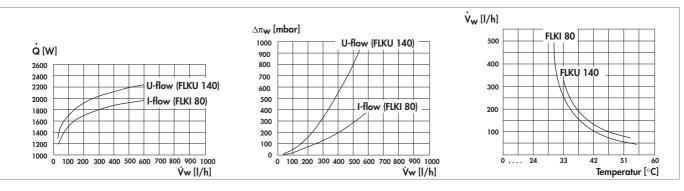
	dimensions [mm]									
A	В	B 1	C	D	E	F				
max. 400	max. 30	max. 30	max. 150	0.8 / 1 / 1.5 / 2	min. 2	max. 400				
material:		aluminium	, construction with	n copper upon request						

Fluid coolers
Standard aluminium profiles
High capacity cooling aggregat.
Heatsink profile-overview

- A 131 133 Drilling pattern for Solid State
 - A 135 136 Special heatsink design D 26 - 29 Special profiles →
 - ->
 - A 13 17 **Technical introduction**
- A 12 -> A 137 - 138 A 140 → → A 2 – 8

max. 400

.

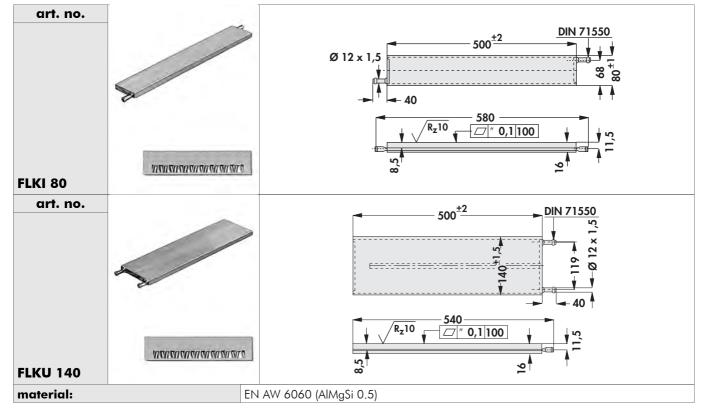

1

C

A 130

Downloaded from Arrow.com.

Fluid coolers for power modules



- water-gycol mixture (60/40); inlet temperature approx. 26 °C

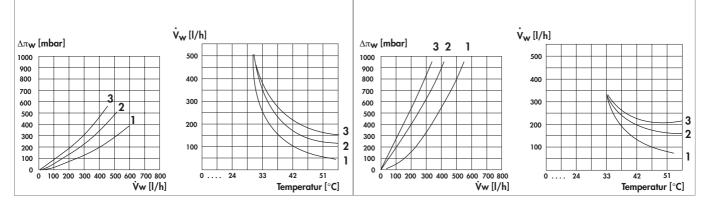
Fluid cooler for dissipating large quantities of heat with low space requirement; effective system to cool power modules; suitable for water pH 6.5-8.5 with anticorrosives, as well as other fluids (eg. oil, alcohols, etc.); compact design with internal fin structure for particularly good heat transfer to the fluid; minimised flow pressure losses (see diagram); operating pressure up to 2 bar possible; thick base plate for optimum heat distribution and to secure the heat-emmitting elements; mounting flange for the cooler according to customer's instructions; precisely face milled surface of component mounting area with very good flatness and low roughness depth; dimensionally accurate adjustment to given mounting conditions; connections using hole ports 12 mm in diameter with reinforcing seam to DIN 71550 or installation flange to customers instructions; I- or U-throughflow or multiple throughflow versions; max. drilling depth in the base plate: 7 mm

To avoid corrosion in the water cooler the cooling fluid has to flow in a closed circuit and it has to contain 40-60% (preferred is 50%) anti-corrosive fluids for aluminium, if necessary with anti-freeze. For the choice and approval of the cooling fluid as well as for the possible consequences in the cooling circuit the user is the only liable person. Therefore we exclude any liability for damages caused by the choice or approval of the cooling fluids.

- dimensions and designs using customer's instructions

	-		-	
1	×.	V	ï	۱
L	Λ	ù	A.	

Downloaded from Arrow.com.

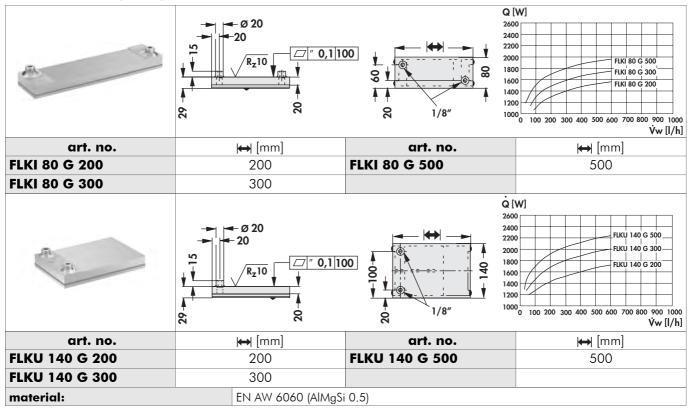

Fin coolers Cooling aggregates with axial fan High capacity cooling aggregat. Heatsink profile-overview $\begin{array}{r} \rightarrow \quad A \ 129 \\ \rightarrow \quad D \ 13 - 25 \\ \rightarrow \quad D \ 26 - 29 \\ \rightarrow \quad A \ 13 - 17 \end{array}$

Special heatsink design Special profiles Hole pattern Technical introduction $\begin{array}{r} \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 21 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

Fluid coolers for power modules

1 = FLKI 80 G 500 2 = FLKI 80 G 300 3 = FLKI 80 G 200

1 = FLKU 140 G 500 2 = FLKU 140 G 300 3 = FLKU 140 G 200



- water-gycol mixture (60/40); inlet temperature approx. 26 °C

Fluid cooler for dissipating large quantities of heat with low space requirement; effective system to cool power modules; suitable for water pH 6.5-8.5 with anticorrosive, as well as other fluids (eg. oil, alcohols, etc.); compact design with internal fin structure for particularly good heat transfer to the fluid; minimised flow pressure losses; operating pressure up to 2 bar possible; thick base plate for optimum heat distribution and to secure the heat-emitting elements; mounting flange for the cooler according to customer's instructions; precisely face milled surface of component mounting area with very good eveness and low roughness depth; for power modules like IGBT-module, Thyristor-module, SCR diode module, bridge amplifiers and others; dimensionally accurate adjustment to given mounting conditions; conncetions with thread muffle 1/8" or mounting flange according to customer's instructions; I- or U-throughflow or multiple throughflow versions; max. drilling depth in the base plate: 17 mm

To avoid corrosion in the water cooler the cooling fluid has to flow in a closed circuit and it has to contain 40-60% (preferred is 50%) anti-corrosive fluids for aluminium, if necessary with anti-freeze. For the choice and approval of the cooling fluid as well as for the possible consequences in the cooling circuit the user is the only liable person. Therefore we exclude any liability for damages caused by the choice or approval of the cooling fluids.

- dimensions and designs using customer's instructions

Fin coolers	→	A 129
Cooling aggregates with axial fan	→	D 13 –
High capacity cooling aggregat.	→	D 26 –
Heatsink profile-overview	→	A 13 –

Downloaded from Arrow.com.

25

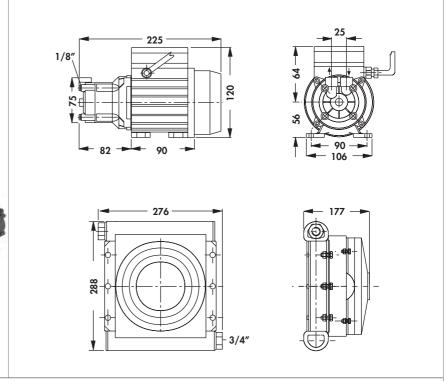
- **Special profiles** Hole pattern 29
 - A 13 17 **Technical introduction**

Special heatsink design

A 137 - 138 A 140 -> A 21 A 2 – 8

C

A 132


Recooling systems for liquid coolers

- recooling system for all types of liquid coolers
- cools up to 2,600 watts thermal power loss
- consists of pump and recooler
- pump as normally aspirating, single-stage centrifugal pump with spiral housing in block construction
- recooler with liquid-conducting tube system with air lamella and electrically driven fan motor
- further information free of charge under: FLK R1-Info
- notes: anticorrosive agents are required when water is used as coolant (eg. water/glykol 60/40)
- the hose systems used (NOT in scope of delivery) must be resistant to anticorrosive agents (eg. material EPDM according to DIN 73411, ISO 4081)

To avoid corrosion in the water cooler the cooling fluid has to flow in a closed circuit and it has to contain 40-60% (preferred is 50%) anti-corrosive fluids for aluminium, if necessary with anti-freeze. For the choice and approval of the cooling fluid as well as for the possible consequences in the cooling circuit the user is the only liable person. Therefore we exclude any liability for damages caused by the choice or approval of the cooling fluids.

FLKR 1

thermal cooling capacity:	max.	max. 2.600 W				
pump:	single	e-phase 230 V AC, 120 W				
recooler:	single	e-phase 230 V AC, 120 W/ three-phase 400 V AC, 90 W				
type of delivery:	pump	and recooler				

D

C

Fin coolers Cooling aggregates with axial fan High capacity cooling aggregat. Heatsink profile-overview $\begin{array}{r} \rightarrow \quad A \ 129 \\ \rightarrow \quad D \ 13 - 25 \\ \rightarrow \quad D \ 26 - 29 \\ \rightarrow \quad A \ 13 - 17 \end{array}$

Special heatsink design Special profiles Hole pattern Technical introduction $\begin{array}{l} \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad A \ 140 \\ \rightarrow \quad A \ 21 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

N

Downloaded from Arrow.com.

Standard aluminium profiles

- length, drilling and surface finishes to customer's instructions

- other standard profiles on request

U-profiles

art. no.	A [mm]	B [mm]	C [mm]	D [mm]	art. no.	A [mm]	B [mm]	C [mm]	D [mm]
SU 02	20	40	20	2.5	SU 16	30	30	30	2.0
SU 03	20	40	20	2.0	SU 27	40	40	40	2.5
SU 05	30	20	30	2.0	SU 29	40	40	40	4.0
SU 09	20	20	20	1.5	SU 32	30	30	30	3.0
tolerances:			EN 755						
material:			EN AW 6	060 (AlMgSi	0.5)				

flat profiles

		Ý.	A				
art. no.	A [mm]	B [mm]	art. no.	A [mm]	B [mm]		
SFP 005	40	15	SFP 058	40	8		
SFP 006	30	8	SFP 060	80	8		
SFP 007	40	5	SFP 067	30	15		
SFP 016	70	15	SFP 074	70	10		
SFP 028	40	10	SFP 076	60	30		
SFP 029	30	10	SFP 079	90	100		
SFP 037	55	10	SFP 090	120	15		
SFP 046	25	5	SFP 100	100	15		
SFP 054	50	10	SFP 106	40	20		
SFP 057	115	100	SFP 112	100	25		
olerances:		EN 755			1		
naterial:	erial: EN AW 6060 (AlMgSi 0.5)						

angled profile

				•					
art. no.	A [mm]	B [mm]	C [mm]	art. no.	A [mm]	B [mm]	C [mm]		
SWP 02	80	80	8	SWP 29	15	10	2		
SWP 06	80	40	6	SWP 36	75	50	5		
SWP 10	30	20	2	SWP 40	40	30	5		
SWP 15	40	20	4	SWP 55	40	40	5		
SWP 23	20	15	2	SWP 57	60	30	5		
SWP 25	50	30	5						
tolerances:		EN 755	EN 755						
material: EN AW 6060 (AlMgSi 0.5)									

Ν

Ν

A 135

Hole pattern Extruded heatsinks Mounting for TO 3 angle **High capacity heatsinks**

→ A 21 → A 22 – 83

→ A 57 – 58

Construction parts made of aluminium \rightarrow A 139 Heatsink as visual & decor-parts

 \rightarrow A 10 → A 125 – 126 Special profiles **Technical introduction** →

→ A 140 A 2 – 8

P

Б

Ε

F

G

H

Κ

Standard aluminium profiles

quadrangular profile

			A						
art. no.	A [mm]	B [mm]	art. no.	A [mm]	B [mm]				
SVP 01	8	8	SVP 12	50	50				
SVP 04	25	25	SVP 13	55	55				
SVP 10	10	10							
tolerances:		EN 755							
material:	material: EN AW 6060 (AlMgSi 0.5)								

T-profile

art. no.	A [mm]	B [mn	n]	C [mm]	art. no.	A [mm]	B [mm]	C [mm]		
STP 4	60	60		6	STP 5	20	20	2		
tolerances:	tolerances: EN 755									
material:	material: EN AW 6060 (AlMgSi 0.5)									

C

D

1

1

C

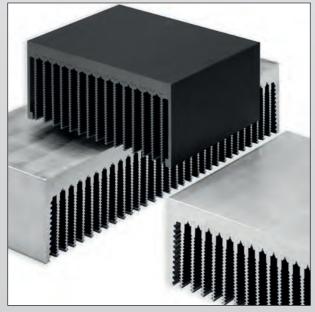
Π

k

N

Ν

Downloaded from Arrow.com.


fisch@r elektronik=>3

CNC treatments of cooling profiles Streamlined omnidirectional fin geometrie Heatsinks with pressed-in fins Precise milled flat surfaces



Customer specified CNC treatments of cooling profiles

- latest CNC machining centres for highest quality demands
- profile treatments for seizes up to 1600 mm
- future orientated stockkeeping of the aluminium profiles in fully automated honeycomb warehouses
- batch size optimized production flow
- special profiles, modifications and surfaces according to your special demand

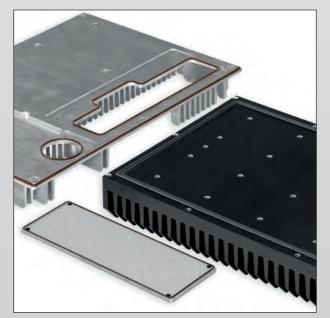
- Extruded heatsinks with pressed-in fins
- for highest thermal dissipation losses
- channelled fin geometrie for increasing the surface
- thermotechnical optimized connection between fin and bottom plate
- deliverable in widths of 200 up to 750 mm
- customer specific versions and treatments

Streamlined omnidirectional fin geometrie

- free-standing cooling fingers for forced cooling
- incident flow of the heatsinks by means of fans from all sides (omnidirectional)
- no direction-oriented installation position
- fin spacings according to your demand
- special designs, treatments and versions according to customer's request

Precise milled flat surfaces

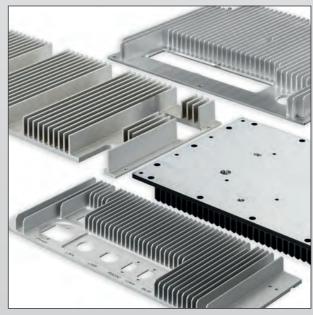
- very small depth of roughness and unevenness
- individually milled flat semi-conductor mounting surfaces for minimizing the heat-transmission resistances
- millings on the already anodized heatsinks
- protective foil avoid scratching of the high-quality mounting surface
- special designs according to customer's drawing


fisch@r elektronik=>3

Surface labelling Additional equipments Heatsinks with integrated sealing 19" compliant CNC-treatment

Surface labelling

- durable and high quality labeling by means of YAG-laser, silk screen-, pad- and digital printing
- print layout preparation by means of in-house repro department
- precise in contrast, precise engraved fonts and contours by means of CNC-controlled treatment systems
- labeling of aluminium, Plexiglas and plastics


Heatsinks with integrated sealing

- foamed sealing applied on the profile as a permanent element of the heatsink
- also usable for front plates or milled parts
- groove filled or stacked
- permanently elastic and CFC-free
- adaption of the sealing properties to the specific application

Additional equipments

- fractional semi-conductor mounting surfaces made of copper for heat dissipation
- pressed-in or screwed distance sleeves made of metal and plastics
- threaded bolts with internal and external thread
- support rail mountings made of metal or plastics according to DIN EN 50022

- 19" compliant CNC-treatment
- milled heatsink side or back panels for 19" cases, 19" plug in boxes, subracks and insert modules
- pressing in or welding of threaded bolts
- customer specified modifications, designs
- surfaces and printing upon request

Welded high perfomance heatsinks Welded heatsinks Construction- and milled parts Cases and contour milled parts

Welded high performance heatsinks

- optimal fin geometry with channelled structure for free convection
- production of heatsink widths outside of the press-technical production possibilities
- removing of the welding line by means of precise milled flat surfaces
- individual surface design

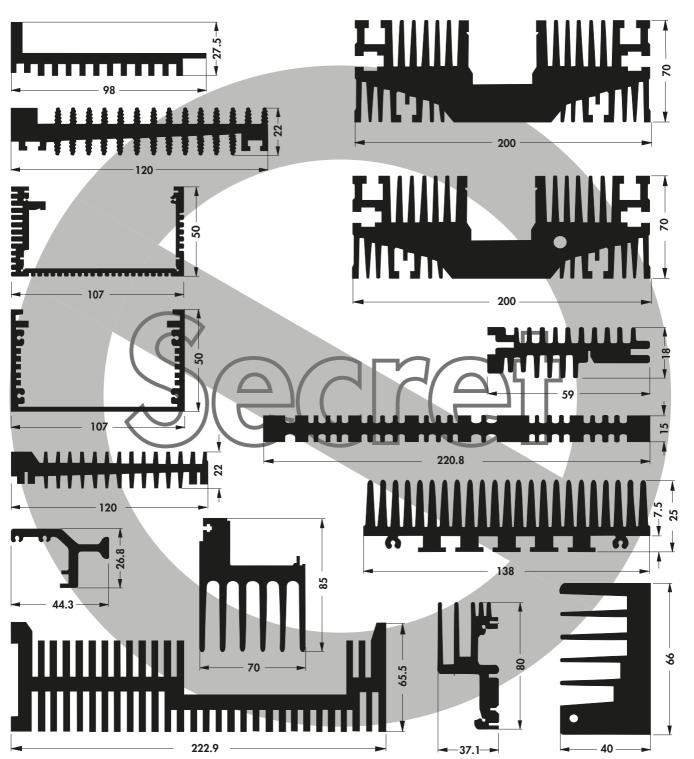
Construction- and milled parts made of aluminium according to customer specifications

- precise milled contours and surfaces
- inserting of holes and cut-outs, cutting or milling of threads
- turning in of wire thread inserts for high- and wear-resistant threads
- simple data exchange by means of up to date CAD- / CAM-systems

Welded heatsinks

- homogeneous connection of the materials by means of special welding methods
- welding on additional mounting levels which are situated diagonally to the pressing direction of the profiles
- production of prototypes
- application-based special designs and treatments according to your demand

Cases and contour milled parts made of aluminium


- customer specific cases and construction parts
 precise mechanical treatments for highest quality
- precise mechanical treatments for highest quality demands
- all requested surface designs
- modifications and versions, special requirements, treatments and designs according to your drawing specification

Fischer elektronik 23 Special profiles

Whenever you cannot find the ideal solution for your problem from the wide range of standard extrusions on offer or a solution constitutes a compromise between the use of the space available and the weight, as long as the quantity is correct a special section is the answer.

Released from the dimensional restrictions of the standard profiles, special extrusions are tailored to your design requirements, and offer considerable benefits in terms of machining time and use of space.

Furthermore your calculation will be influenced positively by the optimised material use and shorter machining times. You can determine the combination of the desired thermal properties and the design element yourself, by the use of a special profile. We are not allowed to publish many of our customer-specific Profiles, because they are subject to "non disclosure agreements". Therefore we only show some examples for customer profiles in the industry. All figures are illustrations. Changes reserved.

If required please send your request.

C

Round and pin heatsinks Heatsinks for LEDs Heatsinks for all transistor types Heatsinks and coolers for processors

Round and pin heatsinks

- streamlined omnidirectional fin geometrie
- excellent thermal conductivity due to special aluminium alloys
- suitable for free and forced convection
- no direction bounded installation position
- flat semiconductor mounting surfaces
- contour also as milled parts according to your demands

Heatsinks for all current PL CC, DIL-IC and SMD transistor types

- effective heat dissipation at a low profile and low weight
- direct mounting of the component by means of a double-sided adhesive thermal foil or glue
- solderable versions of the surface
- special packaging such as tape & reel, magazine or tray upon request

Heatsinks for LEDs

- various heatsink geometries adjusted to all current LED-types and light-engines
- star shaped heatsinks for the use as a LED-lamp housing
- LED mounting by means of screws, thermal conductive adhesive foil or thermal conductive glue
- customer specified versions with application based "thermal management"

Heatsinks and coolers for processors

- passive and active product solutions
- effective heat dissipation due to optimal conception of fan and heatsink
- long lifetime and high operating safety due to high quality fans
- versions for screw, glue and clip mounting
- customer specific solutions and fans

Heatsinks for IC processor

art. no.	page	R _{th}	dissipation	way of fixation	socket	suitable for processor
		[K/W]	loss [W]			type
ICK PGA 6 x 6 x 14	B 11	20	6.4	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK PGA 8 x 8 x 12	B 11	14.8	8.1	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK PGA 9 x 9	B 11	14	3	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK PGA 11 x 11 x 8	B 11	16	7.5	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK PGA 11 x 11	B 11	10.9	4.5	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK PGA 11 x 11 x 12	B 12	12.3	3.9	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK PGA 14 x 14	B 12	10	4.9	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK PGA 14 x 14 x 10	B 12	10.5	11.2	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK PGA 14 x 14 x 14	B 12	9.6	12.5	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK PGA 14 x 14 x 12	B 12	9.8	5.3	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK PGA 15 x 15	B 12	9.4	5.9	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK PGA 16 x 16 x 8	B 13	14	4.9	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK PGA 16 x 16 x 10	B 13	10.5	12.9	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK PGA 16 x 16 x 12	B 13	9.3	6.2	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK PGA 17 x 17	B 13	8.6	6.9	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK PGA 17 x 17 x 8	B 13	13.2	5.2	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK PGA 17 x 17 x 12	B 13	9	6.5	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK PGA 18 x 18	B 14	8.4	7.2	therm. conductive foil/ therm. cond. adhesive therm. conductive foil/	universal	universal
ICK PGA 19 x 19 ICK PGA 19 x 19 x 12	B 14 B 14	8.6		therm. conductive toil/ therm. cond. adhesive therm. conductive foil/	universal	universal
ICK PGA 19 x 19 x 12	B 14 B 14	9 8.5	6.9	therm. conductive toil/ therm. cond. adhesive therm. conductive foil/	universal universal	universal
ICK PGA 20 x 20 x 10	B 14 B 14	8.5 7.6	8.3	therm. conductive foil/ therm. cond. adhesive therm. conductive foil/	universal	universal
ICK PGA 20 x 20	B 14 B 15	7.6	8.3	therm. cond. adhesive		
				fixing clamp	socket 7/ socket 370	IDT W2A/ AMD [®] K6-III/ AMD [®] K6-2/ MMX/ IDT C6/ Intel [®] Pentium [®]
ICK PGA 20 x 20 x 8	B 15	12	6.3	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK PGA 20 x 20 x 12	B 15	8	8.1	therm. conductive foil/ therm. cond. adhesive	universal	universal

- very good thermal efficiency

aerodynamic immidirectional fin geometry
 simple mounting by means fo fixing clamp, thermal conductive adhesive film or thermal conductive glue
 customer specified designs, surfaces and modifications upon request

.

C

Þ

E

F

G

ŀ

Ν

B2

Heatsinks for IC processor

art. no.	page	R _{th}	dissipation	way of fixation	socket	suitable for process
		[K/W]	loss			type
			[W]			
ICK PGA 21 x 21	B 15	7	8.6	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK PGA 22 x 22	B 15	6.2	8.9	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK PGA 25 x 25	B 16	5	11.1	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK BGA 10 x 10	B 17	30	1.8	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK BGA 10 x 10 x 10	B 17	28.5	1.9	therm. conductive foil/	universal	universal
	D 17	20	0.1	therm. cond. adhesive		•
ICK BGA 14 x 14	B 17	30	2.1	therm. conductive foil/	universal	universal
	D 17	07.4	0.0	therm. cond. adhesive	• 1	• 1
ICK BGA 14 x 14 x 10	B 17	27.4	2.3	therm. conductive foil/	universal	universal
ICK BGA 21 x 21	B 18	24.3	2.5	therm. cond. adhesive therm. conductive foil/	universal	universal
	DIO	24.5	2.5	therm. cond. adhesive	Universal	Universal
ICK BGA 23 x 23	B 18	22.5	2.8	therm. conductive foil/	universal	universal
	DIO	22.5	2.0	therm. cond. adhesive	Universui	Universui
ICK BGA 23 x 23 x 10	B 18	21.5	2.9	therm. conductive foil/	universal	universal
	DIO	21.0	2.7	therm. cond. adhesive	oniversal	oniversal
ICK BGA 27 x 27	B 18	20	3.1	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK BGA 27 x 27 x 10	B 18	18.5	3.3	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK BGA 27 x 27 x 14	B 18	13.5	9.5	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK BGA 27 x 27 x 22	B 19	10.5	9.5	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK BGA 31 x 31	B 19	18.6	3.4	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK BGA 31 x 31 x 10	B 19	17	3.7	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK BGA 35 x 35	B 19	16.5	3.7	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK BGA 35 x 35 x 10	B 19	15.7	3.8	therm. conductive foil/	universal	universal
	D 10	157	0.5	therm. cond. adhesive	• 1	• 1
ICK BGA 37 x 37 x 6	B 19	15.7	9.5	therm. conductive foil/	universal	universal
ICK BGA 37 x 37 x 10	B 20	14	10.5	therm. cond. adhesive therm. conductive foil/	universal	universal
ICK DOA 3/ X 3/ X 10	D ZU	14	10.5	therm. conductive foil/ therm. cond. adhesive	Universal	Universal
ICK BGA 40 x 40	B 20	14.6	4.3	therm. conductive foil/	universal	universal
	0 20	14.0		therm. cond. adhesive	011101301	GHIVEISUI
ICK BGA 40 x 40 x 10	B 20	13.8	4.4	therm. conductive foil/	universal	universal
	- 20	. 5.0		therm. cond. adhesive	5 01001	
ICK BGA 42,5 x 45	B 20	13.6	4.2	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK S 10 x 10 x 6,5	B 21	25	2.5	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK S 10 x 10 x 10	B 21	23.75	2.6	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK S 10 x 10 x 12,5	B 21	22.5	2.8	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK S 10 x 10 x 18,5	B 22	21.75	3	therm. conductive foil/	universal	universal
				therm. cond. adhesive		

- very good thermal efficiency

- aerodynamic imnidirectional fin geometry
 simple mounting by means fo fixing clamp, thermal conductive adhesive film or thermal conductive glue
 customer specified designs, surfaces and modifications upon request

B 3

B

D

E

F

G

E

Κ

Ľ

Μ

N

Heatsinks for IC processor

art. no.	page	R _{th} [K/W]	dissipation loss [W]	way of fixation	socket	suitable for processor type
ICK S 14 x 14 x 6,5	B 22	9	5	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S 14 x 14 x 10	B 22	8.8	5.1	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S 14 x 14 x 12,5	B 22	8.1	5.4	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S 14 x 14 x 18,5	B 22	7.9	5.6	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK \$ 17 x 17 x 15	B 22	8.36	5.95	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S 17 x 17 x 20	B 23	7.89	6.3	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S 18 x 18 x 6,5	B 23	7	7.7	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S 18 x 18 x 10	B 23	6.8	8	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S 22 x 22 x 10	B 23	5.9	8.5	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S 22 x 22 x 18,5	B 23	5	10	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK \$ 25 x 25 x 6,5	B 23	5.8	12.9	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S 25 x 25 x 12,5	B 24	5.3	14.1	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S 25 x 25 x 18,5 ICK S 29 x 29 x 10	B 24 B 24	5.2 5.7	14.4	therm. conductive foil/ therm. cond. adhesive	universal	universal
				therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S 29 x 29 x 20 ICK S 29 x 29 x 30	B 24 B 24	3.7 2.9	20.2	therm. conductive foil/ therm. cond. adhesive therm. conductive foil/	universal	universal
ICK S 29 x 29 x 30	B 24 B 24	5.4	13.8	therm. conductive foil/ therm. cond. adhesive therm. conductive foil/	universal universal	universal
ICK S 32 x 32 x 10	B 24	3.7	20.4	therm. conductive foil/ therm. cond. adhesive therm. conductive foil/		universal
ICK S 36 x 36 x 10	B 25	4.7	16	therm. conductive foil/ therm. cond. adhesive therm. conductive foil/	universal	universal
ICK S 36 x 36 x 15	B 25	3.9	19.2	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S 36 x 36 x 20	B 25	3.2	22	therm. conductive foil/ therm. conductive foil/	universal	universal
ICK S 36 x 36 x 30	B 25	2.5	23.4	therm. conductive foil/ therm. conductive foil/	universal	universal
ICK S 40 x 40 x 10	B 25	4.6	16.3	therm. conductive foil/ therm. conductive foil/	universal	universal
ICK S 40 x 40 x 20	B 26	3.5	21.4	therm. conductive foil/ therm. conductive foil/	universal	universal
ICK S 40 x 40 x 25	B 26	3.1	23.7	therm. conductive foil/	universal	universal
ICK S 45 x 45 x 10	B 26	4.7	16	therm. conductive foil/ therm. conductive foil/	universal	universal
ICK S 45 x 45 x 20	B 26	4.4	17	therm. conductive foil/ therm. conductive foil/	universal	universal
	0 20	тт	17	therm. cond. adhesive	onversu	

- very good thermal efficiency

aerodynamic immidirectional fin geometry
 simple mounting by means fo fixing clamp, thermal conductive adhesive film or thermal conductive glue
 customer specified designs, surfaces and modifications upon request

.

C

Þ

E

E

G

ŀ

Ν

B4

Heatsinks for IC processor

art. no.	page	R _{th}	dissipation	way of fixation	socket	suitable for process
		[K/W]	loss			type
ICK S 50 x 50 x 20	B 26	2.7	[W] 27.7	therm. conductive foil/	universal	universal
	0.20	2.7	27.7	therm. cond. adhesive	Universal	Universal
ICK S 50 x 50 x 25	B 26	2.4	31.2	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK S 50 x 50 x 40	B 27	6.05	13.5	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK S 50 x 50 x 50	B 27	4.05	14.32	therm. conductive foil/	universal	universal
	D 0 7	2 (therm. cond. adhesive		
ICK S 98 x 98 x 30	B 27	2.4	35	therm. conductive foil/	universal	universal
ICK S 98 x 98 x 45	B 27	3.5	42	therm. cond. adhesive therm. conductive foil/	universal	universal
ICK J 70 X 70 X 4J	D Z/	5.5	42	therm. cond. adhesive	Universui	Universul
ICK S D 12 x 12 x 7,5	B 28	10.85	4.6	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK S D 18 x 12 x 7,5	B 28	9	5.4	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK S D 24 x 18 x 7,5	B 28	8.5	5.85	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK S D 98 x 98 x 10	B 28	4.88	10.25	therm. conductive foil/	universal	universal
	D 00	F 00	15 /	therm. cond. adhesive	• 1	• 1
ICK S R 28,5 x 6,5	B 29	5.82	15.6	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S R 28,5 x 10	B 29	5.65	16	therm. conductive foil/	universal	universal
$\mathbf{R} \mathbf{S} \mathbf{K} \mathbf{Z} \mathbf{U}_{\mathbf{J}} \mathbf{S} \mathbf{X} \mathbf{T} \mathbf{U}$	DZ7	5.05	10	therm. cond. adhesive	Universui	Universul
ICK S R 28,5 x 12,5	B 29	5.53	16.3	therm. conductive foil/	universal	universal
	/			therm. cond. adhesive		
ICK S R 28,5 x 18,5	B 29	4.25	20.2	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK S R 32,5 x 10	B 29	5.54	9	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK S R 32,5 x 20	B 29	5.6	8.9	therm. conductive foil/	universal	universal
	D 20	4.0	11	therm. cond. adhesive	• • • • • •	
ICK S R 32,5 x 30	B 30	4.2	11	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S R 32,5 x 40	B 30	3.2	15	therm. conductive foil/	universal	universal
TCR 5 R 02,5 X 40	0.00	0.2	15	therm. cond. adhesive	Universal	Universal
ICK S R 32,5 x 50	B 30	2.7	18	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK S R 36,5 x 20	B 30	6.41	18	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK S R 40 x 10	B 30	11.04	8.4	therm. conductive foil/	universal	universal
	D a a	10.00		therm. cond. adhesive	· · ·	
ICK S R 40 x 20	B 30	10.32	8.8	therm. conductive foil/	universal	universal
ICK S R A 40 x 20	B 31	11.62	8.2	therm. cond. adhesive	universal	universal
IGN J K A 40 X 20	וטס	11.02	0.2	therm. conductive foil/ therm. cond. adhesive	Universal	Universal
ICK S R 40 x 30	B 31	9.77	16	therm. conductive foil/	universal	universal
	DOT	/.//		therm. cond. adhesive	5111761301	Universal
ICK S R 40 x 50	B 31	2	25	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK S R 45 x 30	B 31	8	9.2	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK S R 45 x 45	B 31	6	9.2	therm. conductive foil/	universal	universal
				therm. cond. adhesive		

- very good thermal efficiency
- aerodynamic imnidirectional fin geometry
 simple mounting by means fo fixing clamp, thermal conductive adhesive film or thermal conductive glue
 customer specified designs, surfaces and modifications upon request

B 5

B

D

E

F

G

E

Κ

Ľ

Μ

N

Heatsinks for IC processor

art. no.	page	R _{th} [K/W]	dissipation loss [W]	way of fixation	socket	suitable for processor type
ICK S R 50 x 10	B 31	5.28	9.5	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S R 50 x 20	B 32	8.55	9.8	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S R 50 x 30	B 32	8.26	10	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S R 50 x 45	B 32	6.32	12.7	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S R 54 x 20	B 32	8.11	10.2	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S R 54 x 30	B 32	6.95	11.57	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S R 54 x 45	B 33	5.37	15.2	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S R 70 x 30	B 33	1.8	27	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S R 70 x 50	B 33	1.5	33	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S R 85 x 30	B 33	2	25	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S R 85 x 45	B 33	1.8	27	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK S R 98 x 30 ICK S R 98 x 50	B 34 B 34	1.65	30	therm. conductive foil/ therm. cond. adhesive therm. conductive foil/	universal universal	universal
ICK S R 98 x 50	B 34 B 35	1.4	6.5	therm. conductive foil/ therm. cond. adhesive therm. conductive foil/	universal	universal
ICK LED R 23,5 x 14	B 35	18.58	6.3	therm. conductive foil/ therm. cond. adhesive therm. conductive foil/	universal	universal
ICK LED R 23,5 X 14 G	В 35	17.69	6.7	therm. conductive foil/ therm. cond. adhesive therm. conductive foil/	universal	universal
ICK LED R 27 x 10 G	B 35	18.24	6.6	therm. conductive foil/ therm. conductive foil/	universal	universal
ICK LED R 28 x 15	B 35	15.24	7.8	therm. conductive foil/ therm. conductive foil/	universal	universal
ICK LED R 28 x 15 G	B 36	15.72	7.6	therm. cond. adhesive therm. conductive foil/	universal	universal
ICK LED R 29 x 11,5	B 36	17.26	8.2	therm. cond. adhesive therm. conductive foil/	universal	universal
ICK LED R 29 x 11,5 G	B 36	17.8	8	therm. cond. adhesive therm. conductive foil/	universal	universal
ICK LED R 32 x 14	B 36	15.23	7.8	therm. cond. adhesive therm. conductive foil/	universal	universal
ICK LED R 32 x 14 G	B 36	15.23	7.6	therm. cond. adhesive therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK LED R 33 x 10	B 36	17.6	6.8	therm. conductive foil/ therm. conductive foil/	universal	universal
ICK LED R 33 x 10 G	B 36	18.15	6.6	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK LED R 33 x 16,5	B 37	13.87	8.5	therm. conductive foil/ therm. cond. adhesive	universal	universal
ICK LED R 33 x 16,5 G	B 37	14.3	8.3	therm. conductive foil/ therm. cond. adhesive	universal	universal

- very good thermal efficiency

aerodynamic immidirectional fin geometry
 simple mounting by means fo fixing clamp, thermal conductive adhesive film or thermal conductive glue
 customer specified designs, surfaces and modifications upon request

.

C

Þ

E

F

G

ŀ

Ν

B6

Heatsinks for IC processor

art. no.	page	R _{th} [K/W]	dissipation loss	way of fixation	socket	suitable for processo type
			[W]			
ICK LED R 35 x 10	B 37	16.9	9.35	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK LED R 35 x 10 G	B 37	17.5	9.2	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK LED R 36 x 12	B 37	12.88	10	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK LED R 36 x 12 G	B 37	13.28	8.9	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK LED R 40 x 10	B 37	12.28	9.45	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK LED R 40 x 10 G	B 38	12.66	9.3	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK LED R 40 x 27	B 38	9.41	12.1	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK LED R 40 x 27 G	B 38	9.71	11.9	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK LED R 45,7 x 16,5	B 38	10.46	11.05	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK LED R 45,7 x 16,5 G	B 38	10.49	10.8	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK LED R 50 x 10	B 38	10.57	10.5	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK LED R 50 x 10 G	B 39	10.9	10.3	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK LED R 50,8 x 16,5	B 39	10.17	11.1	therm. conductive foil/	universal	universal
				therm. cond. adhesive		
ICK LED R 50,8 x 16,5 G	B 39	10.49	10.9	therm. conductive foil/	universal	universal
	,			therm. cond. adhesive		
ICK LED R 54 x 20	B 39	9.48	12.1	therm. conductive foil/	universal	universal
	207	7.10		therm. cond. adhesive	onnorodi	onnvorban
ICK LED R 54 x 20 G	B 39	9.78	11.9	therm. conductive foil/	universal	universal
	00/	7.70	11.7	therm. cond. adhesive	onnversar	oniversal
ICK LED R 66 x 40	B 39	3.2	21	therm. conductive foil/	universal	universal
	00/	0.2	21	therm. cond. adhesive	onnversar	oniversal
ICK LED R 75 x 10	B 40	5.2	12.1	therm, conductive foil/	universal	universal
	040	5.2	12.1	therm. cond. adhesive	Universal	Universal
ICK LED R 84 x 40	B 40	2.5	14.5	therm. conductive foil/	universal	universal
	040	2.5	14.5	therm. cond. adhesive	Juncial	UNIVEISUI
ICK LED R 100 x 40	B 40	2	27	therm. conductive foil/	universal	universal
	040	Z	21	therm. cond. adhesive	Universal	Universui
ICK LED R 160 x 40	B 40	1.4	42		universal	universal
ICK LED K IOU X 40	D 40	1.4	42	therm. conductive foil/	universal	universal
ICK LED D 200 - 40	D / 1	1	<i>E</i> 1	therm. cond. adhesive		
ICK LED R 200 x 40	B 41	1	51	therm. conductive foil/	universal	universal
				therm. cond. adhesive		

Ľ

Κ

B

D

Ε

F

G

H

Μ

B 7

- very good thermal efficiency
 aerodynamic imnidirectional fin geometry
 simple mounting by means fo fixing clamp, thermal conductive adhesive film or thermal conductive glue
 customer specified designs, surfaces and modifications upon request
- Downloaded from Arrow.com.

N

Fan coolers for IC processor

LA LED 40 x 30B 491.435therm. conductive foil/ therm. cond. adhesiveuniversalLA LED 50 x 20B 491.2540therm. cond. adhesiveLA LED 50 x 20B 491.2540therm. cond. adhesive	universal
therm. cond. adhesive	
	universal
LA LED 50 x 45B 490.950therm. conductive foil/ therm. cond. adhesiveuniversal	universal
ICK PPC 51 B 56 8.1 14 screw fastening	Power PC
ICK PEN 3 XE B 56 2 31.3 screw fastening Slot 2	Intel® Pentium® III-Xeon™ Slot II Format
ICK PEN 3 XE 1 B 56 1.8 33.6 screw fastening Slot 2	Intel® Pentium® III-Xeon™ Slot II Format
ICK EM 25 B 56 3.9 20.4 screw fastening	Q7 Board
ICK PEN 38 F B 57 4 15.1 therm. conductive foil socket 7/ socket 370	AMD® K6-III/ IDT W2A/ MMX/ IDT C6/ Intel® Pentium®/ AMD® K6-2
ICK PEN 38 W B 57 4 15.1 therm. cond. adhesive socket 7/ socket 370	AMD® K6-III/ IDT W2A/ MMX/ IDT C6/ Intel® Pentium®/ AMD® K6-2
ICK PEN 45 W B 57 3.5 21 therm. cond. adhesive socket 7/ socket 370	AMD [®] K6-III/ IDT W2A/ MMX/ IDT C6/ Intel [®] Pentium [®] / AMD [®] K6-2
	ntel [®] Pentium [®] PRO
ICK PEN 3 FC B 57 3.5 22 fixing clamp socket 7/ Ir socket 370	ntel [®] Pentium [®] III FC PGA (Mendocino, Coppermine)
LA ICK 15 x 15 F 05 B 58 2.3 22.2 therm. conductive foil universal	universal
LA ICK 15 x 15 F 12 B 58 2.3 22.2 therm. conductive foil universal	universal
LA ICK 17 x 17 F 12 B 58 1.6 35.8 therm. conductive foil universal	universal
LA ICK 17 x 17 F 12 A B 58 1.6 35.8 therm. conductive foil universal	universal
LA ICK 17 x 17 W 05 B 58 1.6 35.8 therm. cond. adhesive universal	universal
LA ICK 17 x 17 W 12 B 58 1.6 35.8 therm. cond. adhesive universal	universal
LA ICK 18 x 18 F 12 B 58 1.5 41.7 therm. conductive foil universal	universal
LA ICK 18 x 18 W 12 B 58 1.5 41.7 therm. cond. adhesive universal	universal
LA ICK 21 x 21 F 05 B 58 1.4 46.3 therm. conductive foil universal	universal
LA ICK 21 x 21 F 12 B 58 1.4 46.3 therm. conductive foil universal	universal
LA ICK 21 x 21 W 05 B 58 1.4 46.3 therm. cond. adhesive universal	universal
LA ICK 21 x 21 W 12 B 58 1.4 46.3 therm. cond. adhesive universal	universal

- compact design with high mechanical stability
 fan with doubled ball bearing axis
 optimal thermotechnical design of fan and heatsink

.

C

Þ

E

F

G

ŀ

B 8

Ν

Fan coolers for IC processor

art. no.	page	R _{th} [K/W]	dissipation loss [W]	way of fixation	socket	suitable for processor type
LA ICK PEN 8 F 05	B 59	2.5	23.4	therm. conductive foil	socket 7/ socket 370	AMD® K6-III/ IDT W2A/ Cyrix MII and similar/ MMX/ IDT C6/ Intel® Pentium®/ AMD® K6-2
LA ICK PEN 8 F 12	В 59	2.5	23.4	therm. conductive foil	socket 7/ socket 370	AMD® K6-III/ IDT W2A/ Cyrix MII and similar/ MMX/ IDT C6/ Intel® Pentium®/ AMD® K6-2
LA ICK PEN 8 W 05	B 59	2.5	23.4	therm. cond. adhesive	socket 7/ socket 370	AMD® K6-III/ IDT W2A/ Cyrix MII and similar/ MMX/ IDT C6/ Intel® Pentium®/ AMD® K6-2
LA ICK PEN 8 W 12	B 59	2.5	23.4	therm. cond. adhesive	socket 7/ socket 370	AMD® K6-III/ IDT W2A/ Cyrix MII and similar/ MMX/ IDT C6/ Intel® Pentium®/ AMD® K6-2
LA ICK PEN 16 K 12	B 59	1.2	51.1	fixing clamp	socket 7/ socket 370	AMD® K6-III/ IDT W2A/ Cyrix MII and similar/ MMX/ IDT C6/ Intel® Pentium®/ AMD® K6-2
LA ICK PEN 16 W 12	B 59	1.2	51.1	therm. cond. adhesive	socket 7/ socket 370	AMD® K6-III/ IDT W2A/ Cyrix MII and similar/ MMX/ IDT C6/ Intel® Pentium®/ AMD® K6-2
LA ICK PEN 16 W 12 A	B 59	1.2	51.1	therm. cond. adhesive	socket 7/ socket 370	AMD® K6-III/ IDT W2A/ Cyrix MII and similar/ MMX/ IDT C6/ Intel® Pentium®/ AMD® K6-2

Μ

N

- high-quality industrial design
- compact design with high mechanical stability
 fan with doubled ball bearing axis
 optimal thermotechnical design of fan and heatsink

B9

B

C

D

G

Η

Κ

L

Fan coolers for IC processor

art. no.	page	R _{th}	dissipation	way of fixation	socket	suitable for processor
		[K/W]	loss [W]			type
LA ICK PEN 18 W 12	B 59	1.6	38.6	therm. cond. adhesive	socket 7/ socket 370	AMD® K6-III/ IDT W2A/ Cyrix MII and similar/ MMX/ IDT C6/ Intel® Pentium®/ AMD® K6-2
LA ICK PEN 38 W 12	B 59	1.1	53.6	therm. cond. adhesive	socket 7/ socket 370	AMD® K6-III/ IDT W2A/ Cyrix MII and similar/ MMX/ IDT C6/ Intel® Pentium®/ AMD® K6-2
LA ICK PRO 25 F 12	B 59	0.97	60	therm. conductive foil	socket 8	Intel [®] Pentium [®] PRO
LA ICK PEN 2 K 12	B 60	1.2	58		Slot A/ Slot 1	Intel [®] Pentium [®] II/ AMD [®] Athlon [®]
LA ICK PEN 3 XE	B 60	0.8	61.8	screw fastening	Slot 2	Intel [®] Pentium [®] Ⅲ-Xeon™
LA ICK PEN 4 1 K	B 60	0.6	85	fixing clamp	socket 463/ socket 423	Intel [®] Pentium [®] IV

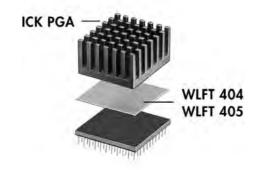
- high-quality industrial design
 compact design with high mechanical stability
 fan with doubled ball bearing axis
 optimal thermotechnical design of fan and heatsink

N

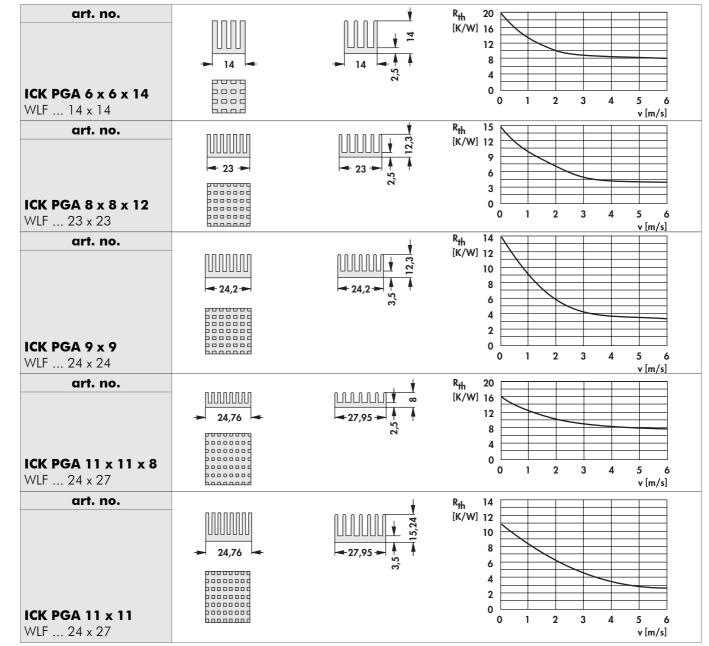
Δ

•

C


D

E


G

ŀ

Heatsinks for PGA

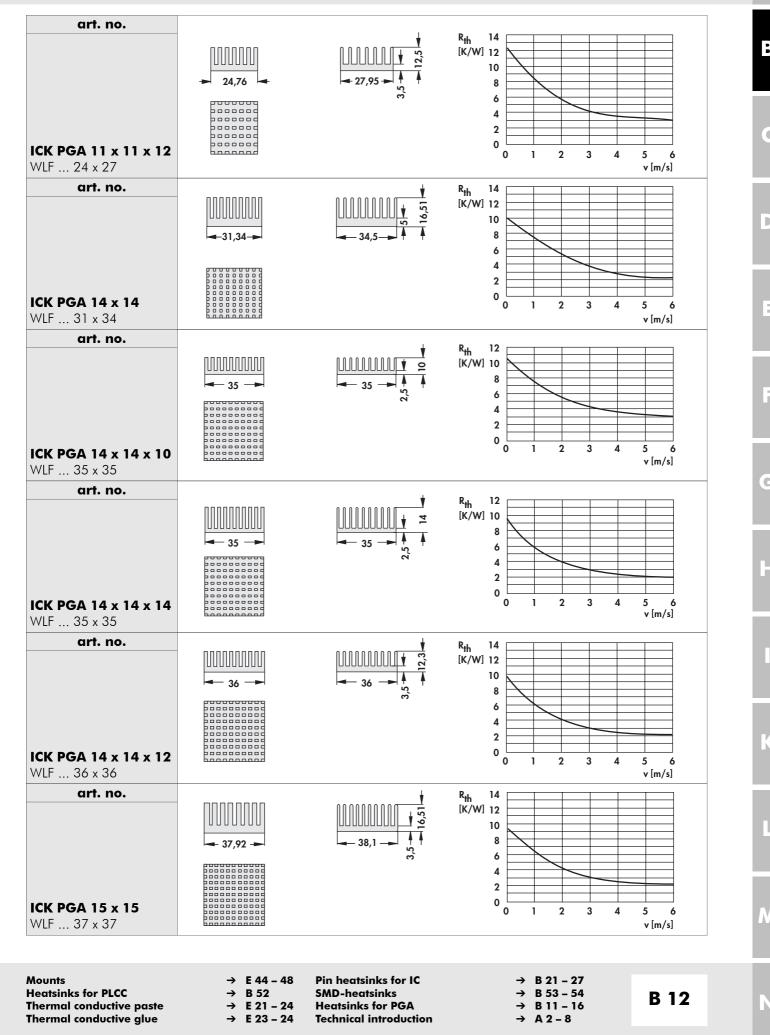
double-sided adhesive thermal conductive foil WLF ... → E 7
 surface: black anodised

N

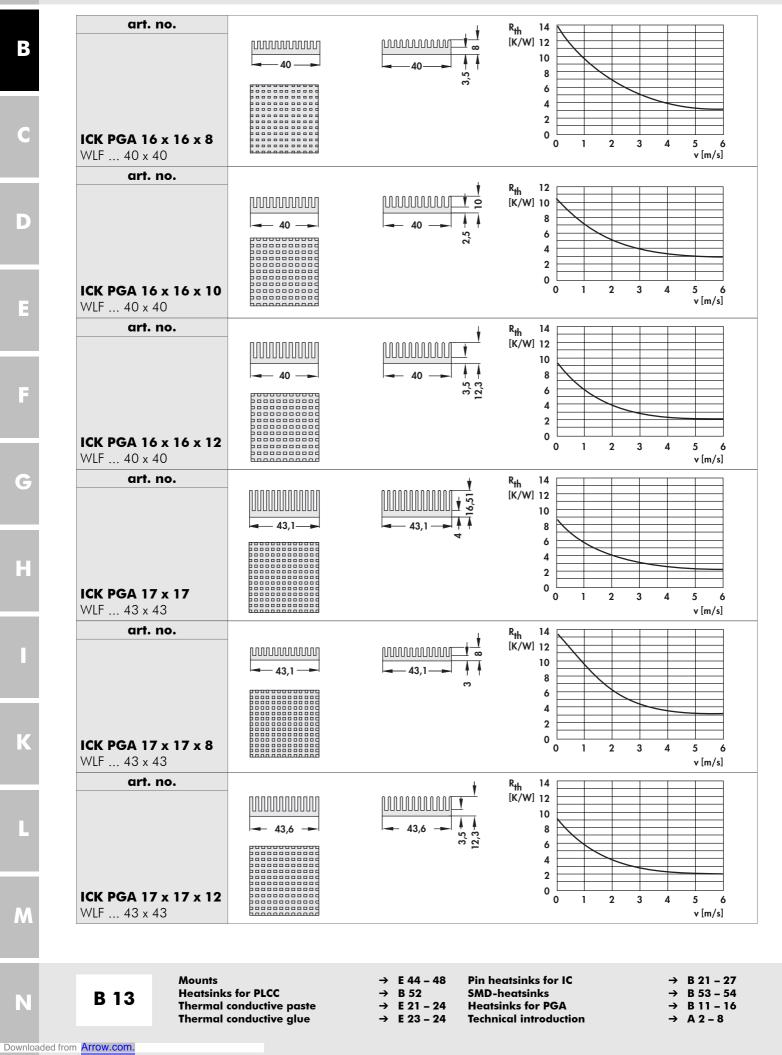
B 11

Downloaded from Arrow.com.

Mounts Heatsinks for PLCC Thermal conductive paste Thermal conductive glue $\begin{array}{r} \rightarrow \quad \mathsf{E} \ 44 - 48 \\ \rightarrow \quad \mathsf{B} \ 52 \\ \rightarrow \quad \mathsf{E} \ 21 - 24 \\ \rightarrow \quad \mathsf{E} \ 23 - 24 \end{array}$


Pin heatsinks for IC SMD-heatsinks Heatsinks for PGA Technical introduction $\begin{array}{r} \rightarrow & B \ 21 - 27 \\ \rightarrow & B \ 53 - 54 \\ \rightarrow & B \ 11 - 16 \\ \rightarrow & A \ 2 - 8 \end{array}$

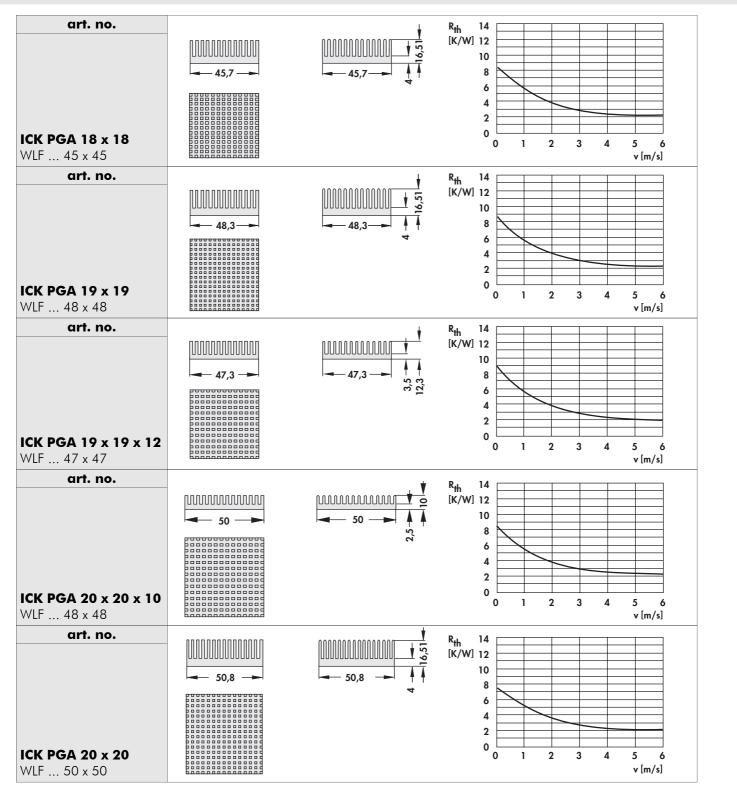
B


D

C

Heatsinks for PGA

Heatsinks for PGA



D

÷,

Ν

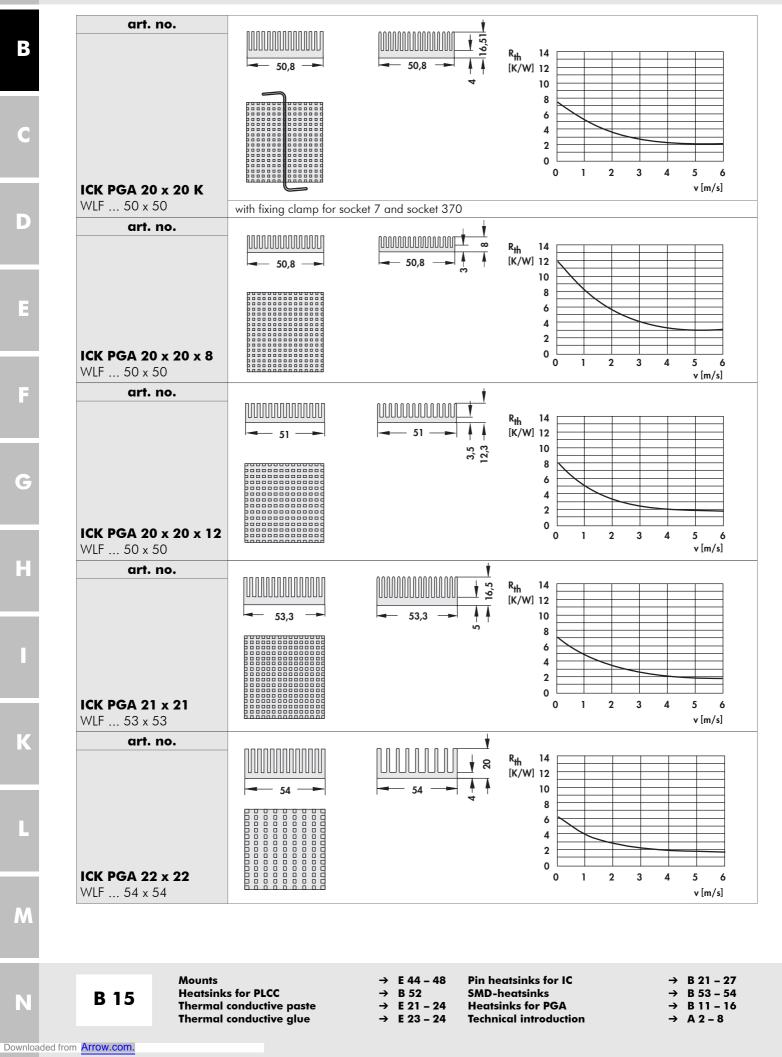
Heatsinks for PGA

ľ	

Mounts	→ E 44 – 48	Pin heatsinks for IC	→ B 21 – 27	
Heatsinks for PLCC	→ B 52	SMD-heatsinks	→ B 53 – 54	B 14
Thermal conductive paste	→ E 21 – 24	Heatsinks for PGA	→ B11 – 16	D 14
Thermal conductive glue	→ E 23 – 24	Technical introduction	→ A 2 – 8	

Downloaded from Arrow.com.

Mounts


;

1

h

C

Heatsinks for PGA

Heatsinks for PGA

Δ

•

C

E

E

C

ł

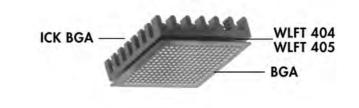
П

k

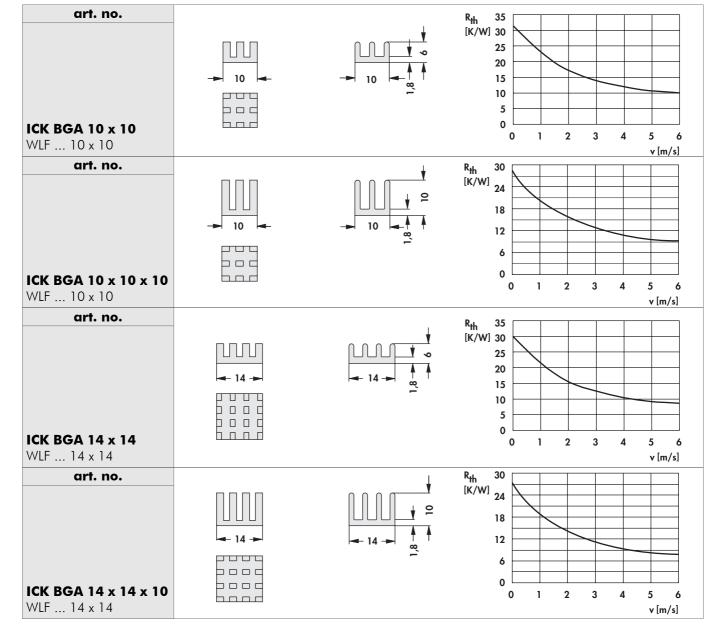
N

Ν

Mounts	
Heatsinks for PLCC	
Thermal conductive paste	
Thermal conductive glue	


→ E 44 – 48 → B 52 $\begin{array}{r} \rightarrow \quad E \ 21 \ - \ 24 \\ \rightarrow \quad E \ 23 \ - \ 24 \end{array}$

Pin heatsinks for IC SMD-heatsinks **Heatsinks for PGA Technical introduction**


→ B 21 – 27 → B 53 – 54 → B11 – 16 → A2-8

B16

Heatsinks for BGAs

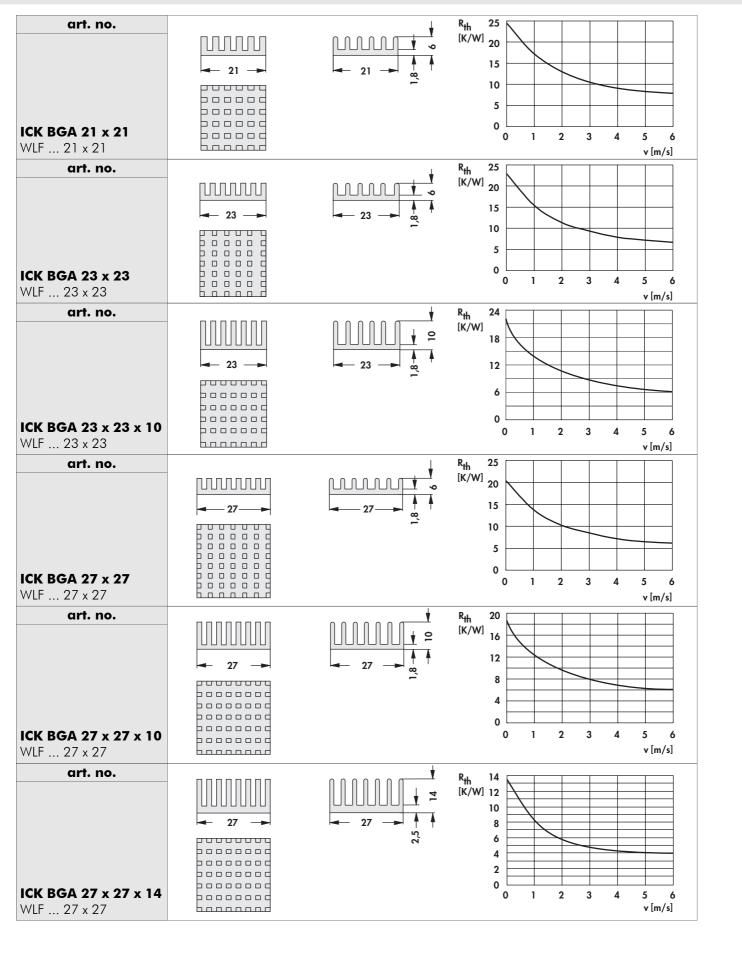
- particularly suited for Ball Grid Arraysheatsink dimensions match the respective BGA-type
- can be glued directly on the BGA component
- double-sided adhesive thermal conductive foil **WLF** ... \rightarrow E 7
- _ surface: black anodised

B17

Mounts SMD-heatsinks Thermally conductive foil Thermal conductive paste → E 44 – 48 → B 53 – 55 E 5 – 15 → → E 21 – 22

Thermal conductive glue Hole pattern **Processor overview Technical introduction**

→ E 23 – 24 → A 21 B 2 – 10 → → A 2 – 8


B

D

÷.

G

Heatsinks for BGAs

·····, ····,	→ B 53 – 55 → E 5 – 15	Thermal conductive glue Hole pattern Processor overview	$\begin{array}{r} \rightarrow E \ 23 - 24 \\ \rightarrow A \ 21 \\ \rightarrow B \ 2 - 10 \end{array}$
Thermal conductive paste	→ E 21 – 22	Technical introduction	→ A 2 – 8

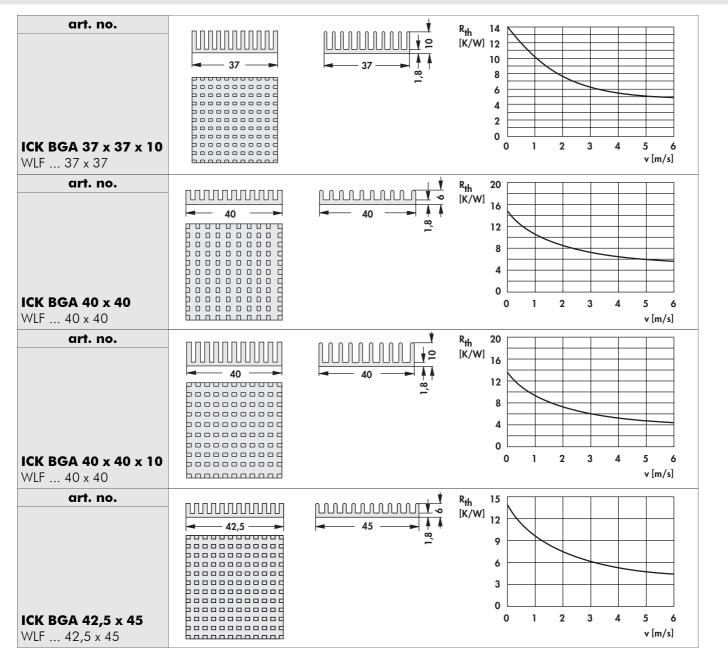
Downloaded from Arrow.com.

Δ

;

ŝ

C


N

B18

Heatsinks for BGAs

В	art. no.	27		R _{th} 14 [K/W] 12 10 8
С	ICK BGA 27 x 27 x 22 WLF 27 x 27		ς Υ	6 4 2 0 0 1 2 3 4 5 6 v[m/s]
D	art. no.			R _{th} 20 [K/W] 16 12 8
E	ICK BGA 31 x 31 WLF 31 x 31 art. no.		¥	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
F				[K/W] 16 12 8 4
G	ICK BGA 31 x 31 x 10 WLF 31 x 31 art. no.			0 1 2 3 4 5 6 v [m/s]
н	ICK BGA 35 x 35		- 35 → [∞] _∞	
1	WLF 35 x 35 art. no.			0 1 2 3 4 5 6 v [m/s]
К	ICK BGA 35 x 35 x 10 WLF 35 x 35		1,8-	12 8 4 0 0 1 2 3 4 5 6 v [m/s]
L	art. no.	<u>37</u>		R _{th} 20 [K/W] 16 12 8
Μ	ICK BGA 37 x 37 x 6 WLF 37 x 37			4 0 0 1 2 3 4 5 6 v [m/s]
N Downloaded fro	B 19 Mounts SMD-heat Thermally Thermal c	sinks conductive foil onductive paste		Il conductive glue \rightarrow E 23 - 24attern \rightarrow A 21or overview \rightarrow B 2 - 10al introduction \rightarrow A 2 - 8

Heatsinks for BGAs

B 20

Mounts
SMD-heatsinks
Thermally conductive foil
Thermal conductive paste

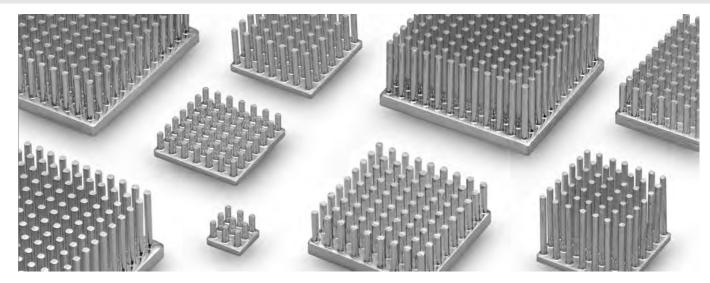
→ →

→

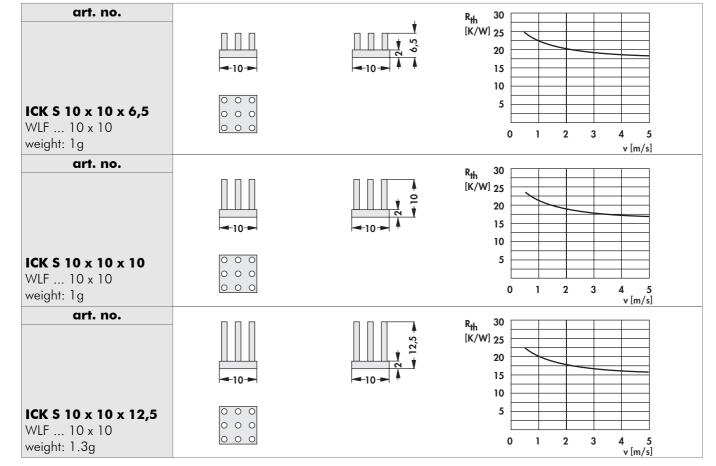
→

E 44 – 48 Thermal conductive glue B 53 – 55 Hole pattern E 5 – 15 **Processor overview** E 21 – 22

Technical introduction


→ E 23 – 24 → A 21 \rightarrow B 2 – 10 → A 2 – 8

Downloaded from Arrow.com.


ŝ

;

Pin heatsinks

- arrangement and number of pins for optimum air flow
- suitable for forced and free convection
- excellent thermal conductivity by the alloy material (AI99,5; 220 W/mK) and homogeneous arrangement of materials
- constant heat dissipation in the base and the pins in the direction of heat flow
- low weight achieved by optimised geometry
- components fastened using glue, adhesive foil or clamps
- customer-specific modifications and special designs
- other pin-lengths and surfaces on request
- surface: Al-natural

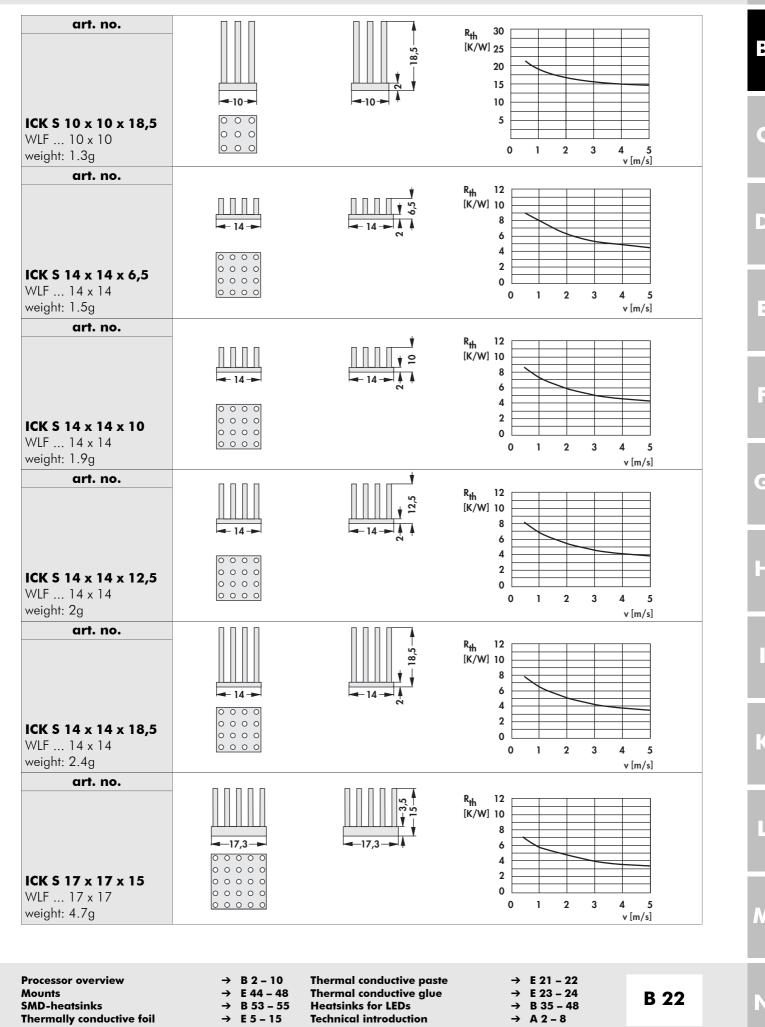
B 21

Processor overview Mounts SMD-heatsinks Thermally conductive foil

 $\begin{array}{r} \rightarrow & B \ 2 - 10 \\ \rightarrow & E \ 44 - 48 \\ \rightarrow & B \ 53 - 55 \\ \rightarrow & E \ 5 - 15 \end{array}$

Thermal conductive glue Heatsinks for LEDs Technical introduction

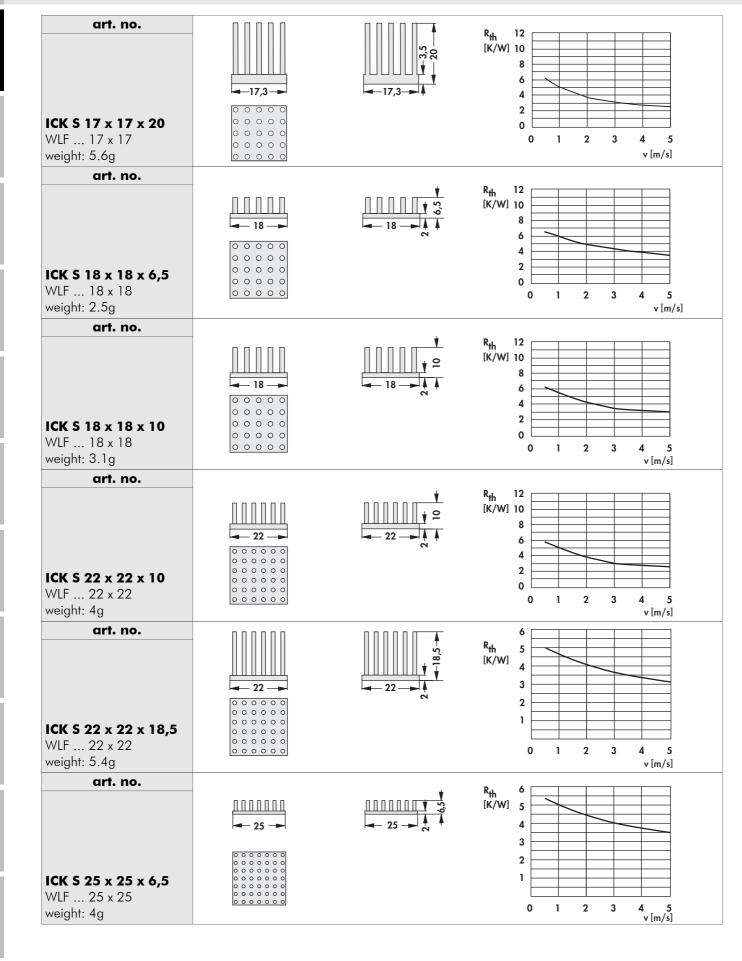
Thermal conductive paste


 $\begin{array}{r} \rightarrow \quad E \ 21 - 22 \\ \rightarrow \quad E \ 23 - 24 \\ \rightarrow \quad B \ 35 - 48 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

B

C

D


Pin heatsinks

Downloaded from Arrow.com.

1

Pin heatsinks

B 23

Processor overview Mounts **SMD**-heatsinks Thermally conductive foil

 \rightarrow B 2 - 10 → E 44 – 48 B 53 – 55 → → E5-15

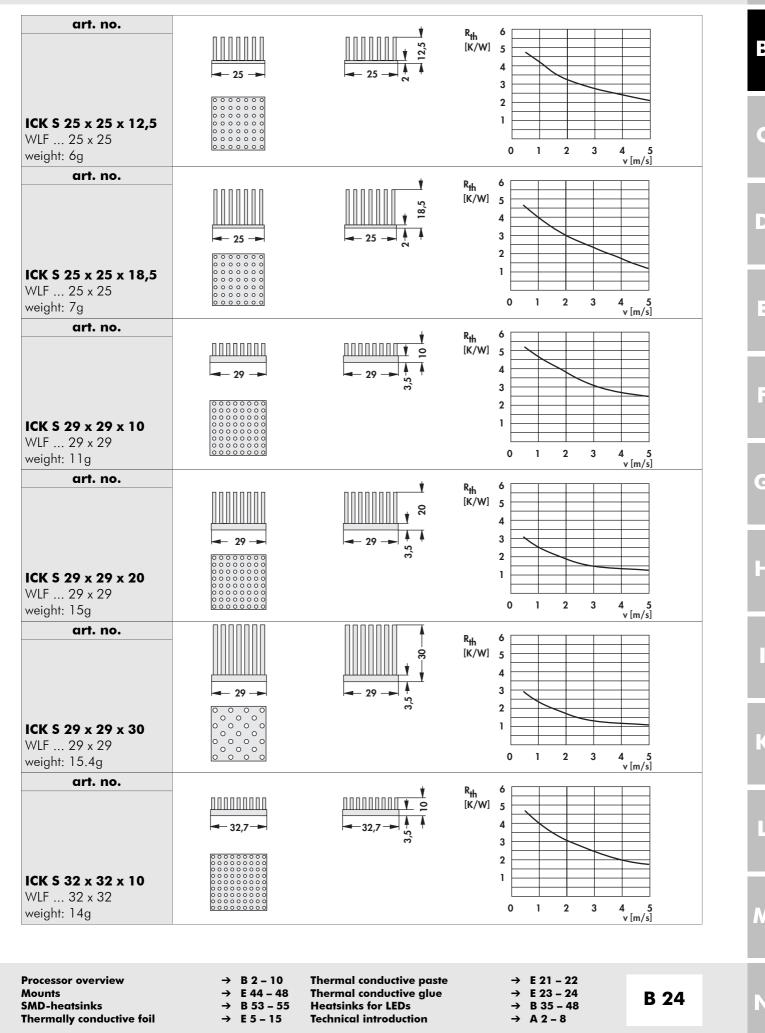
Thermal conductive paste Thermal conductive glue **Heatsinks for LEDs Technical introduction**

→ E 21 – 22 → E 23 – 24 → B 35 – 48 → A 2 – 8

B

D

ŝ


C

ł

Μ

N

Pin heatsinks

Downloaded from Arrow.com.

Δ

Pin heatsinks

art. no.			R _{th} 6 [K/W] 5 4
ICK S 32 x 32 x 20 WLF 32 x 32 weight: 19g		່ - 32,7 - 	$ \begin{array}{c} 3 \\ 2 \\ 1 \\ 0 \\ 1 \\ 2 \\ 3 \\ 0 \\ 1 \\ 2 \\ 3 \\ 2 \\ 1 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ v [m/s] \end{array} $
art. no.	36,4 →		R _{th} 6 [K/W] 5 4 3
ICK S 36 x 36 x 10 WLF 36 x 36 weight: 17g	$\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
art. no.	36,4	¥ 	R _{th} 6 [K/W] 5 4 3
ICK S 36 x 36 x 15 WLF 36 x 36 weight: 20g	$ \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	e e e e e e e e e e e e e e e e e e e	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
art. no.	<u>36,4</u> →		R _{th} 6 [K/W] 5 4 3
ICK S 36 x 36 x 20 WLF 36 x 36 weight: 24g	$\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$	n	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
art. no.	<u> </u>	→ 36,4 → ↓	R _{th} 6 [K/W] 5 4 3
ICK S 36 x 36 x 30 WLF 36 x 36 weight: 24.4g		ΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥ	$ \begin{array}{c} 2 \\ 1 \\ 0 \\ 1 \\ 2 \\ 1 \\ 0 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ y [m/s] \end{array} $
art. no.	40		R _{th} 6 [K/W] 5 4
ICK S 40 x 40 x 10 WLF 40 x 40 weight: 21g			$\begin{array}{c} 3 \\ 2 \\ 1 \\ 0 \\ 1 \\ 2 \\ 2 \\ 1 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ v[m/s] \\ v[m/s] \\ \end{array}$

Μ

Ν

B 25

Processor overview Mounts SMD-heatsinks Thermally conductive foil → B2-10 $\begin{array}{r} \rightarrow \quad \mathbf{E} \ \mathbf{44} - \mathbf{48} \\ \rightarrow \quad \mathbf{B} \ \mathbf{53} - \mathbf{55} \end{array}$ → E5-15

Thermal conductive paste Thermal conductive glue **Heatsinks for LEDs Technical introduction**

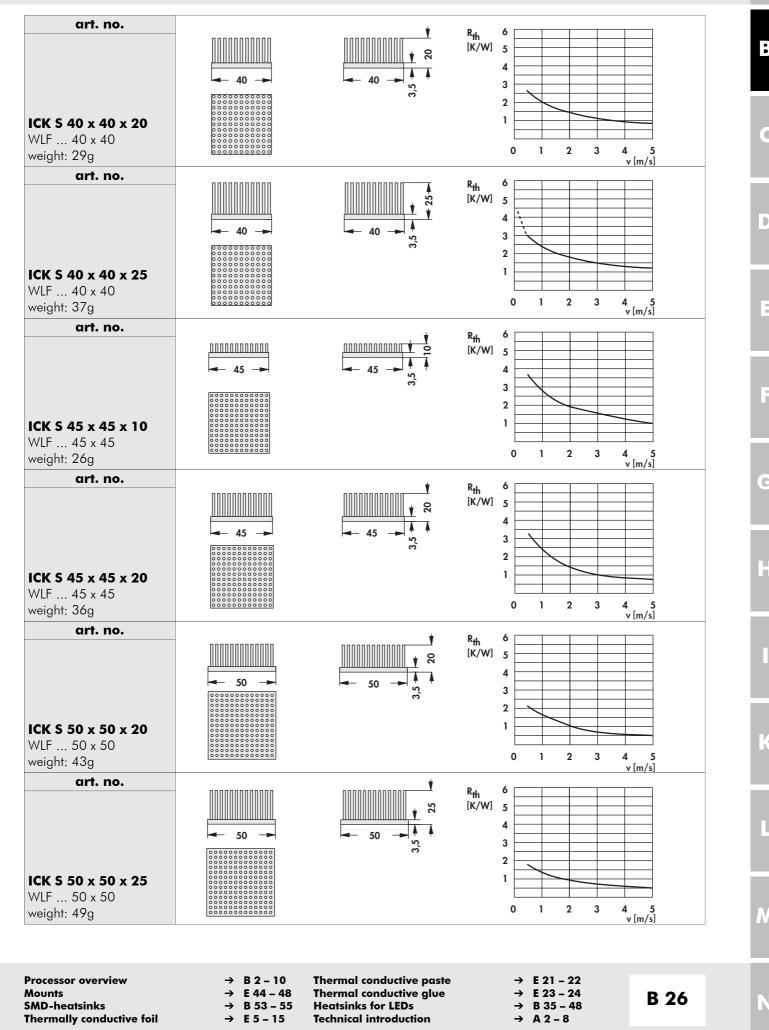
→ E 21 – 22 → E 23 – 24 → B 35 – 48 → A2-8

B

C

D

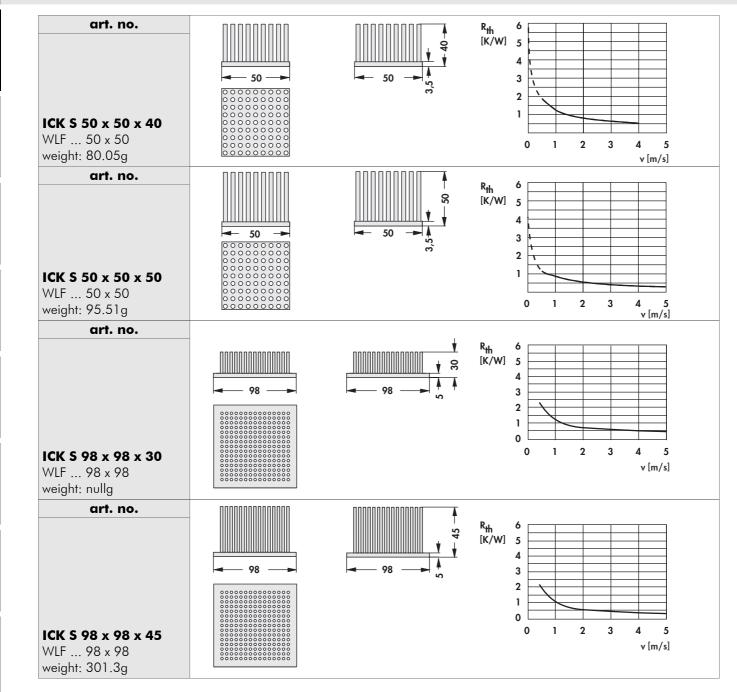
E


F

G

E

Κ


Pin heatsinks

Downloaded from Arrow.com.

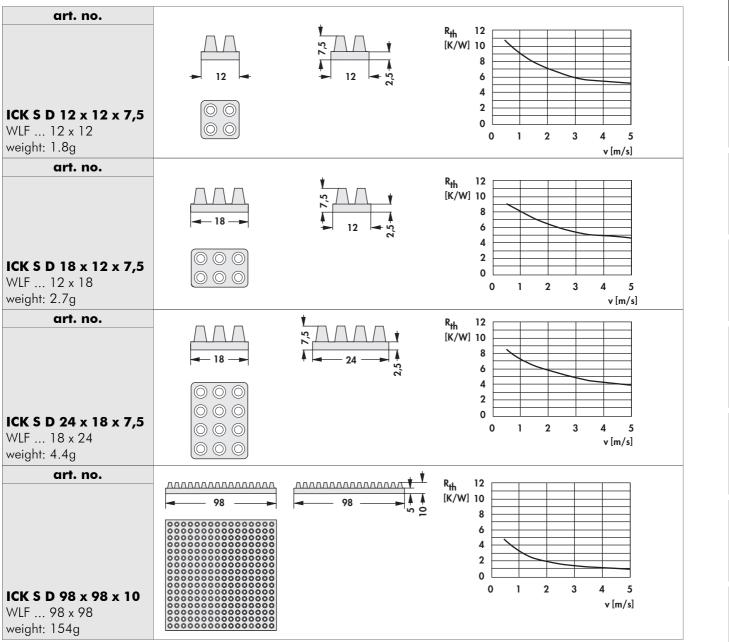
Δ

Pin heatsinks

B

Μ

N



Processor overview Mounts SMD-heatsinks Thermally conductive foil $\begin{array}{r} \rightarrow & B \ 2 - 10 \\ \rightarrow & E \ 44 - 48 \\ \rightarrow & B \ 53 - 55 \\ \rightarrow & E \ 5 - 15 \end{array}$

Thermal conductive paste Thermal conductive glue Heatsinks for LEDs Technical introduction $\begin{array}{rrrr} \rightarrow & E & 21 - 22 \\ \rightarrow & E & 23 - 24 \\ \rightarrow & B & 35 - 48 \\ \rightarrow & A & 2 - 8 \end{array}$

Pin heatsinks

Dome

Processor overview	
Mounts	
SMD-heatsinks	
Thermally conductive fo	i

E 5 – 15

→

Thermal conductive paste Thermal conductive glue Heatsinks for LEDs Technical introduction $\begin{array}{r} \rightarrow \quad E \ 21 - 22 \\ \rightarrow \quad E \ 23 - 24 \\ \rightarrow \quad B \ 35 - 48 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

B 28

Downloaded from Arrow.com.

;

C

E

E

Pin heatsinks

Round

B

0

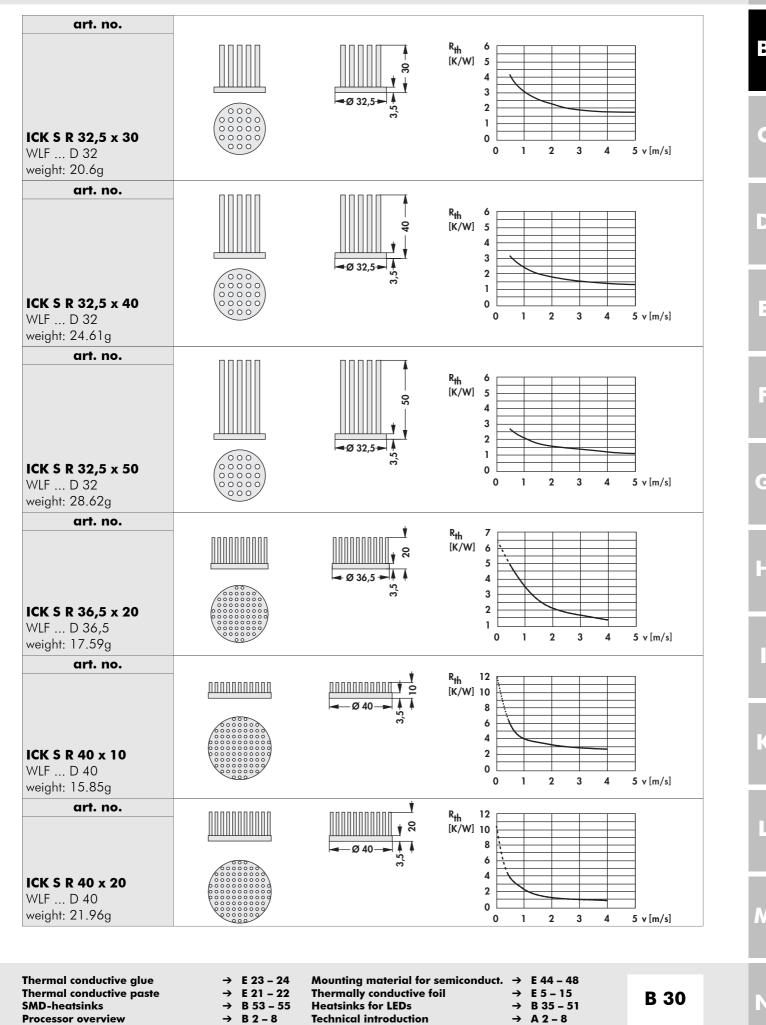
D

E

F

G

E


Κ

Μ

N

art. no.		. ¥	R _{th} 6	
			[K/W] 5 4 3	
ICK S R 28,5 x 6,5 WLF D 28,5 weight: 4.41g	000000000000000000000000000000000000000			3 4 5 v [m/s]
art. no.		•	R _{th} 6	
			[K/W] 5 4 3	
ICK S R 28,5 x 10 WLF D 28,5 weight: 5.16g				3 4 5 v [m/s]
art. no.		t	R _{th} 6	
			[K/W] 5 4 3	
ICK S R 28,5 x 12,5 WLF D 28,5 weight: 5.7g				3 4 5 v [m/s]
art. no.		¥	R _{th} 6	
		₩ <u>₩</u> ₩ 28,5 ₩ ₩	[K/W] 5 4 3	
ICK S R 28,5 x 18,5 WLF D 28,5 weight: 6.98g				3 4 5 v [m/s]
art. no.				
			R _{th} 6 [K/W] 5 4	
	0000000		3 2	
ICK S R 32,5 x 10 WLF D 32 weight: 9.7g				3 4 5 v [m/s]
art. no.		<u>.</u>		
			R _{th} 6 [K/W] 5 4 3	
ICK S R 32,5 x 20 WLF D 32 weight: 13.8g				3 4 5 v [m/s]
B 29 SMD-hea	conductive glue conductive paste tsinks	→ E 21 – 22 The	unting material for semica rmally conductive foil atsinks for LEDs	nduct. → E 44 – 48 → E 5 – 15 → B 35 – 51

Pin heatsinks

1

ŝ

Pin heatsinks

art. no.		R _{th} 12
	∞ 40 → 1	[K/W] 10 1
ICK S R A 40 x 20 WLF D 40 weight: 22.18g	α, α	6 4 2 0 0 1 2 3 4 5 v [m/s]
art. no.		R _{th} 12 [K/W] 10 8
ICK S R 40 x 30 WLF D 40 weight: 29.24g		6 4 2 0 0 1 2 3 4 5 v [m/s]
art. no.		R _{th} 12 [K/W] 10 8
ICK S R 40 x 50 WLF D 40 weight: 47.96g	е С. 2 4 - С. 4 К	6 4 2 0 0 1 2 3 4 5 v [m/s]
art. no.		R _{th} 12 [K/W] 10
ICK S R 45 x 30 WLF D 45 weight: 37.78g		8 6 4 2 0 0 1 2 3 4 5 v [m/s]
art. no.		R _{th} 8 [K/W] 7 6 5 4
ICK S R 45 x 45 WLF D 45 weight: 50.67g	⊲ Ø 45 ▶ ≰ ເງ ຕໍ	3 2 1 0 0 1 2 3 4 5 v [m/s]
art. no.		R _{th} 6
ICK S R 50 x 10 WLF D 50 weight: 22g	ا <u>م</u> ø 50 − ► الج	1, y w y y 4 3 2 1 0 0 1 2 3 4 5 v [m/s]

B

C

D

E

F

G

н

Κ

Μ

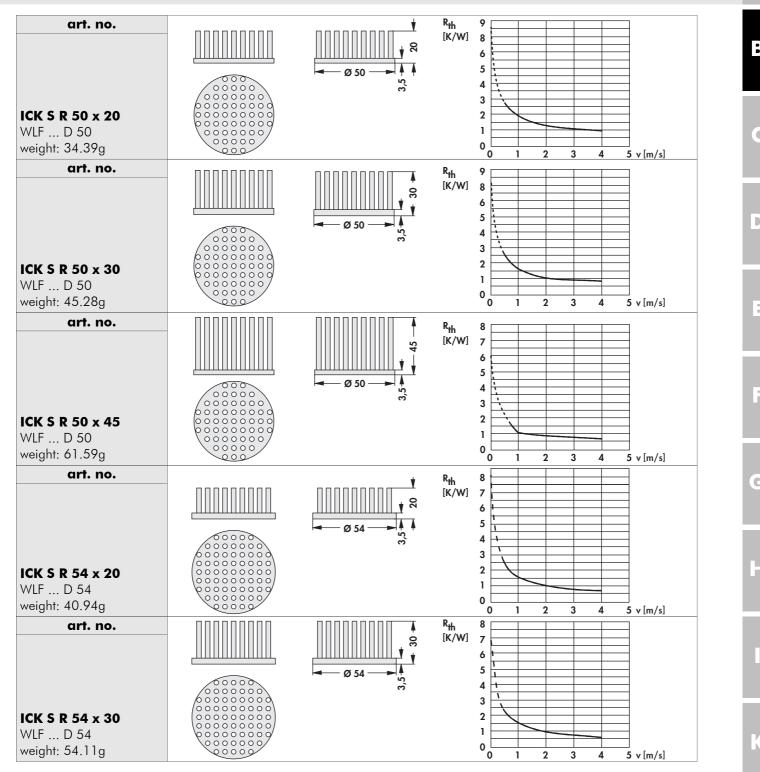
Ν

Λ

Thermal conductive glue Thermal conductive paste SMD-heatsinks Processor overview $\begin{array}{r} \rightarrow \quad \mathsf{E} \ 23 - 24 \\ \rightarrow \quad \mathsf{E} \ 21 - 22 \end{array}$

- 4
 Mounting material for semiconduct. →
 E 44 48

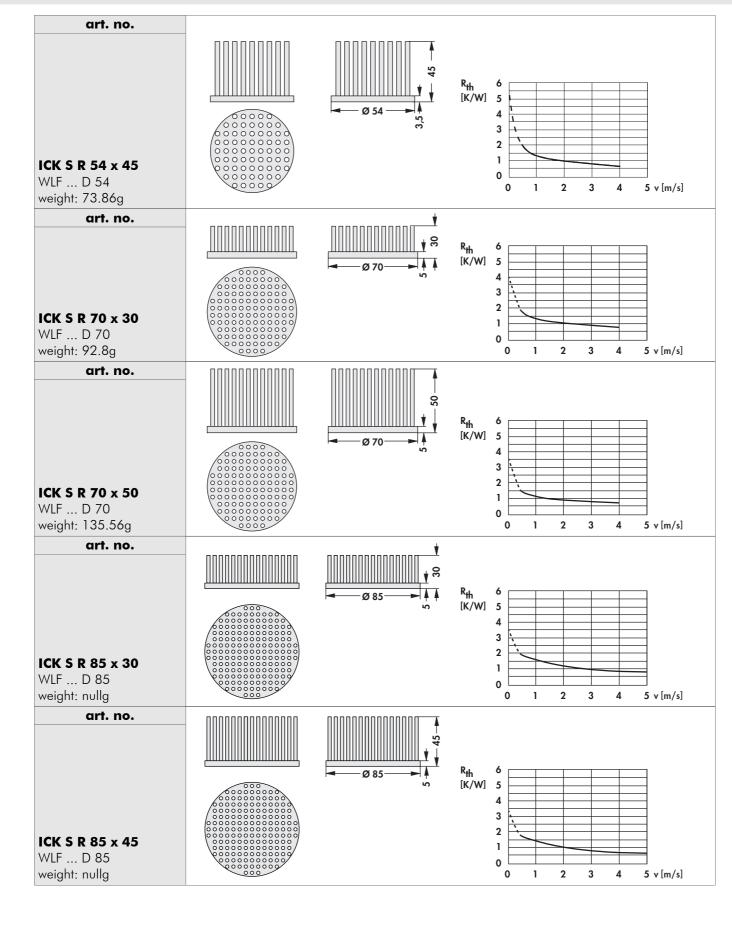
 2
 Thermally conductive foil
 →
 E 5 15


 5
 Heatsinks for LEDs
 →
 B 35 51

 Technical introduction
 →
 A 2 8

Downloaded from Arrow.com.

B 31


Pin heatsinks

Thermal conductive glue	→ E 23 – 24	Mounting material for semiconduct.	→	E 44 – 48
Thermal conductive paste	→ E 21 – 22	Thermally conductive foil	→	E 5 – 15
SMD-heatsinks	→ B 53 – 55	Heatsinks for LEDs	→	B 35 – 51
Processor overview	→ B2-8	Technical introduction	→	A 2 – 8

B 32

Pin heatsinks

B

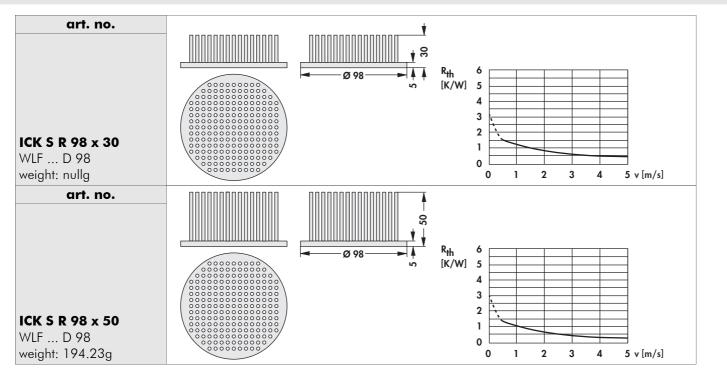
D

G

Μ

N

Thermal conductive glue Thermal conductive paste SMD-heatsinks **Processor overview**


E 23 – 24 → E 21 – 22 B 53 – 55 →

→ B 2 – 8

Mounting material for semiconduct. \rightarrow E 44 – 48 Thermally conductive foil \rightarrow E 5 – 15 Heatsinks for LEDs → B 35 – 51 **Technical introduction** → A 2 – 8

B 33

Pin heatsinks

Thermal conductive glue E 23 – 24 Mounting material for semiconduct. \rightarrow E 44 – 48 → Thermally conductive foil Thermal conductive paste → E 21 – 22 \rightarrow E5 – 15 B 53 – 55 Heatsinks for LEDs Technical introduction → B 35 – 51 → **Processor overview** → B 2 – 8 → A2-8

Downloaded from Arrow.com.

SMD-heatsinks

•

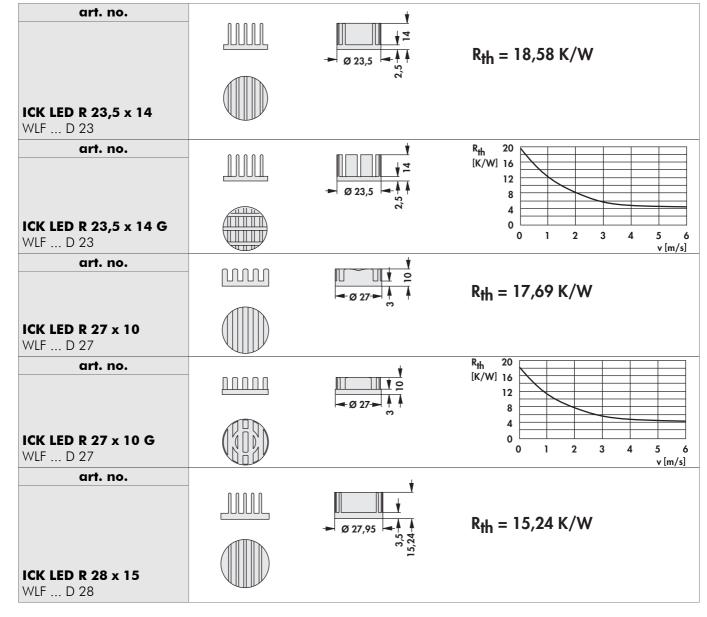
C

D

E

C

N


k

B 34

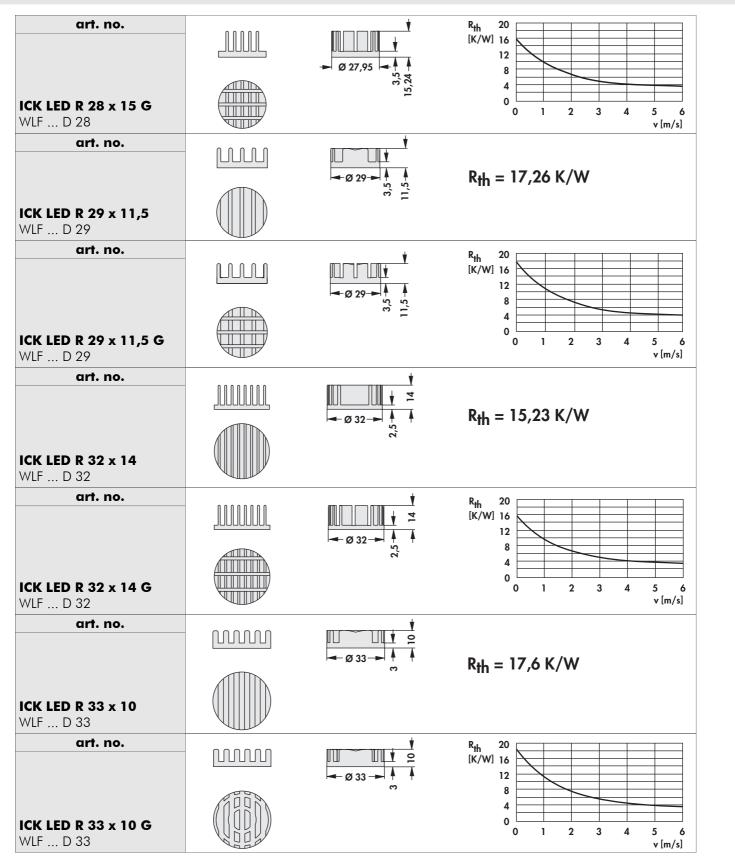
Heatsinks for LEDs

- suitable for free or forced convection
- heat sink dimensions are fitted to the respective LED typ
- simple mounting by using thermally conductive adhesive foil, glue or screw mounting
- specific versions on customer's request
- double-sided adhesive thermal conductive foil **WLF** ... \rightarrow E 7
- special design, surfaces and modification to customer specification on request
- surface: black anodised

Μ

B 35

Pin heatsinks Ø Mounts Thermally conductive foil Thermal conductive paste $\begin{array}{r} \rightarrow & B \ 29 - 33 \\ \rightarrow & E \ 44 - 48 \\ \rightarrow & E \ 5 - 15 \\ \rightarrow & E \ 21 - 22 \end{array}$


- 33 Thermal conductive glue
- 48 Hole pattern
- 15 Heatsink profile-overview
- 22 Technical introduction

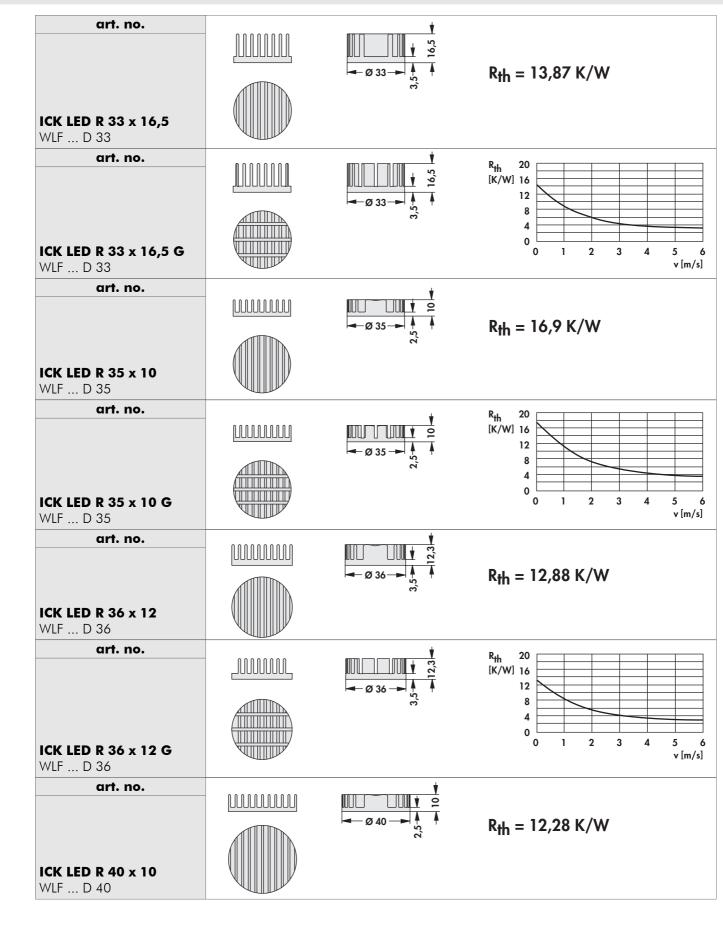
 $\begin{array}{r} \rightarrow \quad E \ 23 - 24 \\ \rightarrow \quad A \ 21 \\ \rightarrow \quad A \ 13 - 17 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

D

÷,

Heatsinks for LEDs

Pin heatsinks Ø
Mounts
Thermally conductive foil
Thermal conductive paste


Downloaded from Arrow.com.

Thermal conductive glue Hole pattern

- E 44 48 E 5 – 15
- Heatsink profile-overview E 21 – 22
 - **Technical introduction**
- → E 23 24 → A 21 → A 13 – 17 → A 2 – 8
- **B** 36

;

Heatsinks for LEDs

Ν

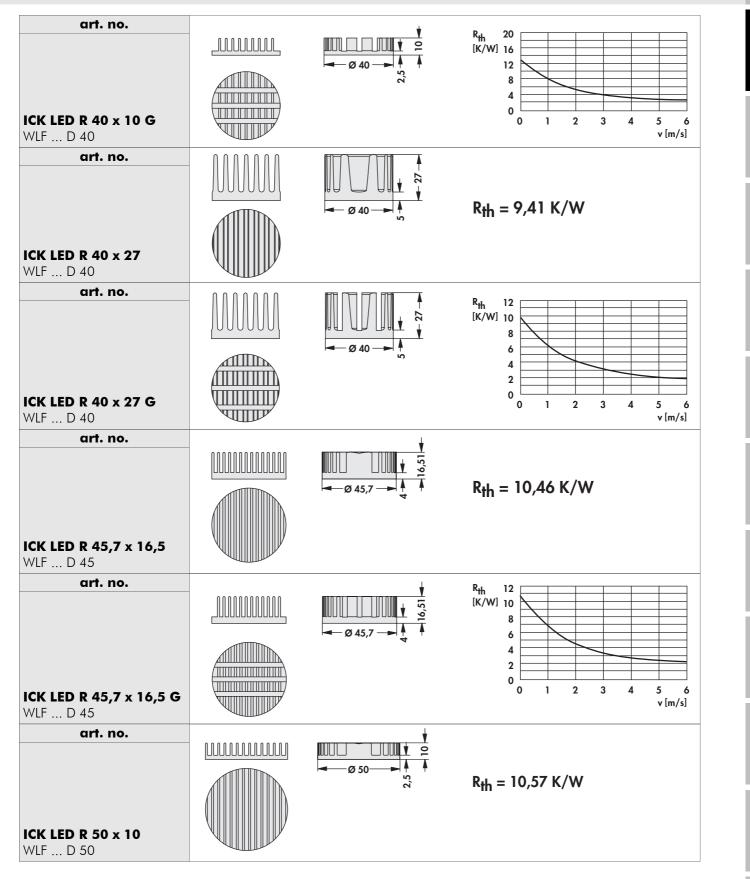
N

Pin heatsinks Ø Mounts Thermally conductive foil Thermal conductive paste → B 29 – 33 → E 44 – 48 → E 5 – 15

 \rightarrow E 21 – 22

Thermal conductive glue
 Hole pattern
 Heatsink profile-overview
 Technical introduction

 $\begin{array}{r} \rightarrow \quad E \ 23 - 24 \\ \rightarrow \quad A \ 21 \\ \rightarrow \quad A \ 13 - 17 \\ \rightarrow \quad A \ 2 - 8 \end{array}$


B

D

Ε

ŝ

Heatsinks for LEDs

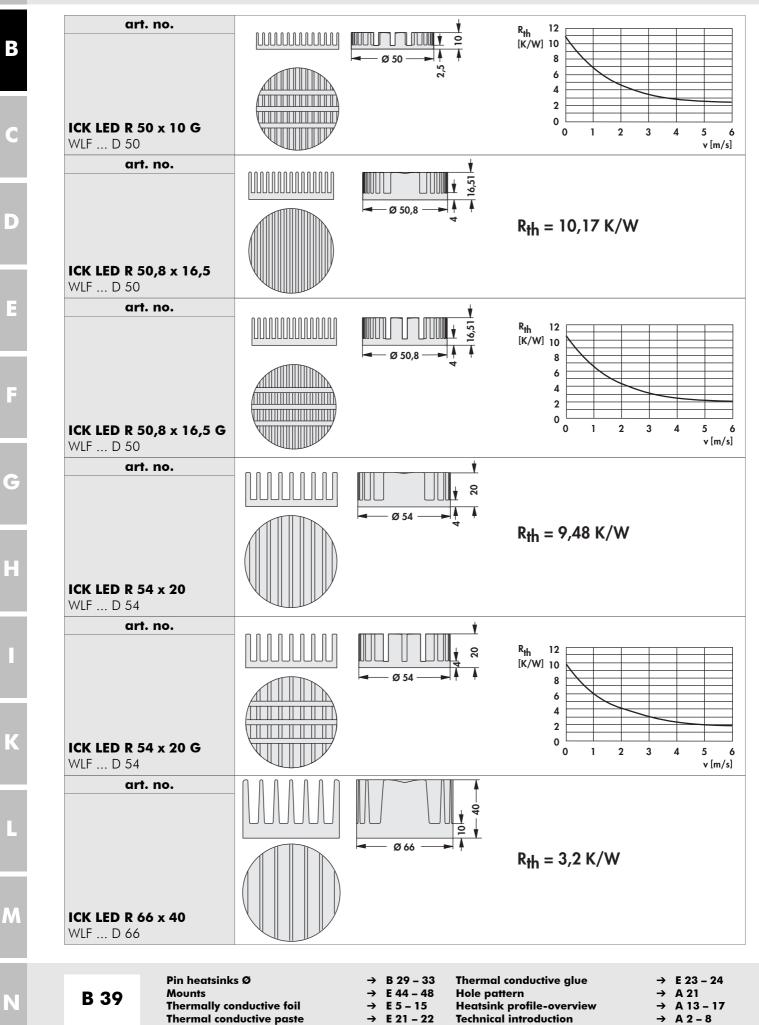
Pin heatsinks Ø
Mounts
Thermally conductive foil
Thermal conductive paste

Thermal conductive glue Hole pattern

E 44 – 48 E 5 – 15

Heatsink profile-overview E 21 – 22

Technical introduction


→ E 23 – 24 → A 21 A 13 – 17 → → A 2 – 8

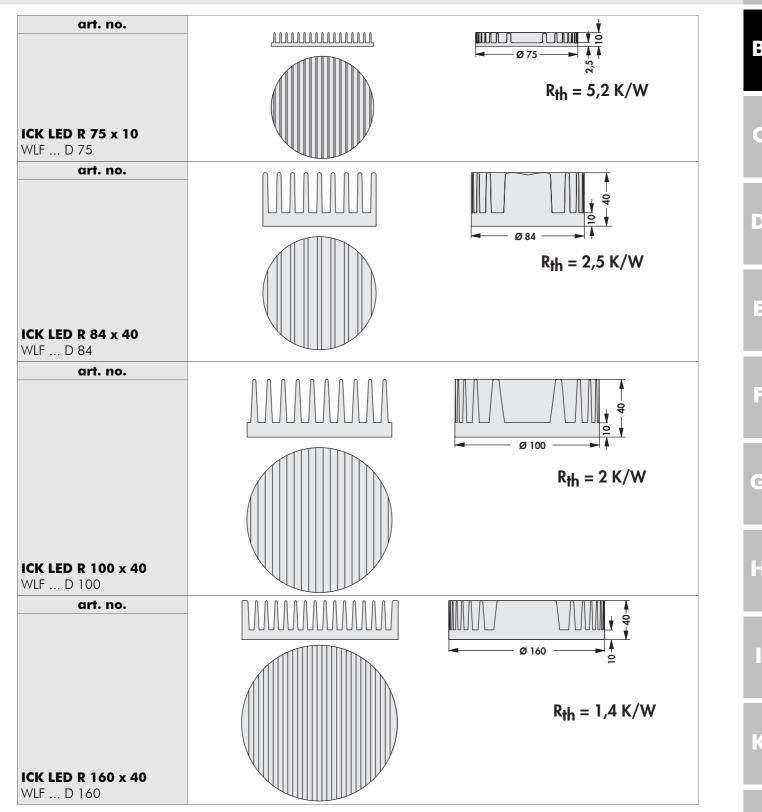
B 38

;

C

Heatsinks for LEDs

D


Ε

÷.

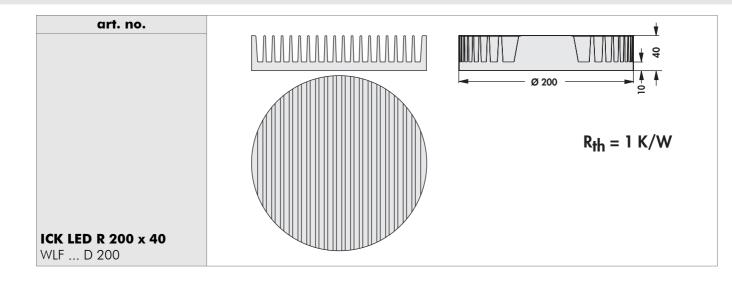
C

Μ

Heatsinks for LEDs

Pin heatsinks Ø	
Mounts	
Thermally conductive foil	
Thermal conductive paste	

Thermal conductive glue Hole pattern


- Heatsink profile-overview **Technical introduction**
- → E 23 24 → A 21 → A 13 – 17 → A 2 – 8

B40

N

- Downloaded from Arrow.com.

Heatsinks for LEDs

B

E

G

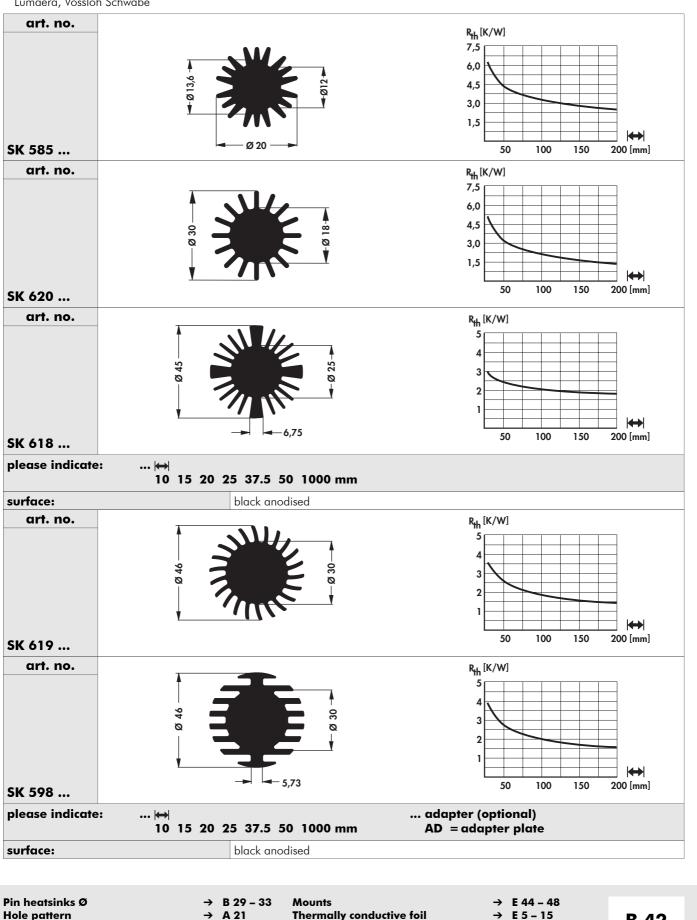
H

Κ

Μ

N

Pin heatsinks Ø Mounts Thermally conductive foil Thermal conductive paste


 $\begin{array}{r} \rightarrow \quad B \ 29 - 33 \\ \rightarrow \quad E \ 44 - 48 \\ \rightarrow \quad E \ 5 - 15 \\ \rightarrow \quad E \ 21 - 22 \end{array}$

Thermal conductive glue Hole pattern Heatsink profile-overview Technical introduction $\begin{array}{r} \rightarrow \quad E \ 23 - 24 \\ \rightarrow \quad A \ 21 \\ \rightarrow \quad A \ 13 - 17 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

B41

Heatsinks for LEDs

- special design, surfaces and modification to customer specification on request
- up from a profile length of 25 mm: optional adapter plate **LA LED 68 ... →** B 50 suitable for LED modules:
- Bridgelux Vero, Citizen CitiLED, Cree XLamp, Edison Edilex, GE Infusion, Luga Shop und Industrial, Lustrous Lustron, Megaman Teco, Osram PrevaLED und Soleriq, Philips Fortimo und Luxeon, Prolight Opto, Sharp Mega Zenigata, Toshiba E-Core, Tridonic Stark, Vexica Lumaera, Vossloh Schwabe

A 137 – 138 Thermal conductive glue

Technical introduction

→

→

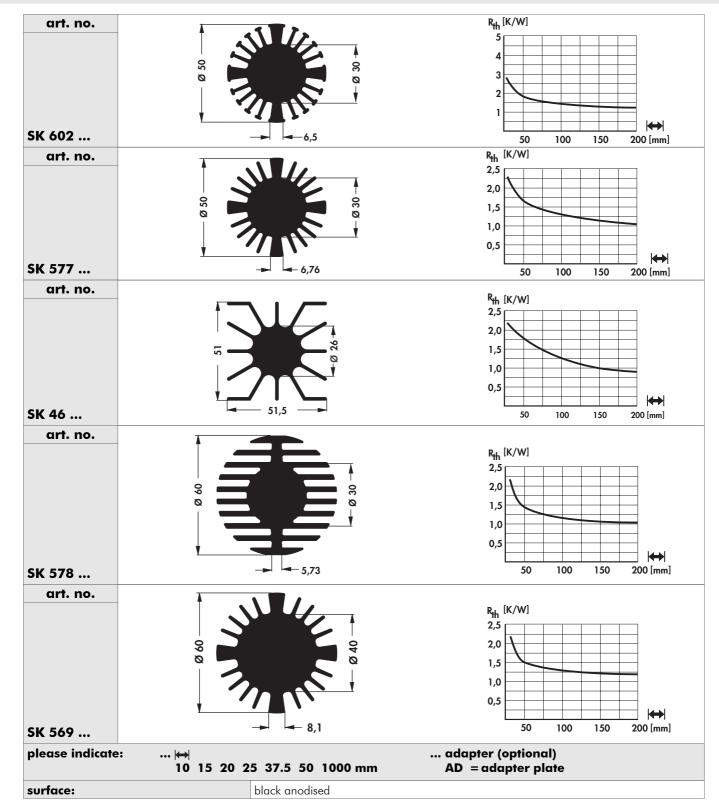
E 21 – 22

Special heatsink design

Thermal conductive paste

B42

E 23 – 24


A 2 – 8

→

→

;

Heatsinks for LEDs

B

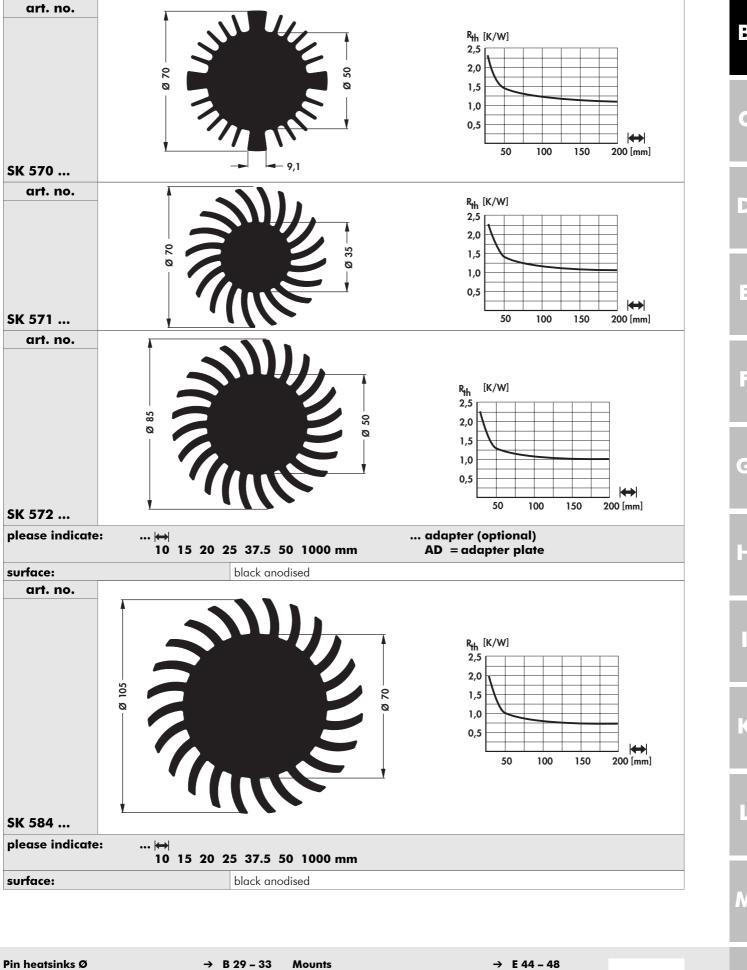
D

G

N

Ν

Pin heatsinks Ø Hole pattern Special heatsink design Thermal conductive paste


→ B 29 – 33 Mounts → A 21 Thermally conductive foil \rightarrow A 137 – 138 Thermal conductive glue → E 21 – 22 **Technical introduction**

→ E 44 – 48 \rightarrow E 5 – 15 → E 23 – 24 → A 2 – 8

Downloaded from Arrow.com.

B43

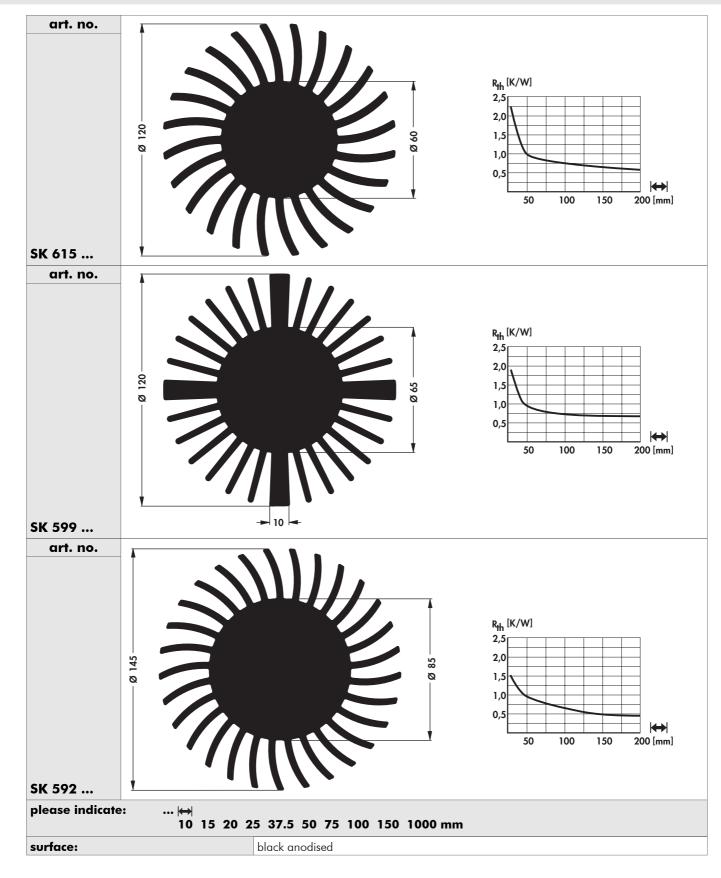
Heatsinks for LEDs

Hole pattern → A 21 Thermally conductive foil Special heatsink design A 137 – 138 Thermal conductive glue → → Thermal conductive paste → E 21 – 22 **Technical introduction** →

Downloaded from Arrow.com.

→ E 5 – 15 E 23 – 24 A 2 – 8

B44


1

C

ł

k

Heatsinks for LEDs

N

K

B 45

Pin heatsinks Ø Hole pattern Special heatsink design Thermal conductive paste → B 29 - 33 Mounts
 → A 21 Thermally conductive foil
 → A 137 - 138 Thermal conductive glue
 → E 21 - 22 Technical introduction

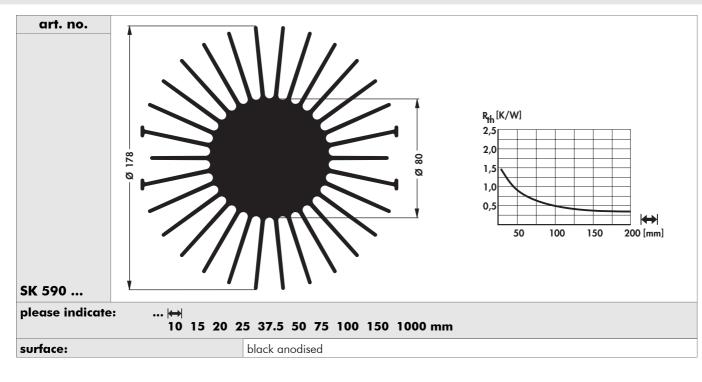
 $\begin{array}{r} \rightarrow \quad \mathbf{E} \ 4\mathbf{4} - \mathbf{48} \\ \rightarrow \quad \mathbf{E} \ 5 - \mathbf{15} \\ \rightarrow \quad \mathbf{E} \ 2\mathbf{3} - \mathbf{24} \\ \rightarrow \quad \mathbf{A} \ \mathbf{2} - \mathbf{8} \end{array}$

Downloaded from Arrow.com.

B

C

D


Ε

E

G

H

Heatsinks for LEDs

4

•

1

C

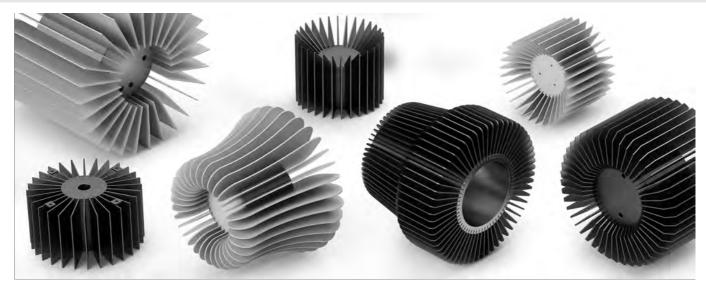
L

k

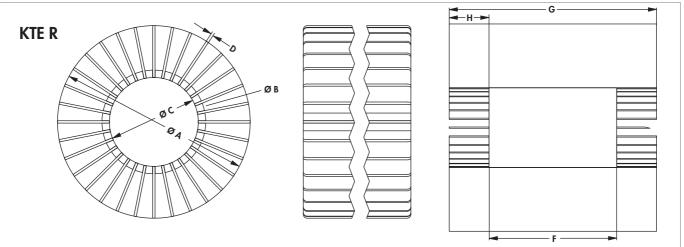
Ν

N

Pin heatsinks Ø Hole pattern Special heatsink design Thermal conductive paste


Downloaded from Arrow.com.

→ B 29 - 33 Mounts
 → A 21 Thermally conductive foil
 → A 137 - 138 Thermal conductive glue
 → E 21 - 22 Technical introduction


 $\begin{array}{l} \rightarrow \quad E \ 44 - 48 \\ \rightarrow \quad E \ 5 - 15 \\ \rightarrow \quad E \ 23 - 24 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

B 46

LED fin cooler KTE R customised

- individual LED heatsinks acc. to customer's requests
- adaptable to all common LED modules and sizes
- integration possibility of reflectors or fans by using special sheet metal design
- entry core for heat dissipation made of copper upon request
- other dimensions, sheet metal geometries, surfaces and mechanical machinings upon request

possible dimensions:

			dim.	[mm]			
А	B	C	D	E	F	G	H
B + 20 to 200	35	30	0.8	32	max. 400	max. 800	max. 200
	40	35	1	36			
	55	50	1.5	50			
	80	75	2	72			
	90	85		84			
	100	95]	92]		
		95	-		-		

E max. number of grooves at D = 0.8 mm

please indicate with your order:

			dim.	[mm]			
A	В	C	D	E	F	G	Н
please indicate:	SA	ice = black anodisec = clear anodised					
material:		aluminiu	um				

Downloaded from Arrow.com.

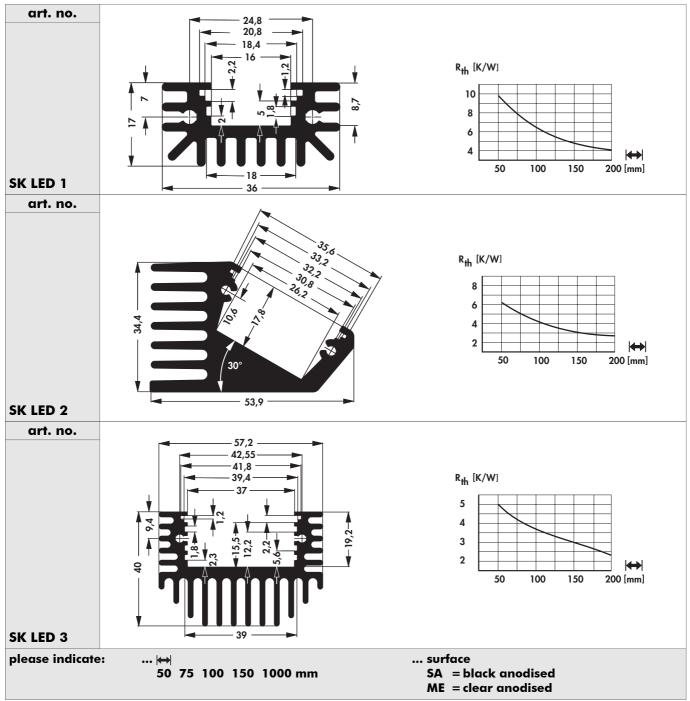
B47

Pin heatsinks Ø Hole pattern Special heatsink design Thermal conductive paste → B 29 - 33 Mounts
 → A 21 Thermally conductive foil
 → A 137 - 138 Processor overview
 → E 21 - 22 Technical introduction

 $\begin{array}{r} \rightarrow \quad \mathbf{E} \ 44 - 48 \\ \rightarrow \quad \mathbf{E} \ 5 - 15 \\ \rightarrow \quad \mathbf{B} \ 2 - 10 \\ \rightarrow \quad \mathbf{A} \ 2 - 8 \end{array}$

B

Ε


E

G

Ν

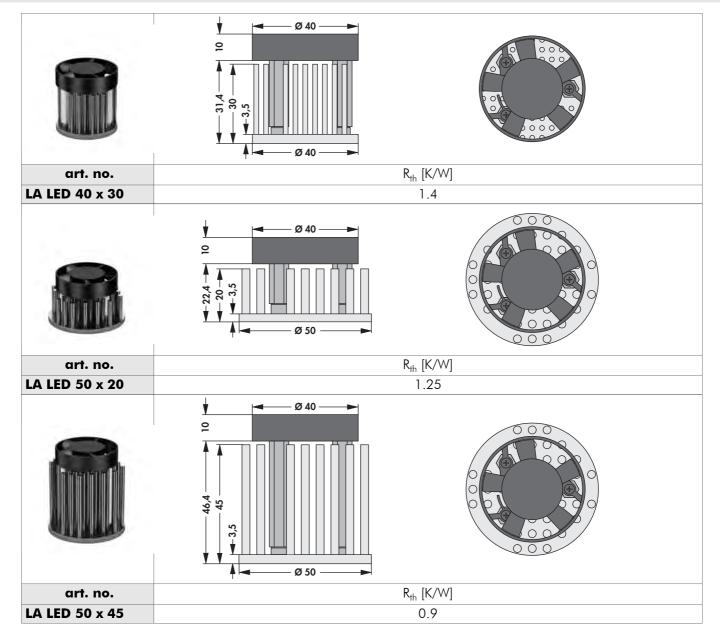
Heatsinks for LEDs

- heatsink specially made for flexible and fixed LED Line Modules
- insertion possibility of metal sheets and sheets of Plexiglas
- customer specified designs, lengths and treatments upon request

;

į.

ŝ


C

B48

Pin heatsinks Ø Hole pattern Special heatsink design Thermal conductive paste

- B 29 33 Mounts → A 21 Thermally conductive foil A 137 – 138 Processor overview
 - E 21 22 **Technical introduction**
- → E 44 48 → E 5 – 15 → B 2 – 10 → A 2 – 8

Active heat dissipation of LEDs

Technical data of the fans

	LF 40B12
circuit voltage	12 V
bearing type	two-way plain bearing
cur. consumpt.	50 mA
max. ivitial current	160 mA
max. volume flow	157 l/min - 9.4 m ³ /h
max. static pressure	3.4 mmH ₂ O - 33 Pa
noise level	26 dB(A), 1 m lateral
temperature range	-20°C +60°C
failure rate (L ₁₀)	60,000 h
MTBF	1,900,000 h (20°C)
Type rotor speed	6,600 min ⁻¹
weight	10 g

B 49Pin heatsinks Ø→B 29 - 33MountsHole pattern→A 21Thermally conductive foilSpecial heatsink design→A 137 - 138Processor overviewThermal conductive paste→E 21 - 22Technical introduction

→ E 44 – 48

 \rightarrow E 5 – 15

B 2 – 10

A 2 – 8

→

→

B

C

D

Ε

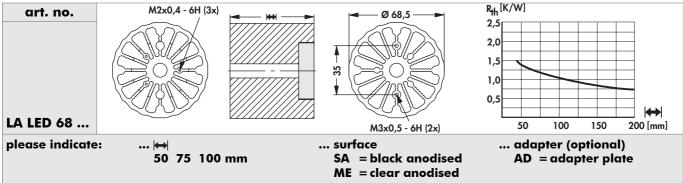
E

G

E

Κ

Μ


N

Active heat dissipation of LEDs

- active heat dissipation of LED modules
- Zhaga compliant mounting possibility
- integrated low noise fan
- optional adapter plate suitable for LED modules:

Bridgelux Vero, Citizen CitiLED, Cree XLamp, Edison Edilex, GE Infusion, Luga Shop und Industrial, Lustrous Lustron, Megaman Teco, Osram PrevaLED und Soleriq, Philips Fortimo und Luxeon, Prolight Opto, Sharp Mega Zenigata, Toshiba E-Core, Tridonic Stark, Vexica Lumaera, Vossloh Schwabe

Technical data of the fans

	LF 40B12		
circuit voltage	12 V		
bearing type	two-way plain bearing		
cur. consumpt.	50 mA		
max. iuitial current	160 mA		
max. volume flow	157 l/min - 9.4 m ³ /h		
max. static pressure	3.4 mmH ₂ O - 33 Pa		
noise level	26 dB(A), 1 m lateral		
temperature range	-20°C +60°C		
failure rate (L ₁₀)	60,000 h		
MTBF	1,900,000 h (20°C)		
Type rotor speed	6,600 min ⁻¹		
weight	10 g		

Downloaded from Arrow.com.

- B 29 33 Mounts A 21 Thermally conductive foil **Processor overview** A 137 - 138 E 21 – 22
 - **Technical introduction**
- E 44 48 E 5 – 15 B 2 - 10 -> -> A 2 – 8

B 50

;

1

Sample box LED Heatsinks

- Sample box for verification of the thermal management for LEDs
- Contains a choice of different extruded heatsinks, LED extruded heatsinks in round design, LED pin heatsinks and extruded profiles for LED-Line modules
- for thermal contacting or mounting of LED a high-performance thermal conductive graphite foil is also enclosed (WLFG, sample strips 25x150mm), a high-performance thermal conductive (silicone-free) ceramic-filled thermal conductive paste (WLPK, syringe), a double-sided sticky thermal conductive foil (WLFT 404, sample strips 25x150mm) and a thermal conductive epoxy based two-component adhesive (WLK DK, syringe)

SK LED BOX 1

B 51

Downloaded from Arrow.com.

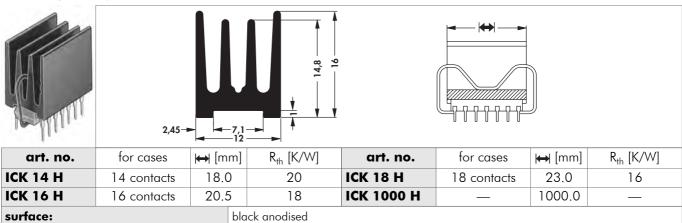
D

Ε

E

G

Heatsinks for DIL-IC and PLCC


Heatsinks for DIL-IC

- other length on request

		— 6,3 –	→				
art. no.	for cases	 ↔ [mm]	R _{th} [K/W]	art. no.	for cases	 ↔ [mm]	R _{th} [K/W]
ICK 6 8 L	6/8 contacts	8.5	83	ICK 20 L	20 contacts	25.0	34
ICK 14 16 L	14/16 contacts	19.0	46				
The second	-	19					
art. no.	for cases	 ↔ [mm]	R _{th} [K/W]	art. no.	for cases	 ↔ [mm]	R _{th} [K/W]
ICK 14 16 B	14/16 contacts	6.3	54.0	ICK 36 B	36 contacts	47.0	16.5
ICK 24 B	24 contacts	33.0	19.4	ICK 40 B	40 contacts	51.0	15.8
		27.0	18.5	ICK 1000 B		1000.0	
ICK 28 B	28 contacts	37.0	10.5			1000.0	

- with clip

- other length on request

Heatsinks for PLCC

Representation of the second s		
art. no.		R _{th} [K/W]
ICK R		19
arter pupp		
art. no.	₩ [mm]	R _{th} [K/W]
ICK PLCC 28	11.8	25
surface:		black anodised

Extruded heatsinks	→ A 22 – 83	Thermally conductive foil	→ E 5 – 15	
Pin heatsinks for IC	→ B 21 – 28	Thermal conductive paste	→ E 21 – 22	B 52
Insulting clamping parts	→ E 45	Hole pattern	→ A 21	DJZ
Thermal conductive glue	→ E 23 – 24	Technical introduction	→ A2-8	
Ŭ				

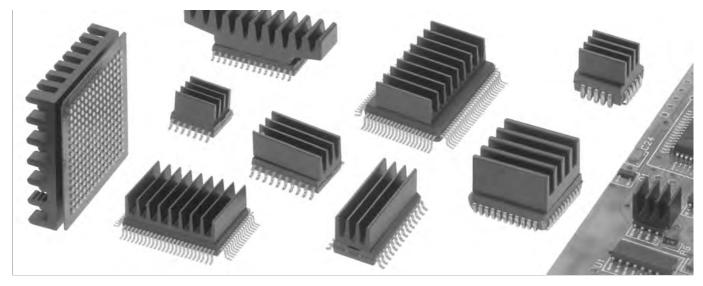
Downloaded from Arrow.com.

Δ

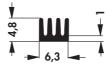
;

ŝ

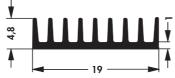
C


ł

K


N

N


Heatsinks for SMD

- particularly suitable for SMD components
- low profile
- reduced weight
- effective heat dissipation
- can be glued directly onto the component
- solderable versions
- customer specific versions on request
- special packaging like tape and real, bar magazin, tray etc. on request

art. no.	 ↔ [mm]	R _{th} [K/W]	art. no.	 ↔ [mm]	R _{th} [K/W]		
ICK SMD A 5	5	123	ICK SMD A 13	13	63		
ICK SMD A 8	8	87	ICK SMD A 17	17	51		
ICK SMD A 10	10	75	ICK SMD A 22	22	34		

art. no.	 ↔ [mm]	R _{th} [K/W]	art. no.	 ↔ [mm]	R _{th} [K/W]
ICK SMD B 5	5	56	ICK SMD B 13 SA	13	29
ICK SMD B 7 SA	7	47	ICK SMD B 19	19	22
ICK SMD B 10 SA	10	35			

art. no.	 ↔ [mm]	R _{th} [K/W]	art. no.	 ↔ [mm]	R _{th} [K/W]
ICK SMD C 7 SA	7	33	ICK SMD C 17	17	17
ICK SMD C 10 SA	10	26			
please indicate:		e black anodised solderable surface		<u> </u>	

N

Κ

B 53

Extruded heatsinks ICK S 10 x 10 x 6,5 Insulting clamping parts Thermal conductive glue $\begin{array}{r} \rightarrow \quad A \ 22 - 83 \\ \rightarrow \quad B \ 21 - 28 \\ \rightarrow \quad E \ 45 \\ \rightarrow \quad E \ 23 - 24 \end{array}$

Thermally conductive foil Thermal conductive paste Hole pattern Technical introduction $\begin{array}{r} \rightarrow \quad E \ 5 - 15 \\ \rightarrow \quad E \ 21 - 22 \\ \rightarrow \quad A \ 21 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

Downloaded from Arrow.com.

B

D

E

E

G

H

Heatsinks for SMD

	1		B► ∽ Ť		
art. no.	₩ [mm]	R _{th} [K/W]	art. no.	(←) [mm]	R _{th} [K/W]
CK SMD E 15 SA	15.3	27	ICK SMD E 29 SA	29.0	18
CK SMD E 22 SA	22.3	21			
art. no.	 ↔ [mm]	R _{th} [K/W]	art. no.	 ↔ [mm]	R _{th} [K/W]
ICK SMD F 8	8	74	ICK SMD F 19	19	37
ICK SMD F 10	10	71	ICK SMD F 21	21	33
ICK SMD F 17 SA	17	42	ICK SMD F 26	26	26
art. no.	⇔ [mm]	R _{th} [K/W]	art. no.	₩ [mm]	R _{th} [K/W]
ICK SMD G 8 MI	8	73	ICK SMD G 17 SA	17	41
ICK SMD G 10	10	70	ICK SMD G 19 SA	19	36
ICK SMD G 13 SA	13	61	ICK SMD G 21	21	32
art. no.	⇔ [mm]	R _{th} [K/W]	◄11,8 ► 4 ٢ αrt. no.	 ↔ [mm]	R _{th} [K/W]
ICK SMD H 8	8	33.0	ICK SMD H 19 SA	19	23.0
	10	29.0	ICK SMD H 25	25	20.0
ICK SMD H 10		24.5			
	17	24.5			
ICK SMD H 10 ICK SMD H 17	17		2° € + 7° 5° 1 - 13,5 → +		
	17 ₩ [mm]		- 15,24	⊢→ [mm]	R _{th} [K/W]
CK SMD H 17 art. no. CK SMD K 8	↔ [mm] 8	R _{th} [K/W] 25.6	e-13,5 → A ICK SMD K 17	I [mm]	19.4
art. no. ICK SMD K 8 ICK SMD K 8	H→I [mm] 8 10	R _{th} [K/W] 25.6 23.4	-13,5 → art. no. ICK SMD K 17 ICK SMD K 19	17 19	19.4 18.0
art. no. ICK SMD K 8 ICK SMD K 8	↔ [mm] 8	R _{th} [K/W] 25.6	e-13,5 → A ICK SMD K 17	17	19.4
art. no. ICK SMD K 8 ICK SMD K 8	H→I [mm] 8 10	R _{th} [K/W] 25.6 23.4 21.5	-13,5 → art. no. ICK SMD K 17 ICK SMD K 19	17 19	19.4 18.0 16.5
art. no. CK SMD K 8 CK SMD K 8 CK SMD K 10 SA CK SMD K 13	H→I [mm] 8 10	R _{th} [K/W] 25.6 23.4 21.5	C SMD K 17 ICK SMD K 17 ICK SMD K 19 ICK SMD K 21 ↓ ••↓ ↓ ••↓ ↓ ••↓ ↓ ••↓ ↓ ••↓ ↓ ••↓ ↓ ••↓	17 19 21	19.4 18.0 16.5 R _{th} [K/W]
art. no. ICK SMD K 8 ICK SMD K 8 ICK SMD K 10 SA ICK SMD K 13 ICK SMD K 13	H→I [mm] 8 10 13 H→I [mm] 8	R _{th} [K/W] 25.6 23.4 21.5 R _{th} [K/W] 72		17 19 21 I↔ [mm] 19	19.4 18.0 16.5 R _{th} [K/W] 35
art. no. ICK SMD K 8 ICK SMD K 8 ICK SMD K 10 SA ICK SMD K 13 ICK SMD M 13 SA ICK SMD M 10 SA	Image: Head of the second	R _{th} [K/W] 25.6 23.4 21.5 R _{th} [K/W] 72 66	C SMD K 17 ICK SMD K 17 ICK SMD K 19 ICK SMD K 21 ICK SMD K 21 C SMD K 21 C SMD K 21	17 19 21	19.4 18.0 16.5 R _{th} [K/W]
art. no. ICK SMD K 8 ICK SMD K 8 ICK SMD K 10 SA ICK SMD K 13	H→I [mm] 8 10 13 H→I [mm] 8	R _{th} [K/W] 25.6 23.4 21.5 R _{th} [K/W] 72		17 19 21 I↔ [mm] 19	19.4 18.0 16.5 R _{th} [K/W] 35

Extruded heatsinks ICK S 10 x 10 x 6,5 Insulting clamping parts Thermal conductive glue Thermally conductive foil
 Thermal conductive paste
 Hole pattern

- → E 23 24 Technical introduction
- $\begin{array}{r} \rightarrow \quad E 5 15 \\ \rightarrow \quad E 21 22 \\ \rightarrow \quad A 21 \\ \rightarrow \quad A 2 8 \end{array}$

N

B 54

Δ

.

C

Þ

E

G

ŀ

heatsink for SMD

art. no.	 ↔ [mm]	R _{th} [K/W]	art. no.	 ↔ [mm]	R _{th} [K/W]
ICK SMD N 8	8	74	ICK SMD N 19	19	37
ICK SMD N 10	10	71	ICK SMD N 21	21	33
ICK SMD N 17	17	42	ICK SMD N 26	26	26
please indicate:		e black anodised solderable surface			

Sample box SMD heatsinks

- contains an assortment of SMD heatsinks with anodised and solderable surface as well as thermally conductive glue (**WLK**) and double-sided adhesive thermal foil (**WLF**)

art. no. ICK SMD BOX 1

B 55

Downloaded from Arrow.com.

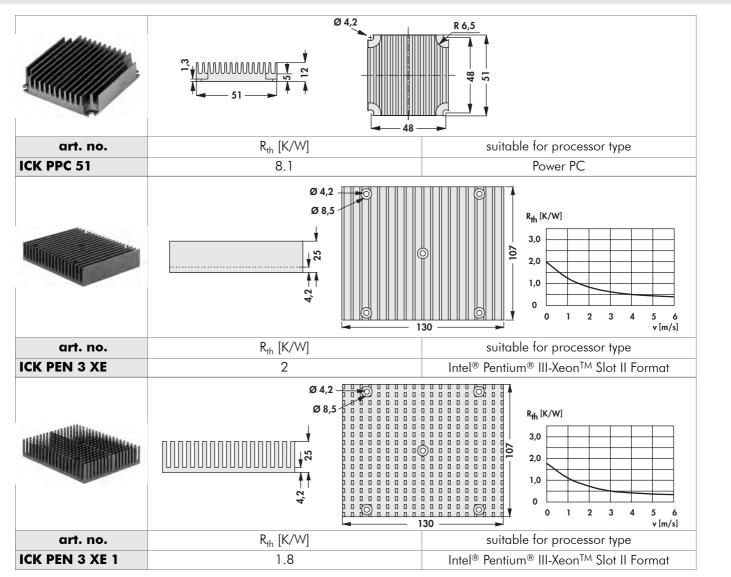
Extruded heatsinks ICK S 10 x 10 x 6,5 Insulting clamping parts Thermal conductive glue $\begin{array}{r} \rightarrow \quad A \ 22 - 83 \\ \rightarrow \quad B \ 21 - 28 \\ \rightarrow \quad E \ 45 \\ \rightarrow \quad E \ 23 - 24 \end{array}$

Thermally conductive foil Thermal conductive paste Hole pattern Technical introduction

→	E 5 – 15
→	E 21 – 22
→	A 21
→	A 2 – 8

D

E


F

G

Ν

N

Passive heatsinks for processors

Heatsink specially for Q7 "Embedded-Boards"

	$75 \longrightarrow 5$	→ → → → → → → → → → → → → →
art. no.	R _{th} [K/W]	suitable for processor type
ICK EM 25	3.9	Q7 Board

Fan cooler for Intel PentiumIIIXeon	→	B 60	Heatsinks for Q7 "Emb
Fan cooler, universal	→	B 58	Heatsinks for BGA
Attachable heatsinks	→	C 10 – 16	Heatsinks for PGA
Thermal conductive material	→	E 2 – 24	Technical introduction

mbedded-Boards" \rightarrow B 56 \rightarrow B 17 - 20 \rightarrow B 11 - 16 on \rightarrow A 2 - 8

B 56

N

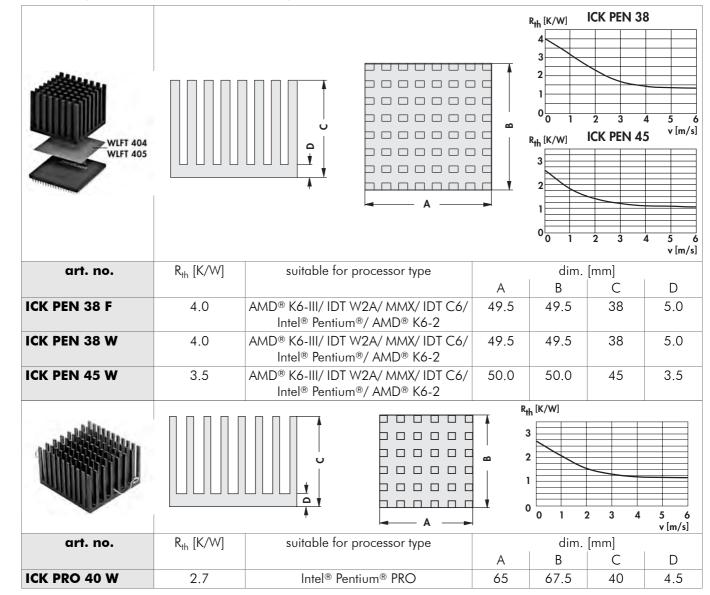
Downloaded from Arrow.com.

Δ

•

C

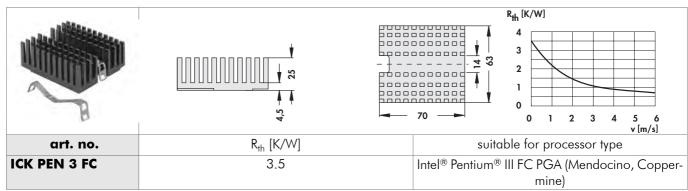
E


E

C

k

Passive heatsinks for processors


- customer specific versions and modifications on request

F = with double-sided thermally conductive adhesive foil

 \mathbf{W} = for thermally conductive adhesive (please order separately)

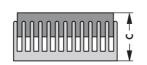
WLK ... → E 23

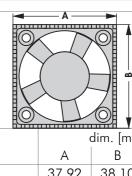
fixing method: K = with fixing clamp (incl. one-sided adherent thermal foil)

2

C

Ν


B 57


Fan cooler for Intel PentiumIIIXeon \rightarrow B 60HereFan cooler, universal \rightarrow B 58HereAttachable heatsinks \rightarrow C 10 - 16HereThermal conductive material \rightarrow E 2 - 24Tech

Heatsinks for Q7 "Embedded-Boards"B 56Heatsinks for BGA \rightarrow B 17 - 20Heatsinks for PGA \rightarrow B 11 - 16Technical introduction \rightarrow A 2 - 8

Active heatsinks for processors

Addres.					
art. no.	R _{th} [K/W]	suitable for processor type	(dim. [mm]	
			А	В	С
LA ICK 15 x 15 F 05	2.3	universal	37.92	38.10	20
LA ICK 15 x 15 F 12	2.3	universal	37.92	38.10	20
LA ICK 17 x 17 F 12	1.6	universal	43.10	43.10	20
LA ICK 17 x 17 F 12 A	1.6	universal	43.10	43.10	20
LA ICK 17 x 17 W 05	1.6	universal	43.10	43.10	20
LA ICK 17 x 17 W 12	1.6	universal	43.10	43.10	20
LA ICK 18 x 18 F 12	1.5	universal	45.70	45.70	20
LA ICK 18 x 18 W 12	1.5	universal	45.70	45.70	20
LA ICK 21 x 21 F 05	1.4	universal	53.34	53.34	20
LA ICK 21 x 21 F 12	1.4	universal	53.34	53.34	20
LA ICK 21 x 21 W 05	1.4	universal	53.34	53.34	20
LA ICK 21 x 21 W 12	1.4	universal	53.34	53.34	20

used fans:

5 Volt = Sepa MFB 25 F 05 L / MFB 40 H 05 / MFB 40 H 05 A;

12 Volt = Sepa MFB 25 F 12 / MFB 40 H 12 / MFB 40 H 12 A

 $\boldsymbol{F}=$ with double-sided thermally conductive adhesive foil

 \mathbf{W} = for thermally conductive adhesive (please order separately) \mathbf{WLK} ... \rightarrow E 23

 $\mathbf{A} = alarm exit$

;

C

ŝ

E

C

L

k

Ν

Heatsinks for BGA>B 17 - 20Heatsinks for Q7 "Embedded-Boards">B 56Fan cooler, universal>>B 58Heatsinks for Pentium PRO>>B 57

Heatsinks for P II-Mobile Module Fan cooler for Pentium IV Thermal conductive material Technical introduction $\begin{array}{l} \rightarrow & B 56 \\ \rightarrow & B 60 \\ \rightarrow & E 2 - 24 \\ \rightarrow & A 2 - 8 \end{array}$

B 58

Active heatsinks for processors

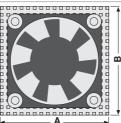
D

C

LA ICK PEN 16

LA ICK PEN 18

LA ICK PEN 38



LA ICK PRO 25

- easy assembly on ZIF socket by fixing clamp

LA ICK PEN 8

		A				
art. no.	R _{th} [K/W]	suitable for processor type		dim.	[mm]	
			А	В	С	D
LA ICK PEN 8 F 05	2.50	AMD® K6-III/ IDT W2A/ Cyrix MII and similar/ MMX/ IDT C6/ Intel® Pentium®/ AMD® K6-2	50.8	50.8	8.00	9.00
LA ICK PEN 8 F 12	2.50	AMD® K6-III/ IDT W2A/ Cyrix MII and similar/ MMX/ IDT C6/ Intel® Pentium®/ AMD® K6-2	50.8	50.8	8.00	9.00
LA ICK PEN 8 W 05	2.50	AMD® K6-III/ IDT W2A/ Cyrix MII and similar/ MMX/ IDT C6/ Intel® Pentium®/ AMD® K6-2	50.8	50.8	8.00	9.00
LA ICK PEN 8 W 12	2.50	AMD® K6-III/ IDT W2A/ Cyrix MII and similar/ MMX/ IDT C6/ Intel® Pentium®/ AMD® K6-2	50.8	50.8	8.00	9.00
LA ICK PEN 16 K 12	1.20	AMD® K6-III/ IDT W2A/ Cyrix MII and similar/ MMX/ IDT C6/ Intel® Pentium®/ AMD® K6-2	50.8	50.8	16.51	26.51
LA ICK PEN 16 W 12	1.20	AMD® K6-III/ IDT W2A/ Cyrix MII and similar/ MMX/ IDT C6/ Intel® Pentium®/ AMD® K6-2	50.8	50.8	16.51	26.51
LA ICK PEN 16 W 12 A	1.20	AMD [®] K6-III/ IDT W2A/ Cyrix MII and similar/ MMX/ IDT C6/ Intel [®] Pentium [®] / AMD [®] K6-2	50.8	50.8	16.51	26.51
LA ICK PEN 18 W 12	1.60	AMD [®] K6-III/ IDT W2A/ Cyrix MII and similar/ MMX/ IDT C6/ Intel [®] Pentium [®] / AMD [®] K6-2	50.8	50.8	8.00	18.00
LA ICK PEN 38 W 12	1.10	AMD [®] K6-III/ IDT W2A/ Cyrix MII and similar/ MMX/ IDT C6/ Intel [®] Pentium [®] / AMD [®] K6-2	49.5	49.5	38.00	48.00
LA ICK PRO 25 F 12	0.97	Intel [®] Pentium [®] PRO	63.5	67.5	25.00	35.00

used fans: 5 Volt = Sepa MFB 50 E 05; 12 Volt = Sepa MFB 50 E 12/ Sepa MFB 50 E 12 A;

LA ICK PEN 8: 5 Volt = Sepa HFB 44 X 05 A; 12 Volt = Sepa HFB 44 B 12 A

K = with fixing clamp (incl. one-sided adherent conductive foil)

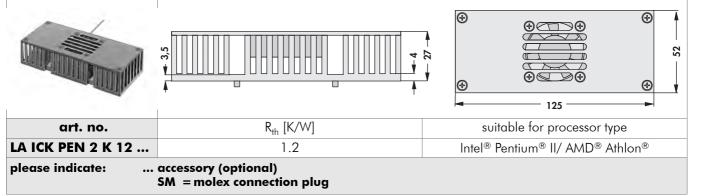
 \mathbf{F} = with double-sided thermally conductive adhesive foil

W = for thermally conductive adhesive (please order separately) WLK ... \rightarrow E 23

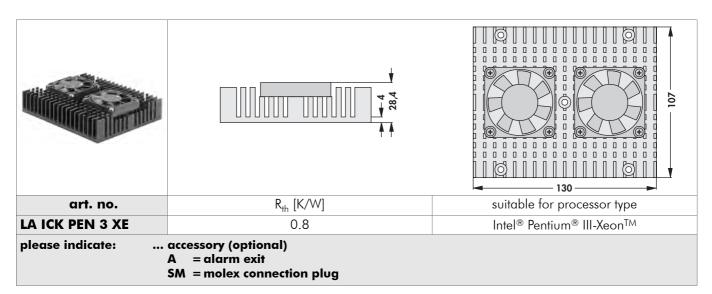
 $\mathbf{A} = alarm exit$

B 59

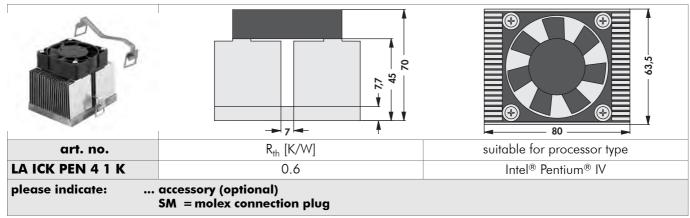
Heatsinks for BGA Heatsinks for Q7 "Embedded-Boards"→ B 56 Fan cooler, universal → **Heatsinks for Pentium PRO**


→ B 17 – 20 B 58 → B57

Heatsinks for P II-Mobile Module Fan cooler for Pentium IV Thermal conductive material **Technical introduction** →


→ B 56 → B 60 E 2 – 24 → A 2 – 8

Active heatsinks for processors


utilized fans: 12 Volt = Sepa MFB 40 H 12

fixing method: SB= screw fixing utilized fans: 12 Volt = Sepa MFB 50 E 12

– with copper base plate

- customer specific designs and modifications on request

fixing method: K = with fixing clamp operating voltage of the fan motor: 12 Volt (Papst 612 NHH)

Heatsinks for BGA→B 17 - 20Heatsinks for Q7 "Embedded-Boards"→B 56Fan cooler, universal→B 58Heatsinks for Pentium PRO→B 57

Heatsinks for P II-Mobile Module Fan cooler for Pentium IV Thermal conductive material Technical introduction $\begin{array}{r} \rightarrow & B 56 \\ \rightarrow & B 60 \\ \rightarrow & E 2 - 24 \\ \rightarrow & A 2 - 8 \end{array}$

B 60

N

;

C

A

Downloaded from Arrow.com.

Μ

N

Technical data of the fans

molex crimp case series: 6471; molex crimp terminals: 2759

- Sepa-fan 24 h BURN-IN tested

5 volt fan

	Sepa MFB 25 F 05 L	Sepa MFB 40 H 05	Sepa MFB 40 H 05 A	Sepa MFB 50 E 05	Sepa HFB 44 X 05 A	ebmpapst 405 F
circuit voltage	4.55.5 V DC	4.55.5 V DC	4.55.5 V DC	4.55.5 V DC	4.55.5 V DC	4.55.5 V DC
bearing type	double ball bearing	double ball bearing	double ball bearing	double ball bearing	ball bearing	double slide bearing
fan dimensions	25x25x10 mm	40x40x10 mm	40x40x10 mm	50x50x10 mm	44x44x6.2 mm	40x40x10 mm
cur. consumpt.	90 mA	90 mA	90 mA	50 mA	90 mA	140 mA
max. iuitial current	170 mA	250 mA	250 mA	120 mA	160 mA	
max. volume flow	46 l/min 2.8 m³/h	184 l/min 11 m ³ /h	184 l/min 11 m ³ /h	169 l/min 10.1 m ³ /h	50 l/min 3 m³/h	132 l/min 8 m³/h
max. static pressure	2.2 mmH ₂ O 22 Pa	3.1mm H ₂ O 30.5 Pa	3.1mm H ₂ O 30.5 Pa	1.6mm H ₂ O 15.6 Pa	2.6mm H ₂ O 25.5 Pa	3.06mm H ₂ O 30 Pa
noise level	18 dB(A), 1 m lateral	24 dB(A), 1 m lateral	24 dB(A), 1 m lateral	17 dB(A), 1 m lateral	28 dB(A), 1 m lateral	22.1 dB(A), 1 m lateral
temperature range	-10°C +85°C	-40°C +80°C	-40°C +80°C	-10°C +70°C	-40°C +80°C	-20°C +70°C
failure rate (L ₁₀)	95,000 h	95,000 h	95,000 h	95,000 h	95,000 h	45,000 h (20°C)
MTBF	280,000 h (20°C)	280,000 h (20°C)	280,000 h (20°C)	280,000 h (20°C)	280,000 h (20°C)	
weight	8 g	13 g	13 g	19 g	7 g	17 g
cases	plastic PBT (UL E54695)	plastic PBT (UL E54695)	plastic PBT (UL E54695)	plastic PBT (UL E54695)	plastic PBT (UL E54695)	plastic PBT (UL E38324)

12 volt fan

	Sepa MFB 25 F 12	Sepa MFB 40 H 12	Sepa MFB 40 H 12 A	Sepa MFB 50 E 12	Sepa HFB 44 B 12 A	ebmpapst 412 F
circuit voltage	10.213.8 V DC	10.213.8 V DC	10.213.8 V DC	10.213.8 V DC	10.213.8 V DC	10-14 V DC
bearing type	double ball bearing	double ball bearing	double ball bearing	ball bearing	ball bearing	double slide bearing
fan dimensions	25x25x10 mm	40x40x10 mm	40x40x10 mm	50x50x10 mm	44x44x6.2 mm	40x40x10 mm
cur. consumpt.	70 mA	50 mA	50 mA	60 mA	40 mA	60 mA
max. iuitial current	150 mA	130 mA	130 mA	140 mA	70 mA	
max. volume flow	70 l/min 4.1 m ³ /h	173 l/min 10.3 m ³ /h	173 l/min 10.3 m³/h	238 l/min 14.3 m³/h	50 l/min 3 m ³ /h	132 l/min 8 m³/h
max. static pressure	2.24mm H ₂ O 41.5 Pa	2.9 mmH ₂ O 28.5 Pa	2.9 mmH ₂ O 28.5 Pa	2.7mm H ₂ O 26.9 Pa	2.6mm H ₂ O 25.5 Pa	3.06mm H ₂ O 30 Pa
noise level	23 dB(A), 1 m lateral	24 dB(A), 1 m lateral	21 dB(A), 1 m lateral	22 dB(A), 1 m lateral	28 dB(A), 1 m lateral	22.1 dB(A), 1 m lateral
temperature range	-40°C +80°C	-40°C +80°C	-40°C +80°C	-10°C +70°C	-40°C +80°C	-20°C +70°C
failure rate (L ₁₀)	95,000 h	95,000 h	95,000 h	95,000 h	95,000 h	45,000 h (20°C)
MTBF	280,000 h (20°C)	280,000 h (20°C)	280,000 h (20°C)	280,000 h (20°C)	280,000 h (20°C)	
weight	8 g	13 g	13 g	19 g	20 g	17 g
cases	plastic PBT (UL E54695)	plastic PBT (UL E54695)	plastic PBT (UL E54695)	plastic PBT (UL E54695)	steel/aluminium (UL E54695)	plastic PBT (UL E38324)

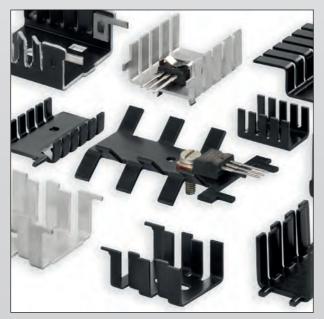
Fans with pulse output - Technical data of fans with pulse output:

- pulse output for activation of the alarm control
- pulse similar to a square pulse with three times the frequency of the rotor speed
- when the rotor is blocked, the output signal may be L (\leq 0.8 V) or H (Vcc-1 V)
- the pulse output must not be connected to GND or Vcc withoutb protective resistor (>10 K)
- in order to avoid short circuits, the pulse output not being used must be insulated

•

E

N



Finger shaped heatsinks for power semiconductors Attachable heatsinks Finger shaped heatsinks for transistors Miniature heatsinks

Finger shaped heatsinks for power semiconductors

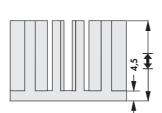
- specially compatible for power semiconductors in a TO-case
- made as a bent sheet metal part or die cast heatsink made of aluminium
- aligned heatsink contours for the best heat dissipation
- direct screwing of the component to the heatsink on the PCB

Finger shaped heatsinks for transistors

- effective heat dissipation of transistors
- efficient radiation of heat at a horizontal or vertical mounting position
- component fastening by means of screws or special transistor retaining springs
- solder mounting by means of integrated solder pins and solderable surfaces

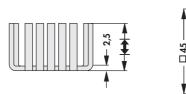
Attachable heatsinks

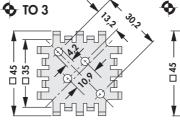
- made of aluminium or copper material
- solderable surface coating
- integrated spring clip for easy and fast mounting of the transistor
- secure hold of the component due to optimized spring force and geometry
- customer specific version upon request

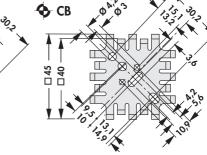


Miniature heatsinks

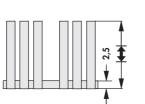
- for TO 5, SOT 82, D PAK and similar semiconductors
- made of aluminium, phosphorus bronze or copper
- simple mounting by direct plugging or soldering of the heatsink
- special types of packaging such as tape & reel, magazine or tray upon request
- versions and designs for your application

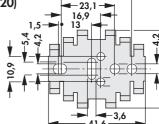

Finger shaped heatsinks for power semiconductors





	I		
art. no.	፤ [mm]	R _{th} [K/W]	\$
FK 254 SA 3	25.4	5.8	TO 3
FK 318 SA	31.8	4.8	without
FK 318 SA 3	31.8	4.8	TO 3
material:	die-casting alu	uminium	
surface:	black lacquere	ed	




38,

art. no.	₹ [mm]	R _{th} [K/W]	\$
FK 201 SA	25.4	6	without
FK 201 SA 3	25.4	6	TO 3
FK 201 SA CB	25.4	6	СВ
FK 202 SA	12.7	8	without
FK 202 SA 3	12.7	8	TO 3
FK 202 SA CB	12.7	8	СВ

30

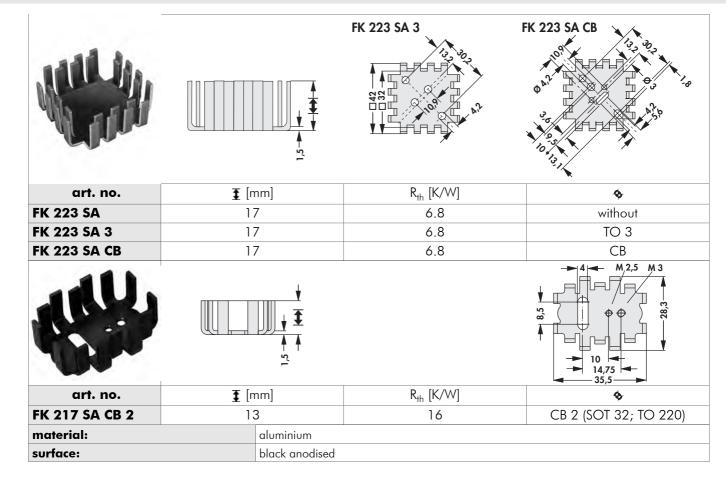
art. no.	፤ [mm]	R _{th} [K/W]	\$
FK 205 SA L	31.8	9.0	L
FK 206 SA L	25.4	10.5	L
FK 207 SA L	19.1	12.0	L
FK 208 SA L	12.7	14.0	L
material:	aluminium		
surface:	black anodised	black anodised	

Attachable heatsinks Heatsinks for TO 5 and TO 18 **Heatsinks for D PAK** Aluminium oxide wafers

Downloaded from Arrow.com.

→

→


- Mounts C 17 – 19
- Insulating caps C 21 - 117
- Thermal conductive material E 17 – 18
 - **Technical introduction**
- E 44 48 → → E 51 E 2 – 24 →
- → A 2 – 8
- C 2

-

C

k

Finger shaped heatsinks for power semiconductors

B

C

D

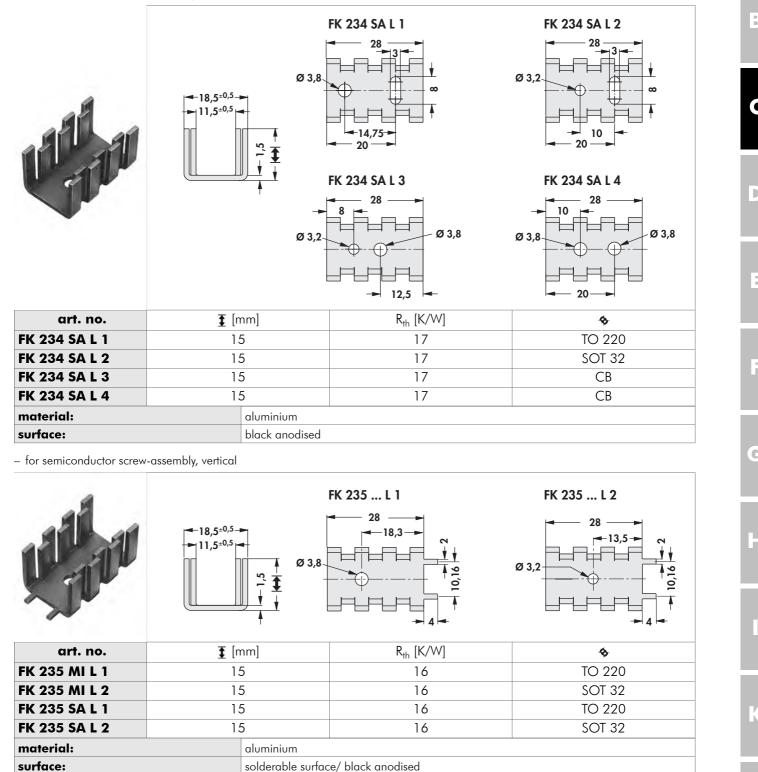
E

E

G

M

C 3


Attachable heatsinks Heatsinks for TO 5 and TO 18 Heatsinks for D PAK Aluminium oxide wafers $\begin{array}{rrrr} \rightarrow & C \ 10 - 14 & M \\ \rightarrow & C \ 17 - 19 & In \\ \rightarrow & C \ 21 - 117 & Th \\ \rightarrow & E \ 17 - 18 & Te \end{array}$

Mounts Insulating caps 7 Thermal conductive material Technical introduction $\begin{array}{r} \rightarrow \quad \mathsf{E} \ 44 - 48 \\ \rightarrow \quad \mathsf{E} \ 51 \\ \rightarrow \quad \mathsf{E} \ 2 - 24 \\ \rightarrow \quad \mathsf{A} \ 2 - 8 \end{array}$

Downloaded from Arrow.com.

Heatsinks for transistors in plastic case

- for semiconductor screw-assembly, horizontal

Attachable heatsinks Heatsinks for TO 5 and TO 18 Heatsinks for D PAK Aluminium oxide wafers $\begin{array}{r} \rightarrow \quad C \ 10 - 14 \\ \rightarrow \quad C \ 17 - 19 \\ \rightarrow \quad C \ 21 \\ \rightarrow \quad E \ 17 - 18 \end{array}$

Mounts Insulating caps

Insulating caps

- Thermal conductive material
- **B** Technical introduction
- → E 44→ E 51→ E 2 - 24→ A 2 - 8

C 4

Heatsinks for transistors in plastic case

art. no.	-	38 38 38 38 38 38 38 38 38 38	9,9 K/W	
FK 225 SA L 1				→ 24,5 →
art. no. FK 225 SA L 2	C. Ann	• 8 30 • 8 30 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 •	9,9 K/W	
art. no.		→ 19 →		→ 21 →
FK 228 SA L 1	LEREN	 4 4 4 5 5 6,5 	30 K/W	
art. no.				← 21 →
FK 229 SA L 1		6,5-	27 K/W	
art. no.			21 K/W � TO 220	
FK 230 SA L 1				-
material:	aluminium			
surface:	black anoc	dised		
art. no.		30,4 	↓ 17 K/W	
FK 249 SA 220			0,8	→ 1,9
FK 249 SA 220 material:	aluminium),8	

B

C

D

E

F

G

E

Κ

Μ

N

C 5

Downloaded from Arrow.com.

Attachable heatsinks Heatsinks for TO 5 and TO 18 Heatsinks for D PAK Aluminium oxide wafers $\begin{array}{rrr} \rightarrow & C \ 10 - 14 \\ \rightarrow & C \ 17 - 19 \\ \rightarrow & C \ 21 \\ \rightarrow & E \ 17 - 18 \end{array}$

Mounts Insulating caps Thermal conductive material Technical introduction $\begin{array}{r} \rightarrow \quad E \ 44 - 48 \\ \rightarrow \quad E \ 51 \\ \rightarrow \quad E \ 2 - 24 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

Heatsinks for transistors in plastic case

art. no. Image: state stat	
FK 209 SA 32 available without hole pattern as well	
art. no.	22
FK 210 SA CB available without hole pattern as well	
art. no. image: state st	25,4
FK 213 SA 32 available without hole pattern as well	
art. no. • • • • • • • • • • • • • • •	22
FK 214 SA CB available without hole pattern as well	
art. no. Image: state sta	11,55
Grit. no. Image: state of the state of t	- 16,45 - 1
material: aluminium	
surface: black anodised	

G

H

K

N

Attachable heatsinks Heatsinks for TO 5 and TO 18 Heatsinks for D PAK Aluminium oxide wafers $\begin{array}{r} \rightarrow & C \ 10 - 14 \\ \rightarrow & C \ 17 - 19 \\ \rightarrow & C \ 21 \\ \rightarrow & E \ 17 - 18 \end{array}$

Mounts Insulating caps

Thermal conductive material

Technical introduction

 $\begin{array}{r} \rightarrow \quad E \ 44 - 48 \\ \rightarrow \quad E \ 51 \\ \rightarrow \quad E \ 2 - 24 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

C 6

Downloaded from Arrow.com.

N

Δ

D

E

Heatsinks for transistors in plastic case

art. no.		7	→ 12,2 ◄
	TA	25 K/W ◆ SOT 32	
FK 211 32	available without hole patter	m as well	
art. no.	Turket	2 ↓ ↓ ∞ ↓ ↓ ∞ ↓ ↓ ∞ 18 K/W ◆ CB (SOT 32 +	TO 220)
FK 212 CB	available without hole patter	m as well	
art. no. FK 215 32	TS.	21 K/W	
art. no.	available without hole patter	m as well	22,4 -
FK 216 CB	available without hole patter	15 K/W ↑ ↑ ↑ 15 K/W ↑ CB (SOT 32	+ TO 220)
art. no.		- 3,8	52 N 144 M
FK 222	available without hole patter	20 K/W	
art. no. FK 222 THF		20 K/W	5,2 - 14,4 - 7, 8,6
art. no.		0	<u>4</u>
FK 247 220		22 K/W	
please indicate:	surface SA = black anodised		
	MI = solderable surf	ace	

N

B

C

D

E

F

G

E

Κ

C 7

Attachable heatsinks Heatsinks for TO 5 and TO 18 Heatsinks for D PAK Aluminium oxide wafers $\begin{array}{rrr} \rightarrow & C \ 10 \ - \ 14 \\ \rightarrow & C \ 17 \ - \ 19 \\ \rightarrow & C \ 21 \\ \rightarrow & E \ 17 \ - \ 18 \end{array}$

Mounts Insulating caps Thermal conductive material Technical introduction $\begin{array}{rrr} \rightarrow & \mathsf{E} \ 44 \\ \rightarrow & \mathsf{E} \ 51 \\ \rightarrow & \mathsf{E} \ 2 - 24 \\ \rightarrow & \mathsf{A} \ 2 - 8 \end{array}$

Downloaded from Arrow.com.

Heatsinks for transistors in plastic case

art. no. Image: state of the state of	
FK 227 SA L 1 Y <	
FK 238 SA L 1	
material: aluminium	
surface: black anodised	
art. no.	
FK 218 32	
FK 232 220	
art. no. FK 233 220	
please indicate: surface SA = black anodised MI = solderable surface	
material: aluminium	

D

E

E

G

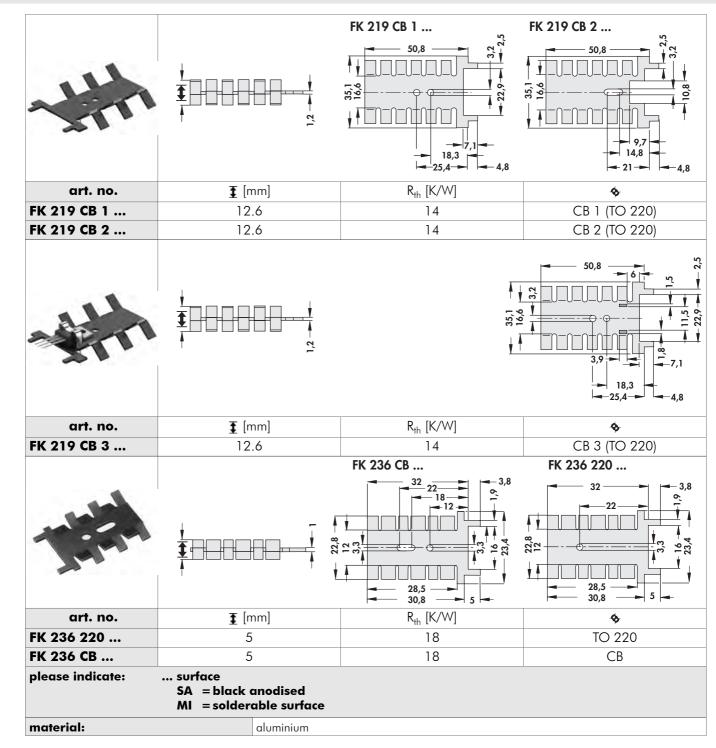
ł

Ν

C 8

Attachable heatsinks Heatsinks for TO 5 and TO 18 Heatsinks for D PAK Aluminium oxide wafers

→ C10-14 → C17-19 → C 21 → E17-18


Mounts Insulating caps

Thermal conductive material **Technical introduction**

→ E 44 → E 51 $\begin{array}{c} \rightarrow \quad E \ 2 - 24 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

Downloaded from Arrow.com.

Heatsinks for transistors in plastic case

C9

B

D

E

E

G

E.

Ν

Attachable heatsinks

		7	
art. no.	R _{th} [K/W]	\$	
FK 220 SA 220	25	TO 220	
material:	aluminium		
surface:	black anodised		
- for transistiors with thin bottom	a thickness (0.5 mm)		

art. no.	R _{th} [K/W]	\$
FK 258 SA 220	25	TO 220
material:	aluminium	
surface:	black anodised	

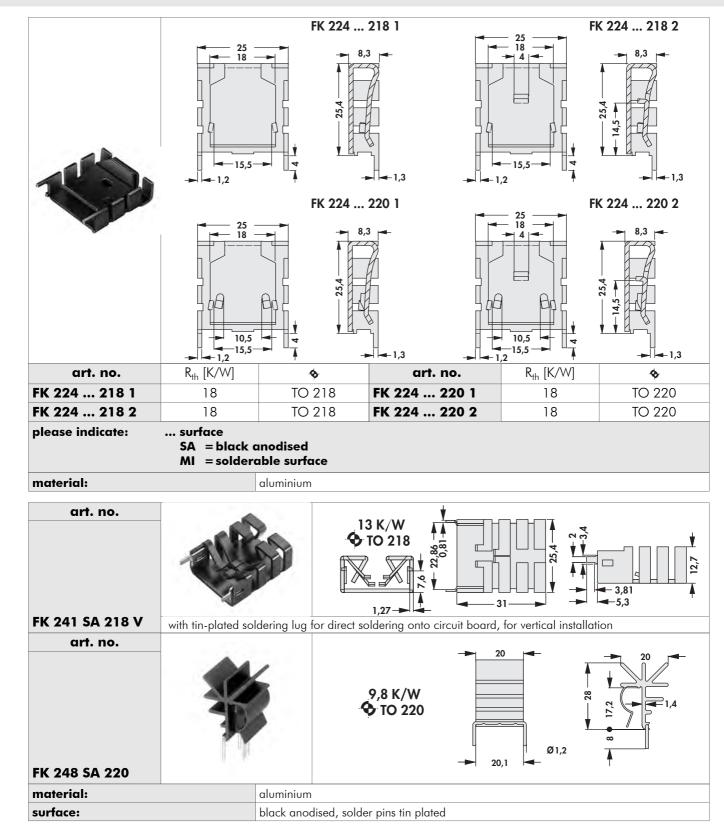
		8,3 752 1,2 1,3
art. no.	R _{th} [K/W]	\$
FK 224 P SIP	18	P SIP
please indicate:	surface SA = black anodised MI = solderable surface	
material:	aluminium	

Heatsinks for D PAK	→ C 21	Vibration dampers	→	E 41
Heatsinks for transistors	→ C4-9	U-shaped heatsink	→	A 12
Kapton insulator washers	→ E16	Aluminium oxide wafers	→	E 17
Vibration dampers	→ E 41	Technical introduction	→	A 2

C 10

Ι

E


G

ŀ

Attachable heatsinks

D

C

M

C 11

Heatsinks for D PAK Heatsinks for transistors Kapton insulator washers Vibration dampers $\begin{array}{rrr} \rightarrow & C & 21 \\ \rightarrow & C & 4 - 9 \\ \rightarrow & E & 16 \\ \rightarrow & E & 41 \end{array}$

Vibration dampers U-shaped heatsink Aluminium oxide wafers Technical introduction $\begin{array}{l} \rightarrow \quad E \ 41 \\ \rightarrow \quad A \ 123 - 124 \\ \rightarrow \quad E \ 17 - 18 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

Attachable heatsinks

- universal clip on heatsinks for type TO 218, TO 229, TO 247, TO 248, SIP-Muliwatt and similar
- easy assembly by pushing the heatsink onto the component
- for vertical and horizontal fastening by soldering
- fin height variations on request
- special design accord. to customized specification

1 0	o customized specification]
art. no.	1///	20,2 K/W	RRRRRR	
	un mu	27	2° → − 1,2	
FK 245 MI 247 O	without soldering lug			
art. no.	1 /1.	20,5 K/W		
FK 245 MI 247 H	with soldering lug for horizon	ntal mounting		
art. no.	N/11	19,7 K/W		
	un mu	58°t 90° 10° 10° 10° 10° 10° 10° 10° 1	2 2 2 2 1,2	
FK 245 MI 247 V	with soldering lug for vertical	mounting		
art. no.	11/1	18,4 K/W		
FK 243 MI 247 O	without soldering lug			
art. no.	al a	19 K/W		
			<u><u><u></u></u></u>	
FK 243 MI 247 H	with soldering lug for horizon	ntal mounting		
art. no.	aller	18,4 K/W		
FK 243 MI 247 V	with soldering lug for vertical			
material:	copper (Cu			
surface:	solderable	surface		
material thickness:	0.6 mm			

Downloaded from Arrow.com.

Vibration dampers U-shaped heatsink Aluminium oxide wafers Technical introduction $\begin{array}{l} \rightarrow \quad E \ 41 \\ \rightarrow \quad A \ 123 \ - \ 124 \\ \rightarrow \quad E \ 17 \ - \ 18 \\ \rightarrow \quad A \ 2 \ - \ 8 \end{array}$

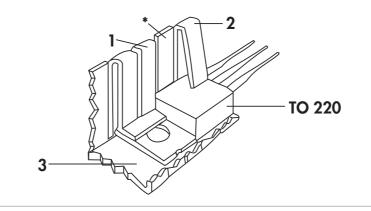
C 12

N

N

1

E


E

C

Γ

k

Attachable heatsinks

- narrow version with better thermal resistance
- max. 14.5 mm wide
- 3 different lengths for varied dissipation power
- takes less space than any other attachable heatsink
- simple assembly by pushing the heatsink onto the TO 220 housing
- the cooling fingers form spring clamps (1+2), which pushes the TO 220 and it's mounting flange onto the heatsink (3)
- optimum heat transfer due the constant pressure on the entire contact surface of the TO 220 cases
- effective heat emmision with horizontal and vertical mounting
- * = touch in edge of transistor

art. no.	1.00	
	M	26 K/W
FK 242 SA 220 O	without soldering lug	
art. no.		
	A star	21 K/W
FK 237 SA 220 O	without soldering lug	
art. no.		16 K/W 16 K/W 16 K/W 16 K/W 16 K/W 16 K/W 16 K/W 16 K/W 16 K/W 16 K/W
FK 240 SA 220 O	without soldering lug	
material:	aluminiun	1
surface:	black ano	dised, solder pins tin plated

C 13

Heatsinks for D PAK Heatsinks for transistors Kapton insulator washers Vibration dampers $\begin{array}{rrr} \rightarrow & C & 21 \\ \rightarrow & C & 4 - 9 \\ \rightarrow & E & 16 \\ \rightarrow & E & 41 \end{array}$

Vibration dampers U-shaped heatsink Aluminium oxide wafers Technical introduction $\begin{array}{l} \rightarrow \quad E \; 41 \\ \rightarrow \quad A \; 123 - 124 \\ \rightarrow \quad E \; 17 - 18 \\ \rightarrow \quad A \; 2 - 8 \end{array}$

Downloaded from Arrow.com.

C

D

1

E

G

Attachable heatsinks

art. no.			
FK 242 SA 220 H	with tinned soldering lug for direct soldering onto circuit board, for horizontal installation		
art. no.	145 21 K/W▲*↓		
FK 237 SA 220 H	with tinned soldering lug for direct soldering onto circuit board, for horizontal installation		
art. no.	$\begin{array}{c} 16 \text{ K/W} \\ \hline \\ 0,81 \\ \hline \\ 4,6-1 \\ \hline \\ 38,1 \\ \hline \end{array}$		
FK 240 SA 220 H	with tinned soldering lug for direct soldering onto circuit board, for horizontal installation		
material:	aluminium		
	black anodised, solder pins tin plated		

- with tinned soldering lug for direct soldering onto circuit board, for vertical installation

G		⊷0.81	* 18'0 × 12'2 × 1 1 1 1 1 1 1 1 1 1 1 1 1		₩ 8°5° 4
art. no.	A [mm]	R _{th} [K/W]	art. no.	A [mm]	R _{th} [K/W]
FK 242 SA 220 V	6.35	26	FK 242 SA 220 VL	9.53	26
A LONG		⊫ 	8 C9 L L L L L L L L L L L L L L L L L L		3;3; 3;3; 3;5;
art. no.	A [mm]	R _{th} [K/W]	art. no.	A [mm]	R _{th} [K/W]
FK 237 SA 220 V	6.35	21	FK 237 SA 220 VL	9.53	21
	max. 14,5	8'0' ¥ ₩ ₩	31,8 38,1		
art. no.	A [mm]	R _{th} [K/W]	art. no.	A [mm]	R _{th} [K/W]
FK 240 SA 220 V	6.35	16	FK 240 SA 220 VL	9.53	16
material:	(aluminium			
surface:	I	olack anodised, solde	er pins tin plated		

Heatsinks for D PAK
Heatsinks for transistors
Kapton insulator washers
Vibration dampers

→ E41

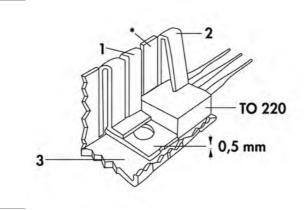
Vibration dampers U-shaped heatsink Aluminium oxide wafers Technical introduction $\begin{array}{l} \rightarrow \quad \mathsf{E} \ \mathsf{41} \\ \rightarrow \quad \mathsf{A} \ \mathsf{123} - \mathsf{124} \\ \rightarrow \quad \mathsf{E} \ \mathsf{17} - \mathsf{18} \\ \rightarrow \quad \mathsf{A} \ \mathsf{2} - \mathsf{8} \end{array}$

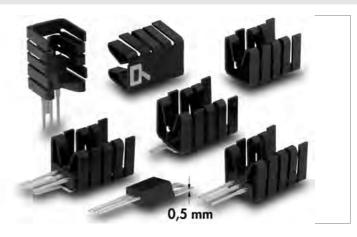
C 14

Ν

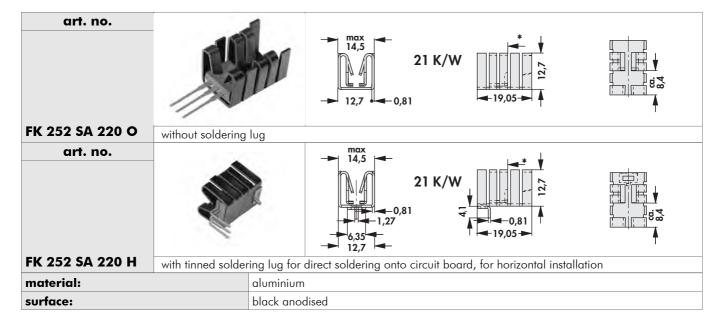
Δ

D


E


E

G


ŀ

Attachable heatsinks for TO 220 with a bottom plate thickness of 0.5 mm

- narrow version with better thermal resistance
- max. 14.5 mm wide
- takes less space than any other attachable heatsink
- simple assembly by pushing the heatsink onto the TO 220 housing
- the cooling fingers form spring clamps (1+2), which pushes the TO 220 and it's mounting flange onto the heatsink (3)
- optimum heat transfer due the constant pressure on the entire contact surface of the TO 220 cases
- effective heat emmision with horizontal and vertical mounting
- -* = touch in edge of transistor

- with tinned soldering lug for direct soldering onto circuit board, for vertical installation

State		14,5 14,5 1,27 12,7 0,81			
art. no.	A [mm]	R _{th} [K/W]	art. no.	A [mm]	R _{th} [K/W]
FK 252 SA 220 V	6.35	21	FK 252 SA 220 VL	9.53	21
material:		aluminium			
surface:		black anodised			

C 15

Downloaded from Arrow.com.

Heatsinks for D PAK Heatsinks for transistors Kapton insulator washers Vibration dampers $\begin{array}{c} \rightarrow & C & 21 \\ \rightarrow & C & 4 - 9 \\ \rightarrow & E & 16 \\ \rightarrow & E & 41 \end{array}$

Vibration dampers U-shaped heatsink Aluminium oxide wafers Technical introduction

 $\begin{array}{l} \rightarrow \quad E \ 41 \\ \rightarrow \quad A \ 123 - 124 \\ \rightarrow \quad E \ 17 - 18 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

A

C

D

1

G

Attachable heatsinks

art. no.	R _{th} [K/W]	\$
FK 253	23.7	TO 220
art. no.	R _{th} [K/W]	\$
FK 255	16.8	TO 220
	21,84	9,05 →
art. no.	R _{th} [K/W]	\$
FK 257	21.2	TO 220
material:	aluminium	
surface:	black anodised	

Heatsinks for D PAK Heatsinks for transistors Kapton insulator washers Vibration dampers $\begin{array}{rrr} \rightarrow & C & 21 \\ \rightarrow & C & 4 - 9 \\ \rightarrow & E & 16 \\ \rightarrow & E & 41 \end{array}$

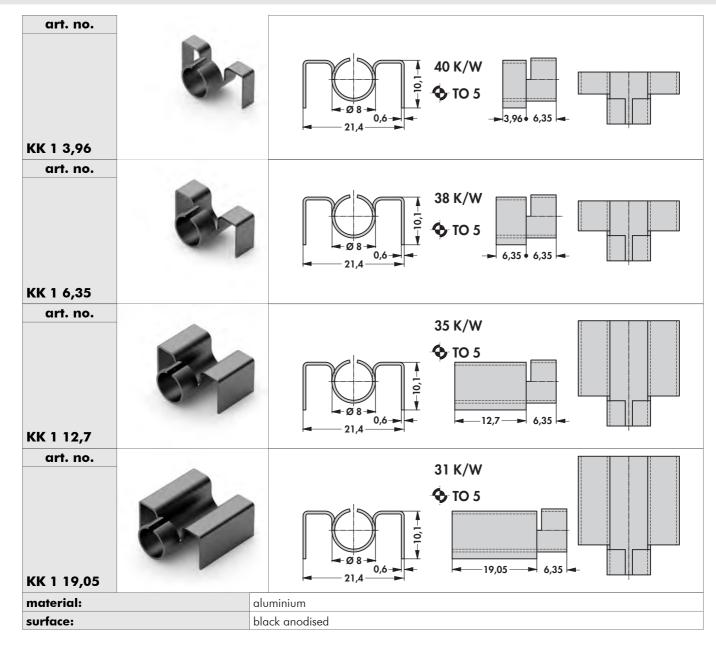
Vibration dampers U-shaped heatsink Aluminium oxide wafers Technical introduction $\begin{array}{l} \rightarrow \quad E \ 41 \\ \rightarrow \quad A \ 123 - 124 \\ \rightarrow \quad E \ 17 - 18 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

C 16

N

Δ

D


E

E

G

l

Small heatsinks

Finger-shaped heatsinks Heatsinks for transistors Attachable heatsinks Heatsinks for D PAK $\begin{array}{r} \rightarrow & C \ 2 - 3 \\ \rightarrow & C \ 4 - 9 \\ \rightarrow & C \ 10 - 16 \\ \rightarrow & C \ 21 - 22 \end{array}$

Thermal conductive material→E 2 - 24Mounting material for semiconductors→E 46 - 48Extruded heatsinks→A 22 - 83Technical introduction→A 2 - 8

B

C

D

E

E

G

E

K

Μ

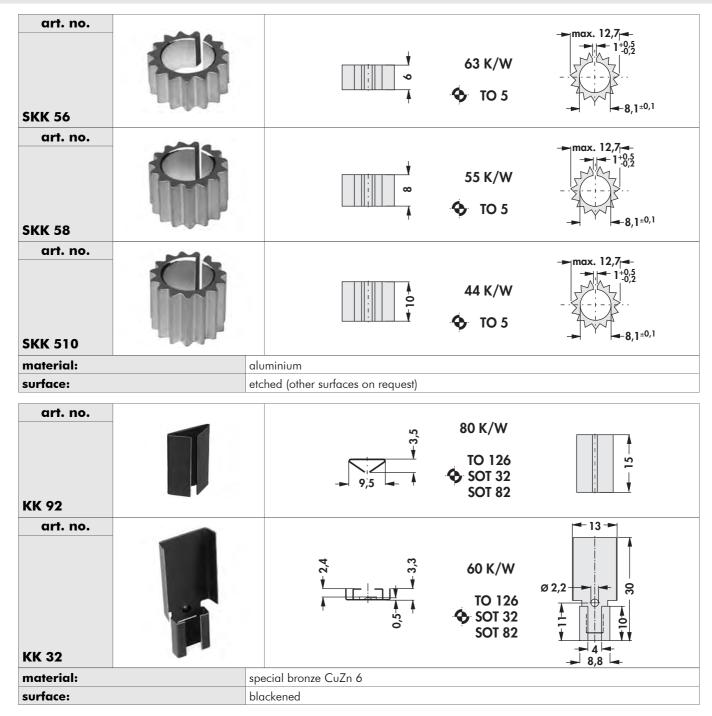
N

Downloaded from Arrow.com.

Small heatsinks

art. no.	57 K/W
KF 5/5	
art. no.	46 K/W 25 46 K/W 25 6 7 7 7 7 7 7 7 7 7 7 7 7 7
art. no.	
KF 5/15	40 K/W 40 K/W 5 TO 5
material:	brass
surface:	blackened
art. no.	F 7.8 60 K/W F 0 5 TO 5
KK 562 GS T = gap; F = s	
material:	special bronze CuZn 15
material thickness:	0.3 mm
surface:	blackened

Finger-shaped heatsinks	→ C2-3	Thermal conductive material	→ E2-24	
Heatsinks for transistors	→ C4-9	Mounting material for semiconductors-	→ E 46 – 48	C 18
Attachable heatsinks	→ C10-16	Extruded heatsinks	→ A 22 – 83	
Heatsinks for D PAK	→ C 21 – 22	Technical introduction	→ A 2 – 8	


D

G

ŀ

N

Small heatsinks

C

D

E

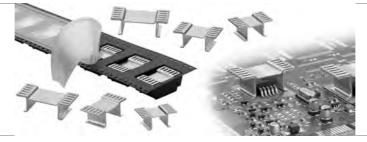
G

N

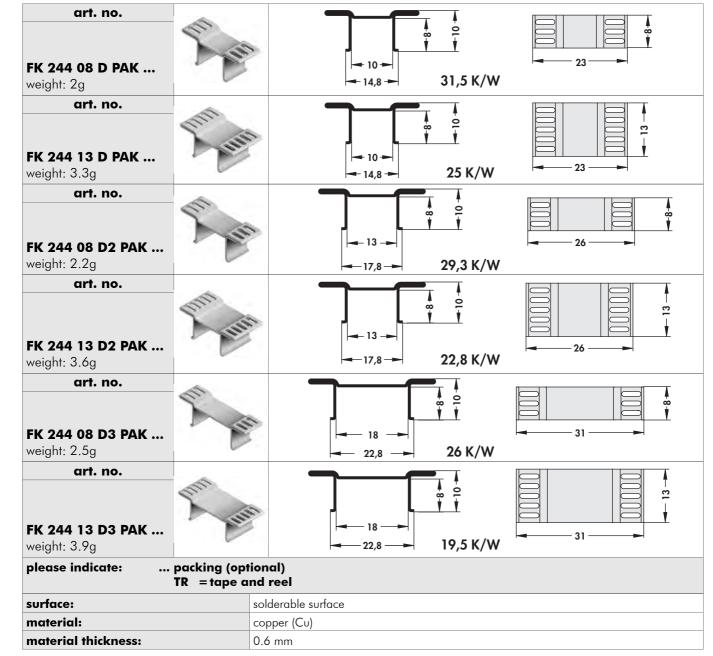
C 19

Finger-shaped heatsinks Heatsinks for transistors Attachable heatsinks Heatsinks for D PAK $\begin{array}{rrrr} \rightarrow & C & 2 & - & 3 \\ \rightarrow & C & 4 & - & 9 \\ \rightarrow & C & 10 & - & 16 \\ \rightarrow & C & 21 & - & 22 \end{array}$

Thermal conductive material→E 2 - 24Mounting material for semiconductors→E 46 - 48Extruded heatsinks→A 22 - 83Technical introduction→A 2 - 8


Downloaded from Arrow.com.

M


N

Heatsinks for **D** PAK and others

- copper heatsinks with excellent heat conductivity

- direct mounting on printed circuit through solderable surface
- especially suitable for SMD components of type D PAK (TO 252), D² PAK (TO 263), D³ PAK (TO 268), SOT 669 LF PAK, SO IC-8 FL MP, Power SO-8, Power SO-10, Power SO-20, Power SO-36, SO-14, SO-16, SOT 223 etc
- available standard packing: bulk parts or reel
- special packing like magazine, tray etc. on request; special versions according to customers specifications
- tape width: 44 mm, reel diameter: 330 mm, quantity: FK 244 08 = 450, FK 244 13 = 200

D

Ε

C

M

C 21

Heatsink profile-overview Assignment table Finger-shaped heatsinks Heatsinks for transistors Attachable heatsinks Heatsinks for TO 5 and TO 18 Thermal conductive material Technical introduction $\begin{array}{r} \rightarrow \quad C \ 10 - 16 \\ \rightarrow \quad C \ 17 - 19 \\ \rightarrow \quad E \ 2 - 24 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

Heatsinks for **D** PAK and others

tape width: 24 mm, reel diameter: 330 mm, quantity: FK 250 06 = 450, FK 250 08 = 450, FK 250 10 = 350
tape width: 24 mm, reel diameter: 330 mm, quantity: FK 251 06 = 450, FK 251 08 = 350, FK 251 10 = 250

-		antity: FK 251 06 = 450	, 11201 00 000	1
art. no. FK 250 06 LF PAK		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		
weight: 1g		→ 11,4 →	37 K/W	
art. no.		ı 🛉		
FK 250 08 LF PAK weight: 1.1g			34,8 K/W	
art. no.				↓
FK 250 10 LF PAK weight: 1.2g			28,8 K/W	
art. no.	-	— — • •		
FK 251 06 LF PAK weight: 1.3g	Level .		32 K/W	
art. no.				
FK 251 08 LF PAK weight: 1.4g	LEUN		29,8 K/W	
art. no.		⊥ ↓		
FK 251 10 LF PAK weight: 1.5g	and the second		24 K/W	
	king (optional)			
	= tape and reel			
surface:	solderable			
material: copper (Cu)		υ)		
material thickness:	0.6 mm			
art. no.	N		11 K/W	
surface:	solderable	e surface		
material:	aluminium	1		

Heatsink profile-overview
Assignment table
Finger-shaped heatsinks
Heatsinks for transistors

Attachable heatsinks Heatsinks for TO 5 and TO 18 Thermal conductive material Technical introduction $\begin{array}{l} \rightarrow \quad C \ 10 - 16 \\ \rightarrow \quad C \ 17 - 19 \\ \rightarrow \quad E \ 2 - 24 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

C 22

N

Downloaded from Arrow.com.

E

E

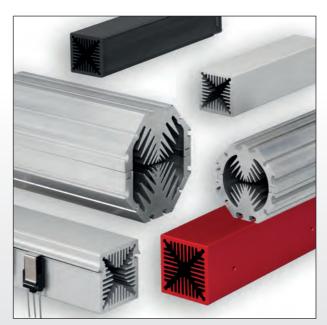
E

C

ł

k

Segment cooling aggregates Miniature cooling aggregates Hollow fin cooling aggregates High performance heatsinks


Segment cooling aggregates

- modular assembly consisting of different circle- and length segments
- electrical and thermal insulation of the single cooling segment sections
- standard drilling patterns TO 3 and pressfit
- segment profile also sold by the meter
- other fan types and fan voltages upon request

Hollow fin cooling aggregates

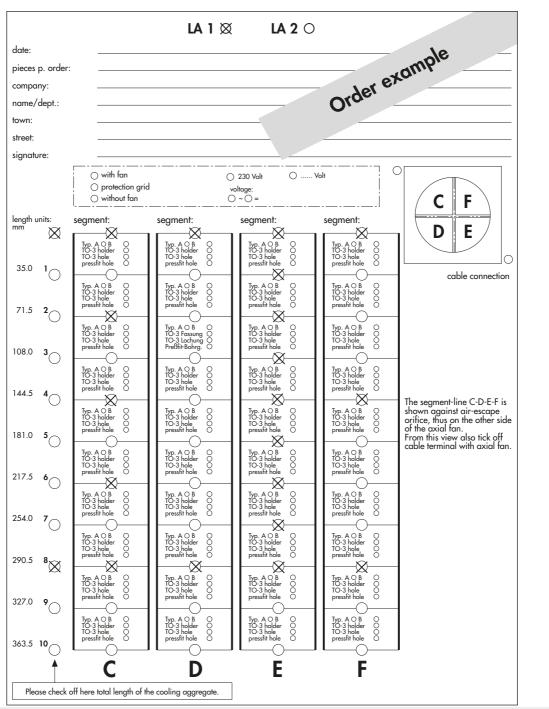
- flow-optimized hollow fin geometry
- precise milled flat semiconductor mounting surface, single- and double-sided
- laminar airflow and noise reduction by means of harmonized chamber systems
- additional treatments, modifications and designs according to customers specifications

Miniature cooling aggregates

- compact construction for dissipating high power losses on smallest installation space
- heatsink geometries and fixed length optimal adjusted to the fan being used
- homogeneous heat dissipation
- mounting of the semi-conductor by means of sliding nut chanels or specific snap-to-retaining springs for transistors

High performance heatsinks

- exclusive for forced convection
- for radial- and tangential fans
- flow-optimized design, best heat dissipation by means of especially thick bottom plates
- precise milled flat semiconductor mounting surfaces
- mechanical treatments, special designs and surface coating for your application


Order example (see drawing on the right)

Semiconductor cooling package, consisting of 4 heatsinks LA 1 -2 A (segment C), 1 heatsink LA 1 - 8 A (segment D), 8 heatsinks LA 1 - 1 A (segment E) and 2 heatsinks LA 1 - 4 A (segment F). Total dissipation 1280 W.

How to tick off?

- 1. Tick on the left hand side the circles corresponding to an eight element long package,
- and also at the end of each row of the segments C, D, E and F to define the length.
- 2. For segment C: 4 marks for four double length elements, insulated from each other. This indicates 4 units LA 1 2.
- 3. For segment D: 1 mark for one single length of heatsink, 290.5 mm long. This indicates 1 unit LA 1 8.
- 4. For segment E: 8 marks for 8 elements of the standard length (35 mm) each insulated from the other. This indicates 8 units LA 1 1.
- 5. For segment F: 2 marks for each two heatsinks of 144.5 mm length, each insulated from the other. This indicates 2 units LA 1 4.
- 6. For each segment the profile types, either A or B, must be indicated for aggregate LA 1.
- 7. In the rectangle corresponding to the heatsink elements, the pin layouts for the transistor should also be indicated.
- 8. In the order form please indicate whether the cooling-aggregate is to be supplied with a fan and whether this is equipped with a protection-grid, or if it is to be supplied without a fan.

Upon request, it is possible to supply fans for special voltages and higher temperatures.

POB 1590 Nottebohmstraße 28 Tel.: +49 (0) 23 51 / 4 35-0 D - 58465 Lüdenscheid D - 58511 Lüdenscheid Fax: +49 (0) 23 51 / 4 57 54 info@fischerelektronik.de www.fischerelektronik.de www.facebook.de/fischerelektronik D

C

C | F

\D | E

fischer elektronik 23 **Order / inquiry**

LA 1 O **LA 2** O date: pieces p. order: company: name/dept.: town: street: signature: \bigcirc O with fan O 230 Volt () Volt O protection grid voltage: \bigcirc without fan $\bigcirc \sim \bigcirc =$ С F length units: segment: segment: segment: segment: mm Ε D Typ. A O B TO-3 holder TO-3 hole pressfit hole Typ. A ○ B TO-3 holder TO-3 hole pressfit hole Typ. A ○ B TO-3 holder TO-3 hole pressfit hole Typ. A ○ B TO-3 holder TO-3 hole pressfit hole 0000 0000 0000 0000 \bigcirc 35.0 1 cable connection Typ. A O B TO-3 holder TO-3 hole pressfit hole Typ. A O B TO-3 holder TO-3 hole pressfit hole Typ. A O B TO-3 holder TO-3 hole pressfit hole Typ. A ○ B TO-3 holder TO-3 hole pressfit hole 0000 0000 0000 0000 71.5 2 Typ. A O B O TO-3 Fassung O TO-3 Lochung O Preßfit-Bohrg. O Typ. A O B TO-3 holder TO-3 hole pressfit hole Typ. A O B TO-3 holder TO-3 hole pressfit hole Typ. A ○ B TO-3 holder TO-3 hole pressfit hole 0000 0000 0000 108.0 3 Typ. A O B TO-3 holder TO-3 hole pressfit hole Typ. A ○ B TO-3 holder TO-3 hole Typ. A ○ B TO-3 holder TO-3 hole Typ. A ○ B TO-3 holder TO-3 hole pressfit hole 0000 0000 0000 0000 pressfit hole pressfit hole 144.5 Δ The segment-line C-D-E-F is Typ. A O B TO-3 holder TO-3 hole pressfit hole Typ. A \bigcirc B TO-3 holder TO-3 hole pressfit hole Typ. A O B TO-3 holder TO-3 hole pressfit hole Typ. A ○ B TO-3 holder TO-3 hole pressfit hole shown against air-escape 0000 0000 0000 0000 orifice, thus on the other side of the axial fan. 181.0 5 From this view also tick off cable terminal with axial fan. Typ. A O B TO-3 holder TO-3 hole pressfit hole Typ. A ○ B TO-3 holder TO-3 hole Typ. A ○ B TO-3 holder TO-3 hole pressfit hole Typ. A ○ B TO-3 holder TO-3 hole pressfit hole 0000 0000 0000 0000 pressfit hole 217.5 6 Typ. A ○ B TO-3 holder TO-3 hole pressfit hole Typ. A ○ B TO-3 holder TO-3 hole pressfit hole Typ. A ○ B TO-3 holder TO-3 hole pressfit hole Typ. A ○ B TO-3 holder TO-3 hole pressfit hole 0000 0000 0000 0000 254.0 7 Typ. A \bigcirc B TO-3 holder TO-3 hole pressfit hole Typ. A ○ B TO-3 holder TO-3 hole pressfit hole Typ. A ○ B TO-3 holder TO-3 hole pressfit hole Typ. A \bigcirc B TO-3 holder TO-3 hole pressfit hole 0000 0000 0000 0000 290.5 8 Typ. A \bigcirc B TO-3 holder TO-3 hole pressfit hole Typ. A O B TO-3 holder TO-3 hole pressfit hole Typ. A O B TO-3 holder TO-3 hole pressfit hole Typ. A ○ B TO-3 holder TO-3 hole pressfit hole 0000 0000 0000 0000 327.0 9 Typ. A \bigcirc B TO-3 holder TO-3 hole pressfit hole Typ. A O B TO-3 holder TO-3 hole pressfit hole Typ. A O B TO-3 holder TO-3 hole pressfit hole Typ. A ○ B TO-3 holder TO-3 hole pressfit hole 0000 0000 0000 0000 363.5 10 F E D Please check off here total length of the cooling aggregate.

Downloaded from Arrow.com.

POB 1590 Nottebohmstraße 28 Tel.: +49 (0) 23 51 / 4 35-0

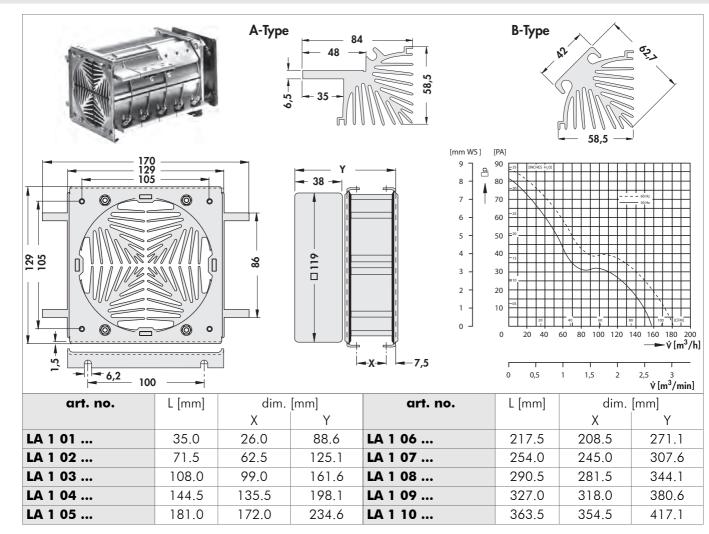
D - 58465 Lüdenscheid D - 58511 Lüdenscheid Fax: +49 (0) 23 51 / 4 57 54 info@fischerelektronik.de www.fischerelektronik.de www.facebook.de/fischerelektronik

D 3

fischer elektronik 23 Order / inquiry

		LA 1 C) LA 2 ()		
date:						B
pieces p. order: company:	:					-
name/dept.:						C
town:						
street: signature:						Ē
	 with fan protection grid without fan 		○ 230 Volt ○ voltage: ○ ~ ○ =	. Volt		D
length units: mm	segment:	segment:	segment:	segment:		
35.0 1	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	cable connection	E
71.5 2	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O		F
108.0 3	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 Fassung O TO-3 Lochung O Preßfit-Bohrg. O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O		ł
144.5 4	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O		G
181.0 5	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	The segment-line C-D-E-F is shown against air-escape orifice, thus on the other side of the axial fan. From this view also tick off	ŀ
217.5 6	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	cable terminal with axial fan.	ł
254.0 7	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O		ľ
290.5 8	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O		K
327.0 9	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O		
363.5 10	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O	Typ. A O B O TO-3 holder O TO-3 hole O pressfit hole O		L
	C	D	E	F		
Please check o	off here total length of the	e cooling aggregate.				N

POB 1590 Nottebohmstraße 28 Tel.: +49 (0) 23 51 / 4 35-0 D - 58465 Lüdenscheid D - 58511 Lüdenscheid Fax: +49 (0) 23 51 / 4 57 54


info@fischerelektronik.de www.fischerelektronik.de www.facebook.de/fischerelektronik

Downloaded from Arrow.com.

D4

A

Segment cooling aggregates

... for A-types: please add an "A", for B-types: please add a "B".

L: unit lengths of the segments incl. insulation; X: mounting distance; Y: length of the cooling aggregate incl. fan

24 V DC fan on request

In case of order please use order form.

segments also available in meter length:

```
art. no. for A-type: LA 1 1000 Å; art. no. for B-type: LA 1 1000 B
```

Other fan types and fan voltages on request.

Technical data of the fans

	230	
type	ebmpapst, ball bearing	
dimensions	119x119x38 mm	
tension	230 V AC	
power inout	19 W	
max. air volume	160 m ³ /h	
temperature range	-40°C +85°C	
noise level	47 dB(A)	
speed	2,650 min ⁻¹	
weight	550 g	
failure rate (L ₁₀)	L ₁₀ < 37,500 h (40°C)	

M

D

Ε

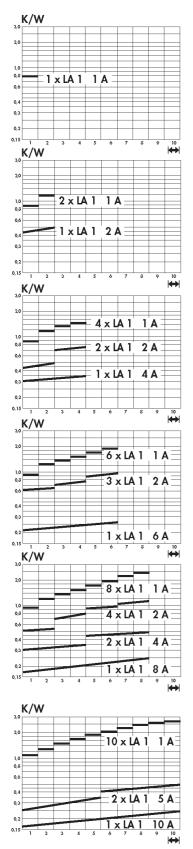
÷.

C

D 5

Miniature cooling aggregates Protection grid for axial fans Thermal conductive material Heatsinks with hollow fin profile

D9-11 → D 36 E 2 – 29 → → D 30


Order example D 2 → **Order form →** Mounting parts for heatsinks **→ Technical introduction** →

Downloaded from Arrow.com.

D 3 – 4

Thermal resistance LA 1

The thermal resistance in the following diagrams is given on the base of a total dissipation of 40 Watt per heatsink of the "A"-type. When using "B"-types this value increases by 3 %.

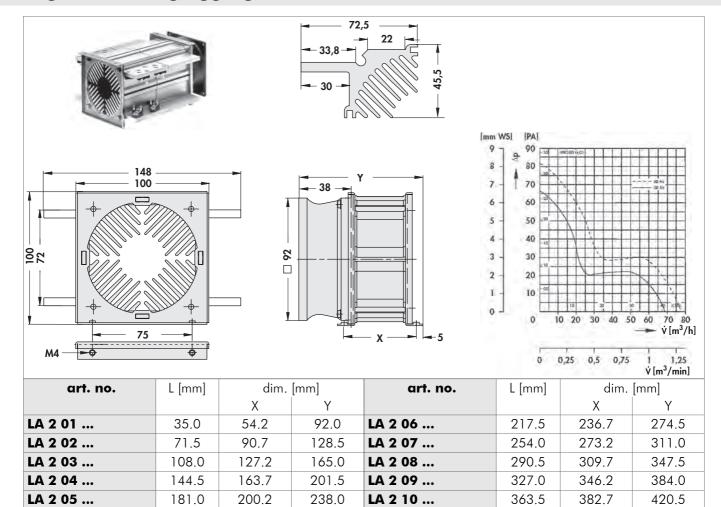
- 1. Cooling aggregate consisting of 4 heatsinks LA 1 1 A. Total dissipation 160 W.
- 2. Cooling aggregate consisting of 4 heatsinks LA 1 1 A and 2 x 1 heatsink LA 1 2 A. Total dissipation 320 W.
- 3. Cooling aggregate consisting of 4 heatsinks LA 1 1 A, 2 heatsinks LA 1 - 2 A and 2 x 1 heatsink LA 1 - 4 A. Total dissipation 640 W.
- 4. Cooling aggregate consisting of 6 heatsinks LA 1 1 A, 3 heatsinks LA 1 - 2 A and 2 x 1 heatsink LA 1 - 6 A. Total dissipation 960 W.
- 5. Cooling aggregate consisting of 8 heatsinks LA 1 1 A, 4 heatsinks LA 1 2 A, 2 heatsinks LA 1 - 4 A and 1 heatsink LA 1 - 8 A. Total dissipation 1280 W.

6. Cooling aggregate consisting of 10 heatsinks LA 1 - 1 A, 2 heatsinks LA 1 - 5 A, and 2 x 1 heatsink LA 1 - 10 A. Total dissipation 1600 W.

- **Miniature cooling aggregates** Protection grid for axial fans Thermal conductive material Heatsinks with hollow fin profile
- D9-11 Order example **Order form** Mounting parts for heatsinks E 2 – 29 **Technical introduction**

D 36

D 30


→

→

- D 2 -> D 3 – 4 E 49 - 50 → -> A 2 – 8
- **D** 6

-

Segment cooling aggregates

L: unit lengths of the segments incl. insulation; X: mounting distance; Y: length of the cooling aggregate incl. fan

24 V DC fan on request

In case of order please use order form.

segments also available in meter length: **art. no. for A-type: LA 1 1000 A; art. no. for B-type: LA 2 1000 B** Other fan types and fan voltages on request.

Technical data of the fans

	230
type	ebmpapst, ball bearing
dimensions	92x92x38 mm
tension	230 V AC
power inout	12 W
max. air volume	75 m ³ /h
temperature range	-40°C +75°C
noise level	37 dB(A)
speed	2,700 min ⁻¹
weight	420 g
failure rate (L ₁₀)	L ₁₀ < 52,500 h (40°C)

D

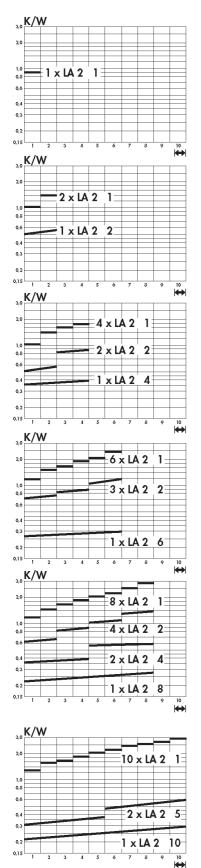
Ε

E

C

D 7

Miniature cooling aggregates Protection grid for axial fans Thermal conductive material Heatsinks with hollow fin profile $\begin{array}{rrr} \rightarrow & D & 9 - 11 \\ \rightarrow & D & 36 \\ \rightarrow & E & 2 - 29 \\ \rightarrow & D & 30 \end{array}$


Order form Mounting parts for heatsinks Technical introduction

Order example

 $\begin{array}{rrr} \rightarrow & D & 2 \\ \rightarrow & D & 3 - 4 \\ \rightarrow & E & 49 - 50 \\ \rightarrow & A & 2 - 8 \end{array}$

Thermal resistance LA 2

The thermal resistance in the following diagrams is given on the base of a total dissipation of 40 Watt per heatsink of the "A"-type.

- 1. Cooling aggregate consisting of 4 heatsinks LA 2 1. Total dissipation 160 W maximal.
- 2. Cooling aggregate consisting of 4 heatsinks LA 2 1 and 2 x 1 heatsink LA 2 2. Total dissipation 320 W.
- 3. Cooling aggregate consisting of 4 heatsinks LA 2 1, 2 heatsinks LA 2 2 and 2 x 1 heatsink LA 2 - 4. Total dissipation 640 W.
- 4. Cooling aggregate consisting of 6 heatsinks LA 2 1, 3 heatsinks LA 2 2 and 2 x 1 heatsink LA 2 - 6. Total dissipation 960 W.
- 5. Cooling aggregate consisting of 8 heatsinks LA 2 1, 4 heatsinks LA 2 2, 2 heatsinks LA 2 - 4 and 1 heatsink LA 2 - 8. Total dissipation 1280 W.

6. Cooling aggregate consisting of 10 heatsinks LA 2 - 1, 2 heatsinks LA 2 - 5, and 2 x 1 heatsink LA 2 - 10. Total dissipation 1600 W.

Miniature cooling aggregates
Protection grid for axial fans
Thermal conductive material
Heatsinks with hollow fin profile

→ →

→

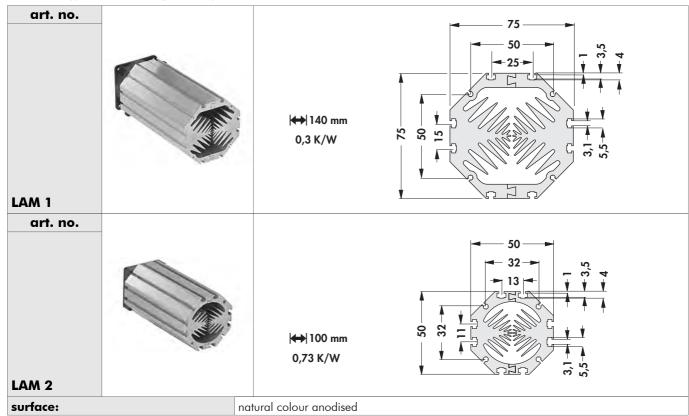
->

D 36

D 30

D9-11 **Order example Order form** Mounting parts for heatsinks E 2 – 29 **Technical introduction**

D 2 → -> D 3 – 4 E 49 – 50 → → A 2 – 8


D 8

Downloaded from Arrow.com.

-

Miniature cooling aggregates

- made for dissipation of high power within a very small space
- approximate length is optimised to the fan motor
- slide-nut channels for M3 nuts for mounting the transistors and circuit boards
- other fan types and fan voltages on request

Technical data of the fans

	LAM 1	LAM 2
type	ebmpapst 612 NHH-118	ebmpapst 412 F
dimensions	60x60x25 mm	40x40x10 mm
tension	12 V DC	12 V DC
power inout	2.9 W	0.7 W
max. air volume	56 m ³ /h	8 m ³ /h
temperature range	-20°C +70°C	-20°C +70°C
noise level	41 dB(A)	22.1 dB(A)
speed	6,800 min ⁻¹	5,400 min ⁻¹
weight	66 g	17 g
failure rate (L ₁₀)	L ₁₀ < 60,000 h (40°C)	L ₁₀ < 45,000 h (20°C)

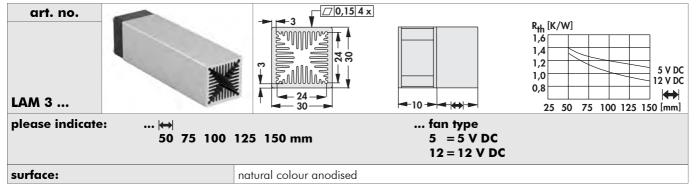
D

M

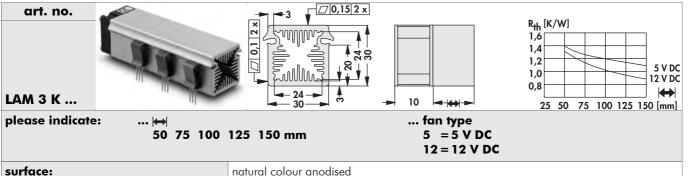
D 9

Retaining springs for transistors Special heatsink design Hollow-fin cooling aggregates High capacity cooling aggregat.

→ A 115 – 117 Fluid coolers
→ A 137 – 138 Protection gr


→ A 137 – 138 Protection grid for axial fans
 → D 15 – 25 Thermally conductive foil

 \rightarrow D 26 – 35 Technical introduction


 $\begin{array}{l} \rightarrow \quad A \ 131 - 133 \\ \rightarrow \quad D \ 36 \\ \rightarrow \quad E \ 5 - 15 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

Miniature cooling aggregates

- compact design
- homogeneous heat dissipation
- mounting possible on any side
- powerful axial-fan motor
- other lengths, special designs and processing according to customer's requirements
- other surfaces treatment, fan types and fan voltages on request

- with grooves for lock-in retaining spring for transistors THFU ightarrow A 119
- compact design
- homogeneous heat dissipation
- mounting possible on any side
- powerful axial-fan motor
- other lengths, special designs and processing according to customers requirements
- other surfaces treatment, fan types and fan voltages on request

Technical data of the fans

	5	12
type	Sepa, ball bearing	Sepa, ball bearing
dimensions	30x30x10 mm	30x30x10 mm
tension	5 V DC	12 V DC
max. air volume	6.8 m³/h	7.7 m ³ /h
cur. consumpt.	130 mA	70 mA
temperature range	-10°C +70°C	-10°C +70°C
noise level	21 dB(A)	23 dB(A)
speed	8,500 min ⁻¹	9,100 min ⁻¹
weight	8 g	8 g
failure rate (L ₁₀)	L ₁₀ < 95,000 h (20°C)	L ₁₀ < 95,000 h (20°C)
	MTBF < 280,000 h (20°C)	MTBF < 280,000 h (20°C)

N

D 10

A 131 - 133

E 5 – 15

A 2 – 8

→ D 36

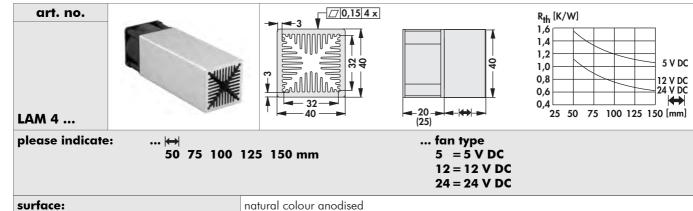
→

→

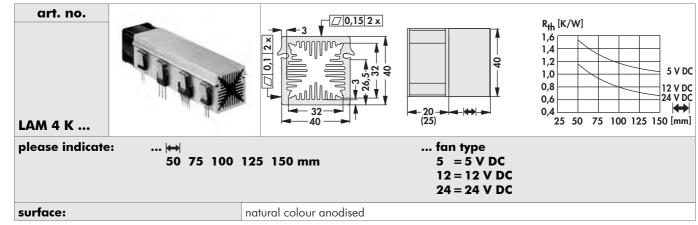
- Retaining springs for transistors Special heatsink design Hollow-fin cooling aggregates High capacity cooling aggregat.
- \rightarrow A 115 117 Fluid coolers

→

- → A 137 138 Protection grid for axial fans
 → D 15 25 Thermally conductive foil
 - D 26 35 Technical introduction


N

Α


.

Miniature cooling aggregates

- compact design
- homogeneous heat dissipation
- mounting possible on any side
- powerful axial-fan motor
- other lengths, special designs and processing according to customer's requirements
- other surfaces treatment, fan types and fan voltages on request _

- with grooves for lock-in retaining spring for transistors THFU → A 119
- compact design
 - homogeneous heat dissipation
 - mounting possible on any side
 - powerful axial-fan motor
 - other lengths, special designs and processing according to customer's requirements
 - other surfaces treatment, fan types and fan voltages on request

Technical data of the fans

	5	12	24
type	ebmpapst 405	ebmpapst 412 JHH	ebmpapst 414 JHH
dimensions	40x40x20 mm	40x40x25 mm	40x40x25 mm
tension	5 V DC	12 V DC	24 V DC
power inout	0.9 W	3.3 W	3.6 W
max. air volume	10 m ³ /h	24 m ³ /h	24 m ³ /h
temperature range	-20°C +70°C	-20°C +60°C	-20°C +60°C
noise level	18 dB(A)	46 dB(A)	46 dB(A)
speed	6,000 min ⁻¹	13,000 min ⁻¹	13,000 min ⁻¹
weight	27 g	50 g	50 g
failure rate (L ₁₀)	$\begin{array}{l} L_{10} < 50,000 \ h \ (40^{\circ}C) \\ L_{10} < 20,000 \ h \ (tmax) \end{array}$	$\begin{array}{l} L_{10} < 57{,}500 \ h \ (40^{\circ}C) \\ L_{10} < 35{,}000 \ h \ (tmax) \end{array}$	L ₁₀ < 57,500 h (40°C) L ₁₀ < 35,000 h (tmax)

→

→

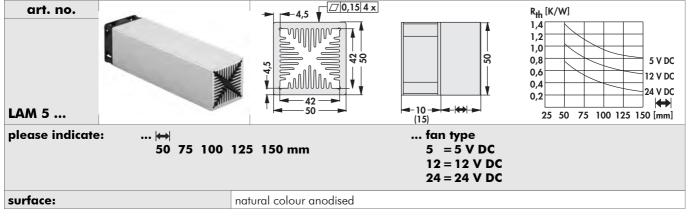
Retaining springs for transistors Special heatsink design Hollow-fin cooling aggregates High capacity cooling aggregat.

→ A 115 – 117 Fluid coolers

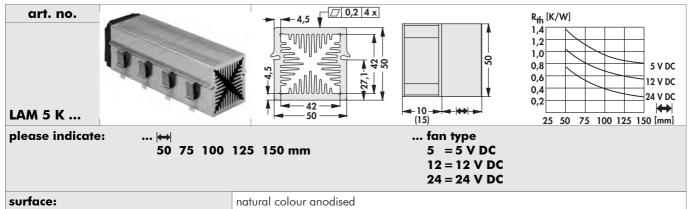
- → A 137 138 Protection grid for axial fans
 - Thermally conductive foil D 15 – 25 D 26 – 35
 - **Technical introduction**

A 131 - 133 → D 36 E 5 – 15 **→**

A 2 – 8


D 11

D


C

Miniature cooling aggregates

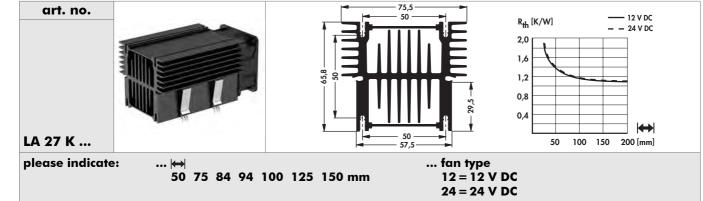
- compact design
- homogeneous heat dissipation
- mounting possible on any side
- powerful axial-fan motor
- other lengths, special designs and processing according to customer's requirements
- other surfaces treatment, fan types and fan voltages on request

- with grooves for lock-in retaining spring for transistors THFU \rightarrow A 119
- compact design
- homogeneous heat dissipation
- mounting possible on any side
- powerful axial-fan motor
- other lengths, special designs and processing according to customer's requirements
- other surfaces treatment, fan types and fan voltages on request

Technical data of the fans

	5	12	24
type	Sepa, ball bearing	Sepa, ball bearing	ebmpapst
dimensions	50x50x10 mm	50x50x10 mm	50x50x15 mm
tension	5 V DC	12 V DC	24 V DC
max. air volume	10 m ³ /h	14.3 m ³ /h	20 m³/h
temperature range	-10°C +70°C	-10°C +70°C	-20°C +70°C
speed	3,400 min ⁻¹	4,800 min ⁻¹	5,000 min ⁻¹
noise level	17 dB(A)	22 dB(A)	30 dB(A)
weight	19 g	19 g	27 g
failure rate (L ₁₀)	L ₁₀ < 95,000 h (20°C) MTBF < 280,000 h (20°C)	L ₁₀ < 95,000 h (20°C) MTBF < 280,000 h (20°C)	L ₁₀ 50,000 h (20°C)
alarm output	with	with	

Retaining springs for transistors Special heatsink design Hollow-fin cooling aggregates High capacity cooling aggregat.


- A 115 117 Fluid coolers
 - → A 137 – 138 Protection grid for axial fans
 - Thermally conductive foil → D 15 – 25 →
 - D 26 35 **Technical introduction**
- A 131 133 -> D 36 E 5 – 15 → **→** A 2 – 8

C

Cooling aggregates with axial fan

Heatsink-cooling aggregates

- with grooves for lock-in retaining springs THFU \rightarrow A 119
- screw-in solder pin M 3 (art. no.: ELS 3)
- different lengths, special designs and machinings according to customer specifications
- different surfaces, fan types and fan voltages upon request

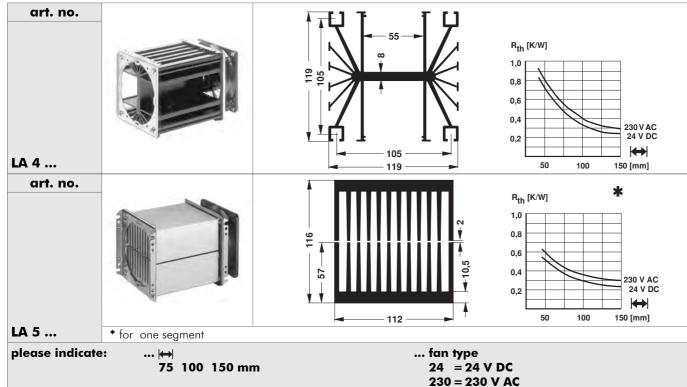
Technical data of the fans

	12	24
type	ebmpapst, ball bearing	ebmpapst, ball bearing
dimensions	60x60x25 mm	60x60x25 mm
tension	12 V DC	24 V DC
power inout	2.9 W	2.9 W
max. air volume	56 m³/h	56 m³/h
temperature range	-20°C +70°C	-20°C +70°C
noise level	41 dB(A)	41 dB(A)
speed	6,800 min ⁻¹	6,850 min ⁻¹
weight	66 g	66 g
failure rate (L ₁₀)	L ₁₀ < 60,000 h (40°C)	L ₁₀ < 60,000 h (40°C)

Downloaded from Arrow.com.

Extruded heatsinks Cooling aggregates with radial fan Heatsinks with hollow fin profile **Technical introduction**

→ A 22 – 83 → D 33 – 35 → D 30 → A 2 – 8


C

Ν

Cooling aggregates with axial fan

Heatsink-cooling aggregates

- especially suitable for IGBT, SSR, semiconductor modules, high performance transistors etc.
- effective construction with axial fans
- good thermal performance
- additional machining according to customer's instructions
- cooling aggregates also available without fans
- other fan types and fan voltages on request

Technical data of the fans

	24	230
type	ebmpapst, ball bearing	ebmpapst, ball bearing
dimensions	119x119x38 mm	119x119x38 mm
tension	24 V DC	230 V AC
power inout	11 W	19 W
max. air volume	237 m ³ /h	160 m ³ /h
temperature range	-30°C +70°C	-40°C +85°C
noise level	57 dB(A)	47 dB(A)
speed	4,400 min ⁻¹	2,650 min ⁻¹
weight	390 g	550 g
failure rate (L ₁₀)	L ₁₀ < 70,000 h (40°C)	L ₁₀ < 37,500 h (40°C)

Cooling aggreg. in segment mount.	→	D 5 – 7
Miniature cooling aggregates	→	D9–11
Protection grid for axial fans	→	D 36
Thermal conductive material	→	E 2 – 29

Downloaded from Arrow.com.

A 22 – 83 → → D 33 – 35 → D 30 → A 2 – 8

D 14

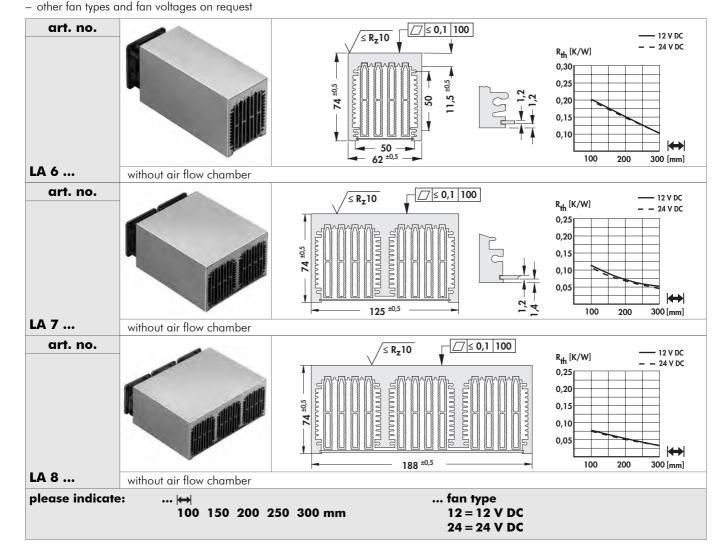
-

1

ŝ

Cooling aggregates with axial fan

Hollow-fin cooling aggregates


- geometry of hollow fin opimising the air flow
- particularly effective heat dissipation
- compact construction -

.

D

C

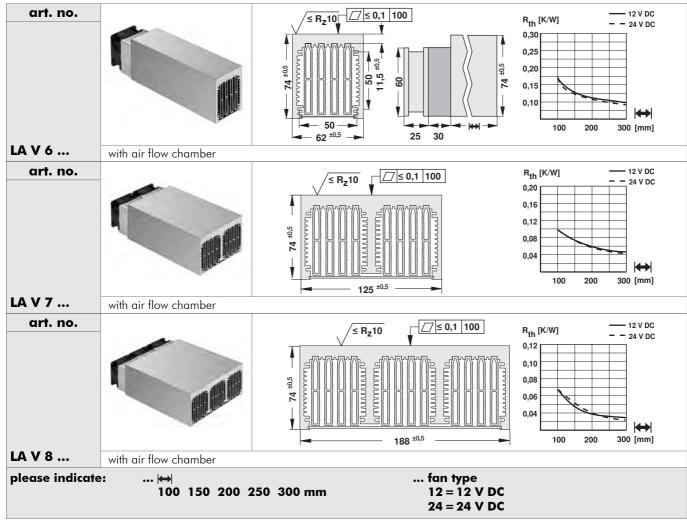
_ milled flat semiconductor mounting surface

Technical data of the fans

	12	24
type	ebmpapst, ball bearing	ebmpapst, ball bearing
dimensions	60x60x25 mm	60x60x25 mm
tension	12 V DC	24 V DC
power inout	2.9 W	2.9 W
max. air volume	56 m ³ /h	56 m ³ /h
temperature range	-20°C +70°C	-20°C +70°C
noise level	41 dB(A)	41 dB(A)
speed	6,800 min ⁻¹	6,850 min ⁻¹
weight	66 g	66 g
failure rate (L ₁₀)	L ₁₀ < 60,000 h (40°C)	L ₁₀ < 60,000 h (40°C)

D9-11 Miniature cooling aggregates → Protection grid for axial fans → D 36 Drilling pattern for Solid State Relais \rightarrow A 12 **High capacity heatsinks** →

A 57 – 58


Special heatsink design Heatsinks with hollow fin profile Thermal conductive material **Technical introduction**

A 137 – 138 → → D 30 E 2 – 24 → **→** A 2 – 8

Cooling aggregates with axial fan

Hollow-fin cooling aggregates

- geometry of hollow fin optimising the air flow
- particularly effective heat dissipation
- compact construction
- milled flat semiconductor mounting surface
- other fan types and fan voltages on request

Technical data of the fans

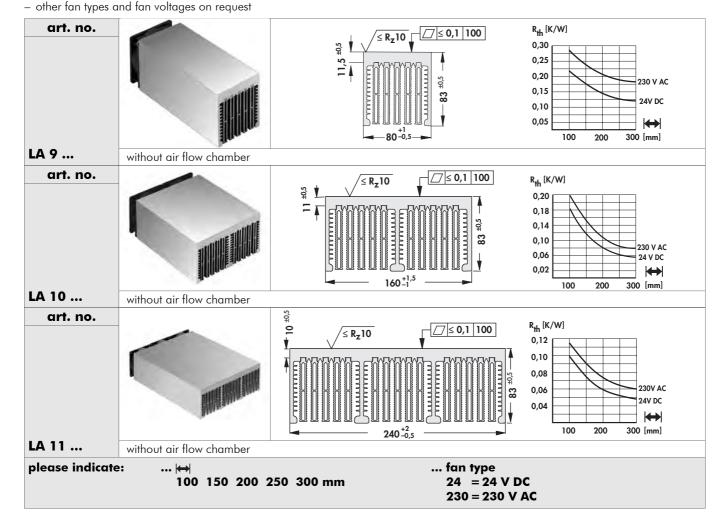
	12	24
type	ebmpapst, ball bearing	ebmpapst, ball bearing
dimensions	60x60x25 mm	60x60x25 mm
tension	12 V DC	24 V DC
power inout	2.9 W	2.9 W
max. air volume	56 m ³ /h	56 m ³ /h
temperature range	-20°C +70°C	-20°C +70°C
noise level	41 dB(A)	41 dB(A)
speed	6,800 min ⁻¹	6,850 min ⁻¹
weight	66 g	66 g
failure rate (L ₁₀)	L ₁₀ < 60,000 h (40°C)	L ₁₀ < 60,000 h (40°C)

Special heatsink design Heatsinks with hollow fin profile Thermal conductive material Technical introduction $\begin{array}{l} \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad D \ 30 \\ \rightarrow \quad E \ 2 - 24 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

D 16

-

Cooling aggregates with axial fan


Hollow-fin cooling aggregates

- geometry of hollow fin opimising the air flow
- particularly effective heat dissipation
- compact construction

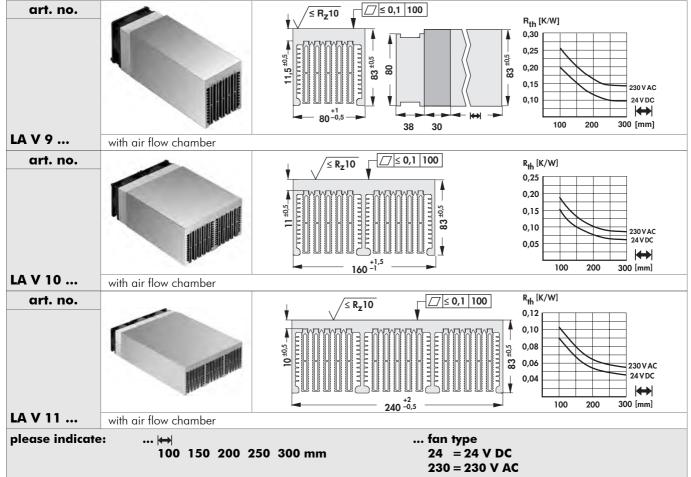
D

C

milled flat semiconductor mounting surface

Technical data of the fans

	24	230
type	ebmpapst, ball bearing	ebmpapst, ball bearing
dimensions	80x80x32 mm	80x80x38 mm
tension	24 V DC	230 V AC
power inout	6 W	12 W
max. air volume	80 m ³ /h	50 m³/h
temperature range	-20°C 75°C	-40°C +90°C
noise level	48 dB(A)	31 dB(A)
speed	5,000 min ⁻¹	2,800 min ⁻¹
weight	170 g	490 g
failure rate (L ₁₀)	L ₁₀ < 55,000 h (40°C)	L ₁₀ < 52,500 h (40°C)


D 17

 Special heatsink design Heatsinks with hollow fin profile Thermal conductive material Technical introduction $\begin{array}{r} \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad D \ 30 \\ \rightarrow \quad E \ 2 - 24 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

Cooling aggregates with axial fan

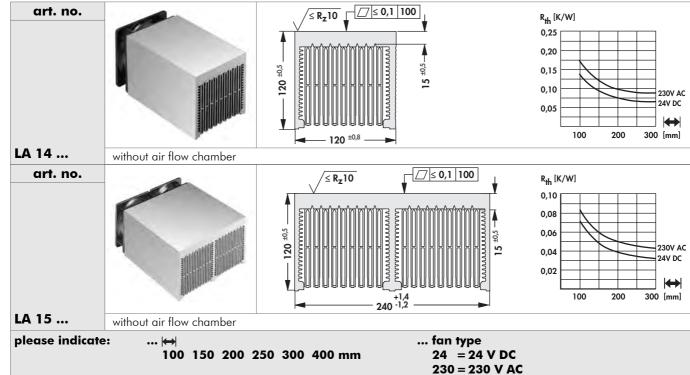
Hollow-fin cooling aggregates

- geometry of hollow fin optimising the air flow
- particularly effective heat dissipation
- compact construction
- milled flat semiconductor mounting surface
- other fan types and fan voltages on request

Technical data of the fans

	24	230
type	ebmpapst, ball bearing	ebmpapst, ball bearing
dimensions	80x80x32 mm	80x80x38 mm
tension	24 V DC	230 V AC
power inout	6 W	12 W
max. air volume	80 m ³ /h	50 m³/h
temperature range	-20°C 75°C	-40°C +90°C
noise level	48 dB(A)	31 dB(A)
speed	5,000 min ⁻¹	2,800 min ⁻¹
weight	170 g	490 g
failure rate (L ₁₀)	L ₁₀ < 55,000 h (40°C)	L ₁₀ < 52,500 h (40°C)

Special heatsink design Heatsinks with hollow fin profile Thermal conductive material Technical introduction $\begin{array}{l} \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad D \ 30 \\ \rightarrow \quad E \ 2 - 24 \\ \rightarrow \quad A \ 2 - 8 \end{array}$


-

1

Cooling aggregates with axial fan

Hollow-fin cooling aggregates

- extremly low losses due to optimised hollow fin geometry
- particularly effective heat dissipation
- compact design with axial fan
- milled flat semiconductor mounting surface
- addtional design to customer's intructions
- other fan types and fan voltages on request

Technical data of the fans

	24	230
type	ebmpapst, ball bearing	ebmpapst, ball bearing
dimensions	119x119x38 mm	119x119x38 mm
tension	24 V DC	230 V AC
power inout	11 W	19 W
max. air volume	237 m ³ /h	160 m ³ /h
temperature range	-30°C +70°C	-40°C +85°C
noise level	57 dB(A)	47 dB(A)
speed	4,400 min ⁻¹	2,650 min ⁻¹
weight	390 g	550 g
failure rate (L ₁₀)	L ₁₀ < 70,000 h (40°C)	L ₁₀ < 37,500 h (40°C)

D

E

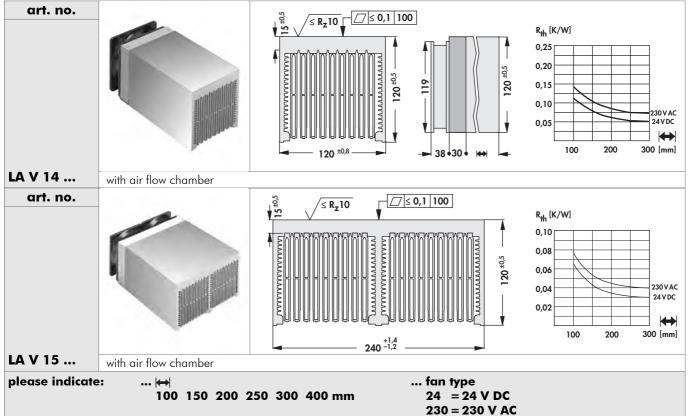
G

 Miniature cooling aggregates
 →
 D 9 –

 Protection grid for axial fans
 →
 D 36

 Drilling pattern for Solid State Relais →
 A 12

 High capacity heatsinks
 →
 A 57


 $\begin{array}{c} \rightarrow \quad D \ 9 - 11 \qquad \\ \rightarrow \quad D \ 36 \qquad \\ \rightarrow \quad A \ 12 \qquad \\ \rightarrow \quad A \ 57 - 58 \qquad 1 \end{array}$

Special heatsink design Heatsinks with hollow fin profile Thermal conductive material Technical introduction $\begin{array}{l} \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad D \ 30 \\ \rightarrow \quad E \ 2 - 24 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

Cooling aggregates with axial fan

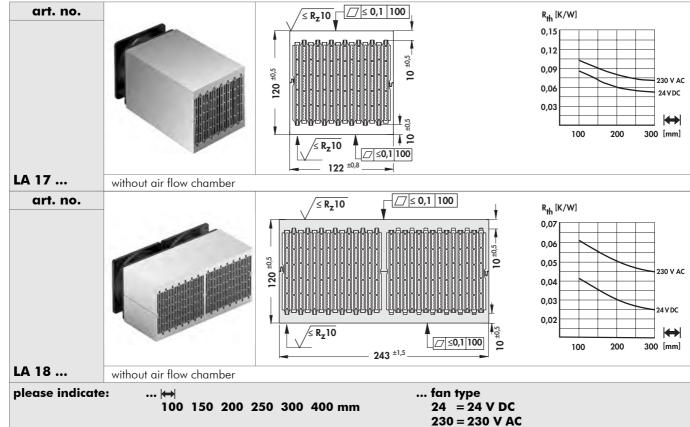
Hollow-fin cooling aggregates

- extremly low losses due to optimised hollow fin geometry
- particularly effective heat dissipation
- compact design with axial fan
- $-\,$ milled flat semiconductor mounting surface
- addtional design to customer's intructions on request
- other fan types and fan voltages on request

Technical data of the fans

	24	230
type	ebmpapst, ball bearing	ebmpapst, ball bearing
dimensions	119x119x38 mm	119x119x38 mm
tension	24 V DC	230 V AC
power inout	11 W	19 W
max. air volume	237 m ³ /h	160 m ³ /h
temperature range	-30°C +70°C	-40°C +85°C
noise level	57 dB(A)	47 dB(A)
speed	4,400 min ⁻¹	2,650 min ⁻¹
weight	390 g	550 g
failure rate (L ₁₀)	L ₁₀ < 70,000 h (40°C)	L ₁₀ < 37,500 h (40°C)

Special heatsink design Heatsinks with hollow fin profile Thermal conductive material Technical introduction $\begin{array}{l} \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad D \ 30 \\ \rightarrow \quad E \ 2 - 24 \\ \rightarrow \quad A \ 2 - 8 \end{array}$


D 20

-

Cooling aggregates with axial fan

Hollow-fin cooling aggregates

- extremly low losses due to optimised hollow fin geometry
- effective heat dissipation
- compact construction with axial fans
- two oposite mounting surfaces are milled flat
- additional treatment upon customer's request
- other fan types and fan voltages on request

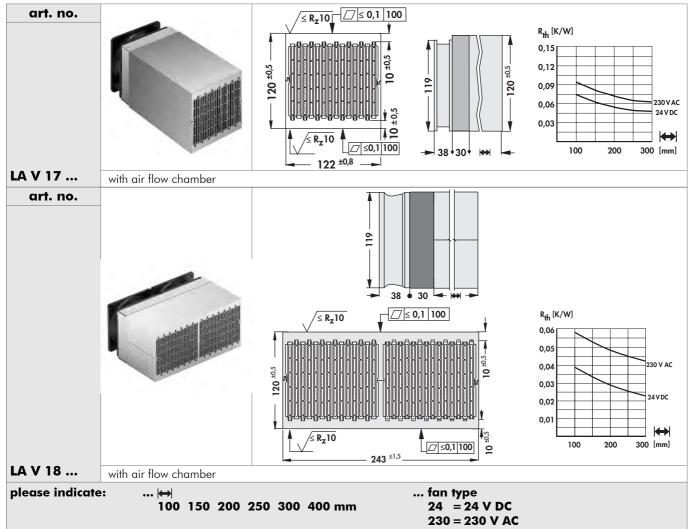
Technical data of the fans

	24	230
type	ebmpapst, ball bearing	ebmpapst, ball bearing
dimensions	119x119x38 mm	119x119x38 mm
tension	24 V DC	230 V AC
power inout	11 W	19 W
max. air volume	237 m ³ /h	160 m ³ /h
temperature range	-30°C +70°C	-40°C +85°C
noise level	57 dB(A)	47 dB(A)
speed	4,400 min ⁻¹	2,650 min ⁻¹
weight	390 g	550 g
failure rate (L ₁₀)	L ₁₀ < 70,000 h (40°C)	L ₁₀ < 37,500 h (40°C)

D 21

Miniature cooling aggregates \rightarrow D 9 - 11Protection grid for axial fans \rightarrow D 36Drilling pattern for Solid State Relais \rightarrow A 12High capacity heatsinks \rightarrow A 57 - 58

Special heatsink design Heatsinks with hollow fin profile Thermal conductive material Technical introduction $\begin{array}{r} \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad D \ 30 \\ \rightarrow \quad E \ 2 - 24 \\ \rightarrow \quad A \ 2 - 8 \end{array}$


C

.

Cooling aggregates with axial fan

Hollow-fin cooling aggregates

- extremly low losses due to optimised hollow fin geometry
- effective heat dissipation
- compact construction with axial fans
- two oposite mounting surfaces are milled flat
- additional treatment upon customer's request
- other fan types and fan voltages on request

Technical data of the fans

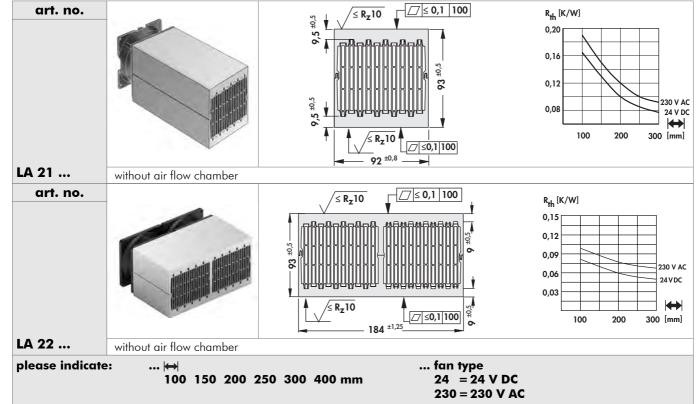
	24	230
type	ebmpapst, ball bearing	ebmpapst, ball bearing
dimensions	119x119x38 mm	119x119x38 mm
tension	24 V DC	230 V AC
power inout	11 W	19 W
max. air volume	237 m ³ /h	160 m³/h
temperature range	-30°C +70°C	-40°C +85°C
noise level	57 dB(A)	47 dB(A)
speed	4,400 min ⁻¹	2,650 min ⁻¹
weight	390 g	550 g
failure rate (L ₁₀)	L ₁₀ < 70,000 h (40°C)	L ₁₀ < 37,500 h (40°C)

Miniature cooling aggregates D9-11 → Protection grid for axial fans → D 36 Drilling pattern for Solid State Relais \rightarrow A 12 High capacity heatsinks A 57 – 58

→

Special heatsink design Heatsinks with hollow fin profile Thermal conductive material **Technical introduction**

- A 137 138 → → D 30 E 2 – 24 → **→** A 2 – 8
- D 22


Downloaded from Arrow.com.

.

Cooling aggregates with axial fan

Hollow-fin cooling aggregates

- extremly low losses due to optimised hollow fin geometry
- effective heat dissipation
- compact construction with axial fans -
- two oposite mounting surfaces are milled flat
- additional treatment upon customer's request
- _ other fan types and fan voltages on request

Technical data of the fans

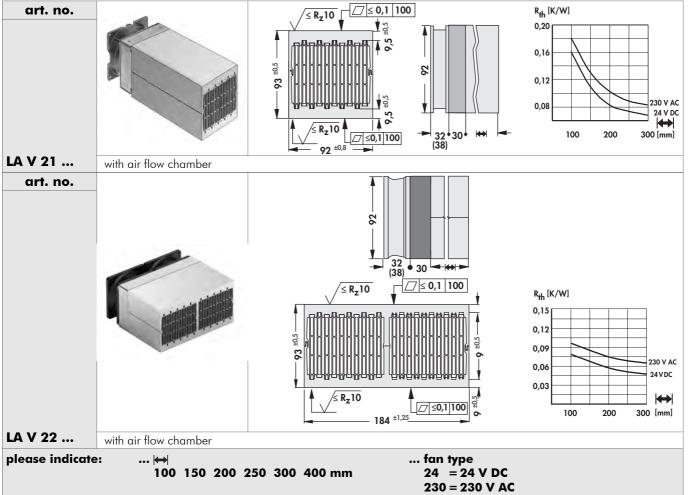
	24	230
type	ebmpapst, ball bearing	ebmpapst, ball bearing
dimensions	92x92x32 mm	92x92x38 mm
tension	24 V DC	230 V AC
power inout	5 W	12 W
max. air volume	107 m ³ /h	75 m ³ /h
temperature range	-20°C 75°C	-40°C +75°C
noise level	47 dB(A)	37 dB(A)
speed	4,000 min ⁻¹	2,700 min ⁻¹
weight	190 g	420 g
failure rate (L ₁₀)	L ₁₀ < 57,500 h (40°C)	L ₁₀ < 52,500 h (40°C)

D 23

Miniature cooling aggregates → Protection grid for axial fans → D 36 Drilling pattern for Solid State Relais \rightarrow A 12 **High capacity heatsinks** →

D9-11 A 57 – 58

Special heatsink design Heatsinks with hollow fin profile Thermal conductive material **Technical introduction**


A 137 – 138 → → D 30 E 2 – 24 → **→** A 2 – 8

Downloaded from Arrow.com.

Cooling aggregates with axial fan

Hollow-fin cooling aggregates

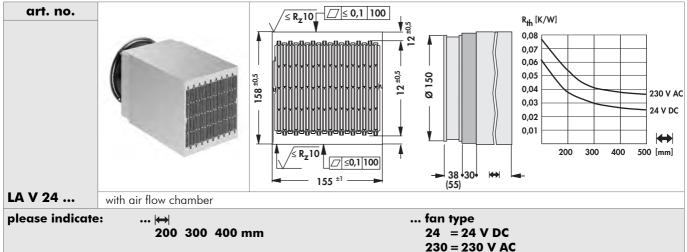
- extremly low losses due to optimised hollow fin geometry
- effective heat dissipation
- compact construction with axial fans
- two oposite mounting surfaces are milled flat
- additional treatment upon customer's request
- $-\,$ other fan types and fan voltages on request

Technical data of the fans

	24	230
type	ebmpapst, ball bearing	ebmpapst, ball bearing
dimensions	92x92x32 mm	92x92x38 mm
tension	24 V DC	230 V AC
power inout	5 W	12 W
max. air volume	107 m ³ /h	75 m³/h
temperature range	-20°C 75°C	-40°C +75°C
noise level	47 dB(A)	37 dB(A)
speed	4,000 min ⁻¹	2,700 min ⁻¹
weight	190 g	420 g
failure rate (L ₁₀)	L ₁₀ < 57,500 h (40°C)	L ₁₀ < 52,500 h (40°C)

Special heatsink design Heatsinks with hollow fin profile Thermal conductive material Technical introduction

- $\begin{array}{r} \rightarrow \quad A \ 137 138 \\ \rightarrow \quad D \ 30 \\ \rightarrow \quad E \ 2 24 \\ \rightarrow \quad A \ 2 8 \end{array}$
- D 24
- N


Δ

.

Cooling aggregates with axial fan

Hollow-fin cooling aggregates

- extremly low losses due optimised hollow fin geometry
- especially effective heat dissipation
- compact construction with axial fans -
- two oposite mounting surfaces are miled flat _
- additional treatment upon customer's request
- _ other fan types and fan voltages on request

Technical data of the fans

	24	230
type	ebmpapst, ball bearing, with grid	ebmpapst, ball bearing, with grid
dimensions	Ø150x38 mm	Ø150x55 mm
tension	24 V DC	230 V AC
power inout	19 W	47 W
max. air volume	420 m ³ /h	380 m ³ /h
temperature range	-25°C +72°C	-30°C +60°C
noise level	59 dB(A)	60 dB(A)
speed	3,350 min ⁻¹	2,700 min ⁻¹
weight	620 g	1,100 g
failure rate (L ₁₀)	L ₁₀ < 75,000 h (40°C)	L ₁₀ < 40,000 h (40°C)

D 25

→ D 36 → A 57 – 58

Special heatsink design Heatsinks with hollow fin profile Thermal conductive material **Technical introduction**

→ A 137 – 138 → D 30 → E 2 – 24 → A 2 – 8

D

Ε

E

G

Cooling aggregates with axial fan

High performance cooling aggregate

extremely low losses of air flow as compared to cooling aggregates with extruded aluminium

- compact dimensions, that means high performance density due to large heat-conducting surfaces
- maximum heat flow due to brazing or thermal adhesion
- high performance cooling aggregates are only effective with forced ventilation by means of the fan, but not with free convection
- other fan types and fan voltages on request

material: solder-plated aluminium sheet, thus minimal weight due to the thickness of the material

An optimised unit for any application can be produced from the wide range of existing components upon request. The specific capacity will be determined by a test run upon customer's request.

Technical data of the fans

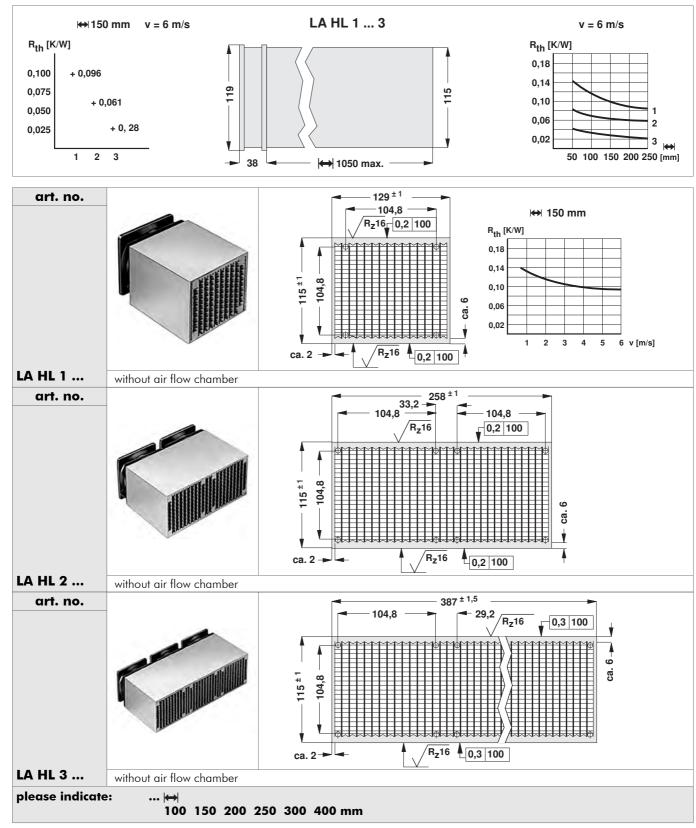
	230	
type	ebmpapst, ball bearing	
dimensions	119x119x38 mm	
tension	230 V AC	
power inout	19 W	
max. air volume	160 m ³ /h	
temperature range	-40°C +85°C	
noise level	47 dB(A)	
speed	2,650 min ⁻¹	
weight	550 g	
failure rate (L ₁₀)	L ₁₀ < 37,500 h (40°C)	

-

ŝ

C

N


N

Special heatsink design Heatsinks with hollow fin profile Thermal conductive material Technical introduction $\begin{array}{l} \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad D \ 30 \\ \rightarrow \quad E \ 2 - 24 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

D 26

Cooling aggregates with axial fan

High performance cooling aggregate

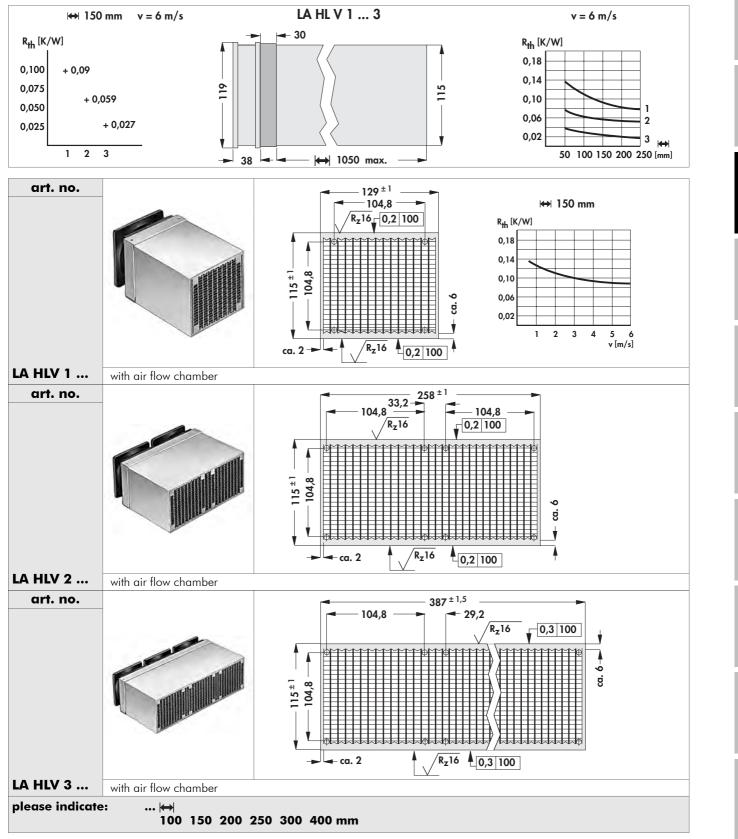
M

D 27

Miniature cooling aggregates → Protection grid for axial fans → D 36 Drilling pattern for Solid State Relais \rightarrow A 12 **High capacity heatsinks** →

D9-11 A 57 – 58

Special heatsink design Heatsinks with hollow fin profile Thermal conductive material **Technical introduction**


A 137 – 138 → → D 30 E 2 – 24 → **→** A 2 – 8

Downloaded from Arrow.com.

D

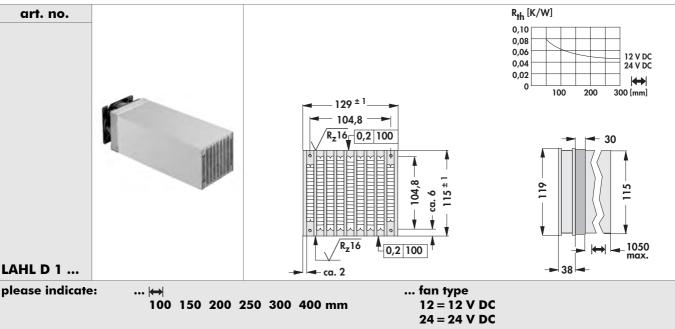
Cooling aggregates with axial fan

High performance cooling aggregate

Special heatsink design Heatsinks with hollow fin profile Thermal conductive material Technical introduction $\begin{array}{l} \rightarrow \quad A \ 137 - 138 \\ \rightarrow \quad D \ 30 \\ \rightarrow \quad E \ 2 - 24 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

D 28

Downloaded from Arrow.com.


4

.

Cooling aggregates with axial fan

High performance cooling aggregate

- innovative, efficient heatsink design
- thick multiwall sheets for maximum heat dissipation
- specially formed laminated structures ensure optimum heat exchange with the air flow
- _ powerful mixed axial fan for highly effcient heat dissipation
- reduced noise output achieved by an optimised adaption of fan and heatsink
- _ additional treatment and modifications upon customer's request
- _ double and triple versions upon request

Technical data of the fans

	12	24
type	ebmpapst, ball bearing, with grid	ebmpapst, ball bearing, with grid
dimensions	119x119x38 mm	119x119x38 mm
tension	12 V DC	24 V DC
power inout	21 W	19.5 W
max. air volume	310 m ³ /h	310 m ³ /h
temperature range	-20°C +65°C	-20°C +65°C
noise level	65 dB(A)	65 dB(A)
speed	6,000 min ⁻¹	6,000 min ⁻¹
weight	390 g	390 g
failure rate (L ₁₀)	L ₁₀ > 60,000 h (40°C) L ₁₀ > 37,500 h (tmax)	L ₁₀ > 65,000 h (40°C) L ₁₀ > 37,500 h (tmax)

D

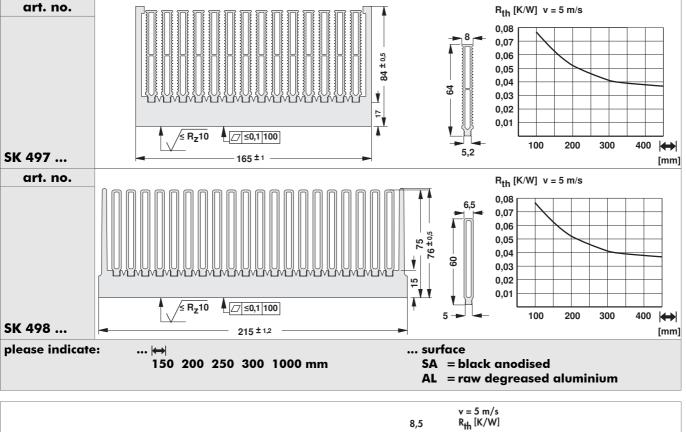
÷.

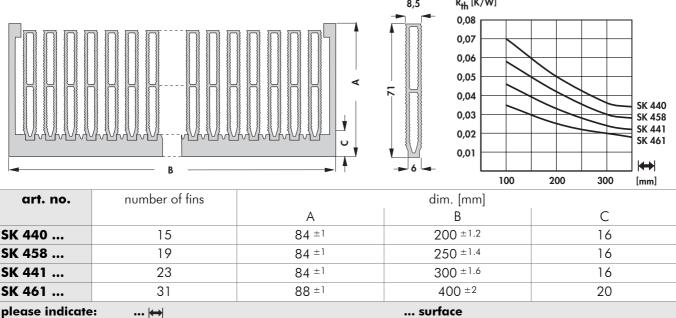
D 29

Miniature cooling aggregates → Protection grid for axial fans → D 36 Drilling pattern for Solid State Relais \rightarrow A 12 **High capacity heatsinks**

D9-11 → A 57 – 58

Special heatsink design Heatsinks with hollow fin profile Thermal conductive material **Technical introduction**


A 137 – 138 → → D 30 E 2 – 24 → **→** A 2 – 8


Downloaded from Arrow.com.

High-performance heatsinks

High performance heatsinks with hollow-fin profile

- high performance heatsinks for fan operation
- exclusively for forced convection
- preferably for radial or tangential fans
- hollow fin geometry optimises the air flow
- particularly effective heat dissipation
- milled flat base (except length 1000 mm)

Heatsinks with hollow fin profile

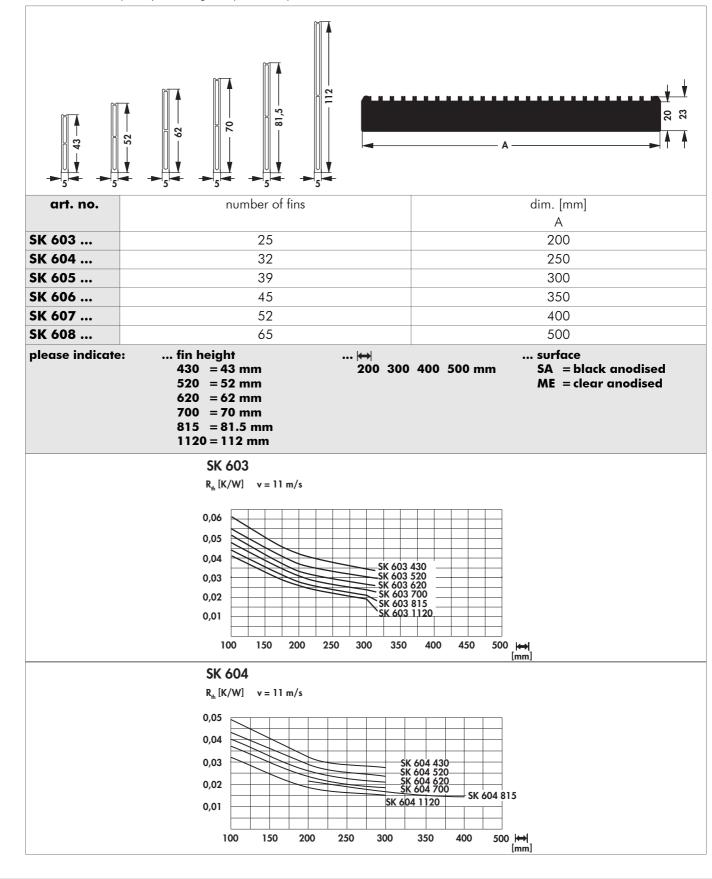
Hollow-fin cooling aggregates

... surface SA = black anodised AL = raw degreased aluminium

→

→

150 200 300 1000 mm


- Heatsink-cooling aggregates Cooling aggreg. in segment mount.
- Miniature cooling aggregates
- D 30 31 D 15 – 25
 - **Technical introduction**
- → D 14 \rightarrow D 5 → D9-11 → A 2 – 8
- D 30

Downloaded from Arrow.com.

-

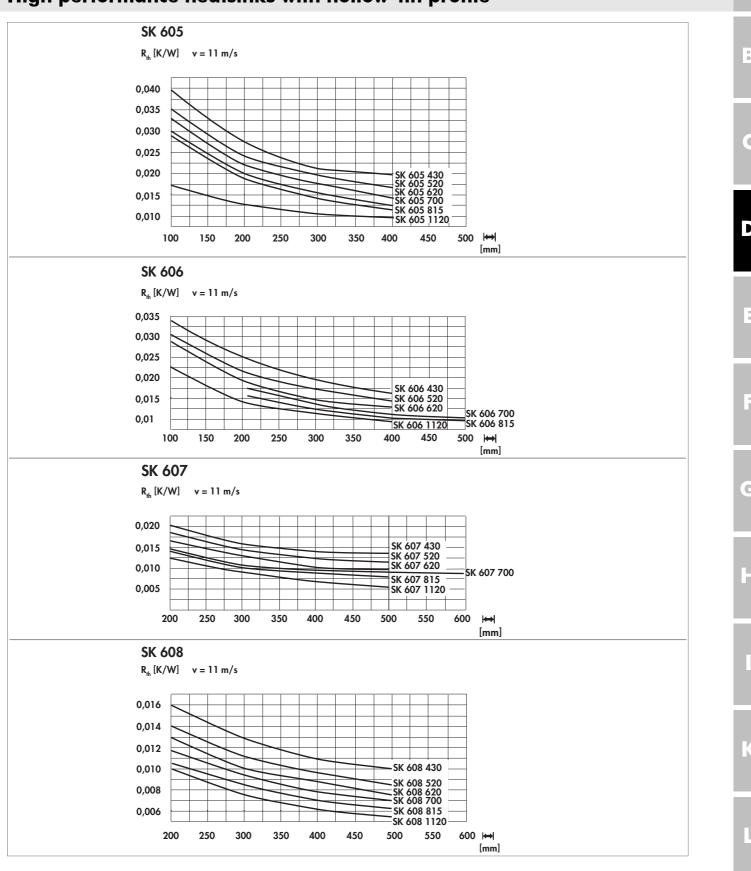
High performance heatsinks with hollow-fin profile

- high capacity heatsinks for fan operation preferably for radial- or tangential fan motors
- universal modular design
- exclusively for forced convection
- flow-optimized hollow fin geometry
- minimum order quantity: 1000 kg, samples on request

High capacity cooling aggregat. Cooling aggregates with radial fan Heatsinks with hollow fin profile Hollow-fin cooling aggregates

 $\begin{array}{rrrr} \rightarrow & D & 26 - 29 \\ \rightarrow & D & 33 - 35 \\ \rightarrow & D & 30 - 31 \\ \rightarrow & D & 15 - 25 \end{array}$

Heatsink-cooling aggregates \rightarrow D 14Cooling aggreg. in segment mount. \rightarrow D 5Miniature cooling aggregates \rightarrow D 9 - 11Technical introduction \rightarrow A 2 - 8


4

D

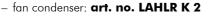
÷,

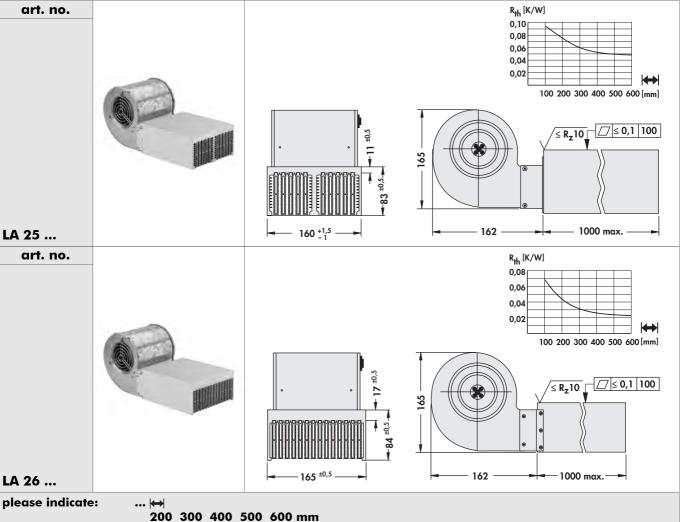
G

High performance heatsinks with hollow-fin profile

High capacity cooling aggregat. Cooling aggregates with radial fan Heatsinks with hollow fin profile Hollow-fin cooling aggregates

- D 26 29 → →
 - D 33 35 → D 30 – 31
 - → D 15 – 25 **Technical introduction**
- Heatsink-cooling aggregates Cooling aggreg. in segment mount. Miniature cooling aggregates
- → D 14 → D 5 → D9-11 → A 2 – 8


D 32


- Downloaded from Arrow.com.

Cooling aggregates with radial fan

High performance cooling aggregate

- optimised air flow due to hollow fin geometrie
- very good thermal performance
- optimized high performance construction with radial fan
- milled flat mounting surface for semiconductor
- cover plate for fin side upon request
- additional customized treatment upon request

Technical data of the fans

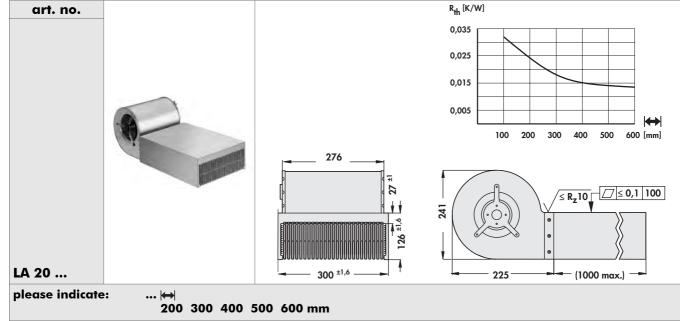
	230
type	ebmpapst, radial blower with grid, double sided absorbtion
bearing type	ball bearing
discharge air flow	435 m ³ /h
rotation speed	1,950 min ⁻¹
power inout	87 W
current consumption	0.39 A
temperature range	-25°C +40°C
circuit voltage	230 V AC
motor condenser	2 µF/400 V
noise level	58 dB(A)
weight	1,500 g

D 33

Drilling pattern for Solid State Relais \rightarrow A 12Miniature cooling aggregatesMounting for TO 3 angle \rightarrow A 125 - 128heatsinks for Solid State RelaisHigh capacity heatsinks \rightarrow A 57 - 58Hole patternCooling aggreg. in segment mount. \rightarrow D 5 - 7Technical introduction

 $\begin{array}{r} \rightarrow \quad D \ 9 - 12 \\ \rightarrow \quad 135 - 136 \\ \rightarrow \quad A \ 21 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

Downloaded from Arrow.com.


D

ŝ

Cooling aggregates with radial fan

High performance cooling aggregate

- optimised air flow due to hollow fin geometrie
- very good thermal performance
- optimized high performance construction with radial fan $% \left({{\left[{{{\left[{{{c}} \right]}} \right]}_{i}}} \right)$
- milled flat mounting surface for semiconductor
- cover plate for fin side upon request
- additional customized treatment upon request
- fan condenser: art. no. LA 20 K 6

Technical data of the fans

	230
bearing type	ball bearing
type	ebmpapst, radial blower with grid, double sided absorbtion
discharge air flow	1,310 m ³ /h
rotation speed	1,350 min ⁻¹
power inout	185 W
current consumption	0.81 A
circuit voltage	230 V AC
temperature range	-25°C +70°C
motor condenser	6 µF
noise level	64 dB(A)
weight	5,900 g

Drilling pattern for Solid State Relais >A 12Miniature cooling aggregatesMounting for TO 3 angle>A 125 - 128heatsinks for Solid State RelaisHigh capacity heatsinks>A 57 - 58Hole patternCooling aggreg. in segment mount.>D 5 - 7Technical introduction

 $\begin{array}{r} \rightarrow \quad D \ 9 - 12 \\ \rightarrow \quad 135 - 136 \\ \rightarrow \quad A \ 21 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

D 34

Downloaded from Arrow.com.

A

Cooling aggregates with radial fan

High performance cooling aggregate

- other lengths upon request
- fan condenser: art. no. LAHLR K 2

art. no.	R _{th} [K/W]
AHLR 1 500	$0,09 \\ 0,07 \\ 0,05 \\ 100 200 300 400 500 600 [mm]$
onstruction:	solid frame construction with inner animation and carrier plates, thermally connected by soldering
	-

LAH

construction:		lid frame construction with inner animation and carrier plates, thermally connected by Idering
weight:	6,3	300 g
material:	alu	uminium alloy
surface:	blc	anc, milled flat

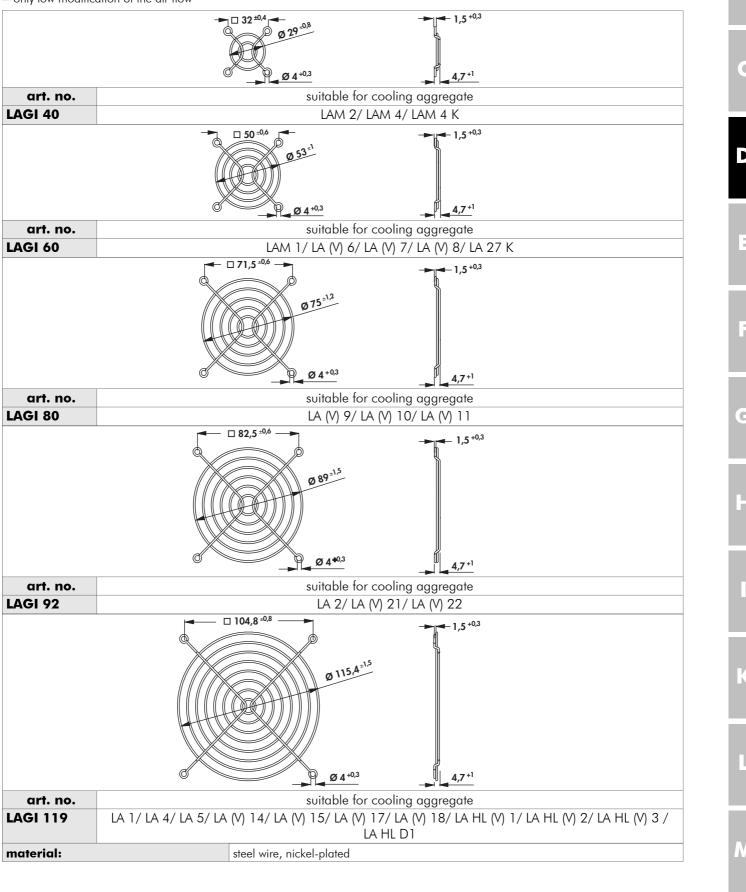
Technical data of the fans

	230
type	ebmpapst, radial blower with grid, double sided absorbtion
bearing type	ball bearing
discharge air flow	435 m ³ /h
rotation speed	1,950 min ⁻¹
power inout	87 W
current consumption	0.39 A
temperature range	-25°C +40°C
circuit voltage	230 V AC
motor condenser	2 µF/400 V
noise level	58 dB(A)
weight	1,500 g

Downloaded from Arrow.com.

.

D


G

Ν

N

Protection grid for fans

- protection against contact as per EN 294
- aerodynamic contruction
- minimized noise modification
- only low modification of the air flow

- → D 26 29 High capacity cooling aggregat. Cooling aggregates with radial fan Heatsinks with hollow fin profile Hollow-fin cooling aggregates →
 - → D 33 35 D 30 → D 15 – 25
- Heatsink-cooling aggregates Cooling aggreg. in segment mount. Miniature cooling aggregates **Technical introduction**
- → D 14 \rightarrow D 5 D9-11 → → A 2 – 8
- D 36

-

fischer elektronik =>

Thermal conductive material Guide rails for PCBs Mounting material for semiconductors-Mounting material for mechanical components

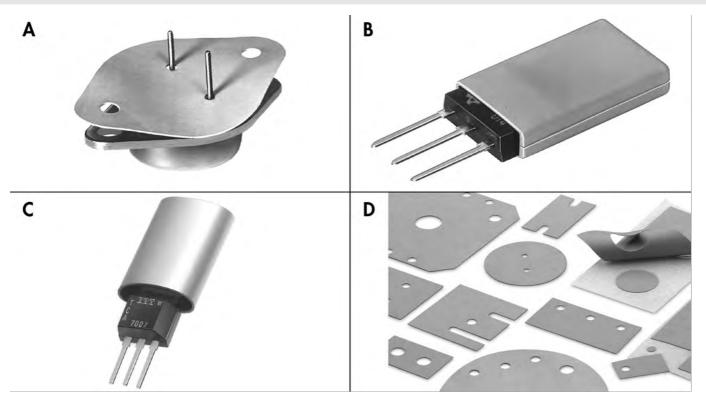
Thermal conductive material

- large standard programme for thermal conductive pastes and glues, silicone-, GEL-, and foam foils (Gap Filler), cuts, tapes, tubes and caps
- thermal conductive electrically insulating foils
- customer specific productions made in our in-house punching shop

Mounting material for semiconductors

- mounting disc for discrete devices such as transistors, capacitors and LEDs
- electrically insulating mounting of the transistors
- simple and fast assembly
- insulating clamping pins for various semiconductors for increasing the dielectric strength
- cover and insulating cap for transistors

Guide rails for PCBs


- for horizontal and vertical assembly
- suitable for sheet thicknesses of $0.5 \cdot 1.85$ mm
- with and without lock mechanism
- slim an wide designs
- screwable and snapable versions, extractors with locking pin fixing
- special designs upon request

Mounting material for mechanical components

- distance bolts made of metal and plastics with inner or outer thread
- clamp mounting made of aluminium and plastics for mounting the heatsinks and cases on the mounting rail acc. to DIN EN 50022
- anti-vibration device for minimizing the noise and resonance

Silicon-rubber insulating material for semiconductors

- A: washer
- **B**: insulating cap
- C: insulating tube
- D: cuts

Our thermal conduction wafers effect following advantages:

- good surface contact as material is flexible
- reduced production costs as a matter of mounting without thermal conducting paste (clean and fast)
- spring-back of the elastic material protects the transistor against damage
 free of any toxic substances

Customer specific versions:

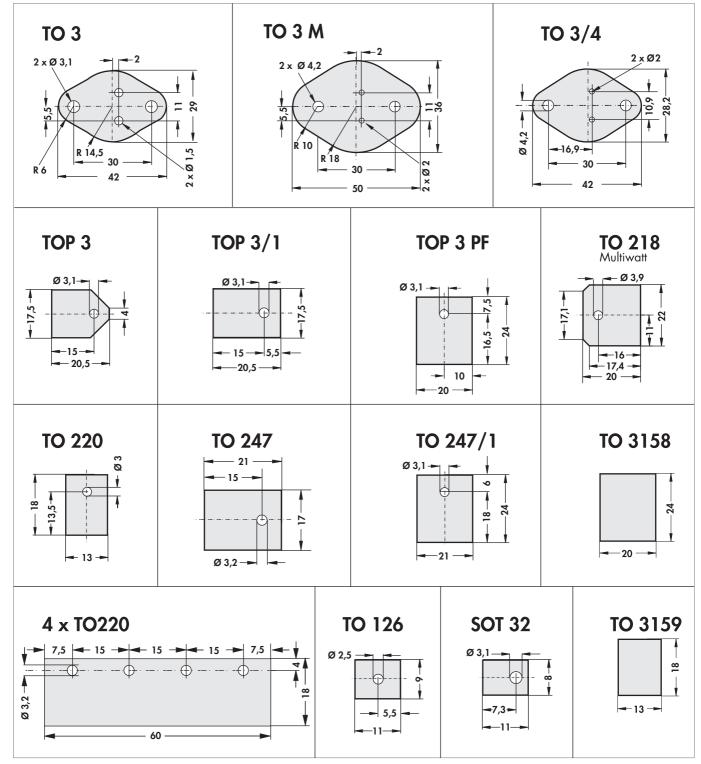
- punching and cuts of our thermal conductive foil according to drawing
- sold per sheet or by the meter
- other foils, plastics, papers, etc. upon request

The thermal details refer to an area of 1 inch² (6.45 cm²).

:

ŝ

C


Thermal conductive foil Heatsinks for PCB E 7 – 10 A 89 - 112 **GEL** thermal conductive foils E 12 – 15 **Heatsinks for BGA** B 17 – 20 Thermal conductive paste **Extruded heatsinks** A 22 – 83 E 21 – 22 → → Thermal conductive glue E 23 – 24 **Technical introduction** → A 2 – 8

Downloaded from Arrow.com.

E 2

Silicone rubber insulating material for semiconductors

- other cuttings on request

Thermal conductive foil **GEL** thermal conductive foils Thermal conductive paste Thermal conductive glue

E 7 – 10 → → E 12 – 15 E 21 – 22 → E 23 – 24

→

Heatsinks for PCB Heatsinks for BGA Extruded heatsinks

Technical introduction

A 89 – 112 → → B 17 – 20 → A 22 – 83 → A 2 – 8

B

C

D

Ξ

F

G

F.

K

Μ

N

Thermally conductive foil made of siliconelastomer

foil type	foil WS	foil WG	3	foil Wł	<	foil WB
material	silicone foil, standard	silicone foil, G	GF rein-	silicone foil, C forced, one-si	GF rein-	silicone foil, GF rein forced
				adhesiv	'e	
Washer						
TO-3	WS 3	WG 3		WK 3		WB 3
TO-3 M	WS 3 M					
TO-3/4	WS 3/4			WK 3/4		
TO-3 PF	WS 3 P	WG 3 P		WK 3 P		WB 3 P
3158	WS 3158			WK 3158		WB 3158
TOP 3	WS TOP 3					
TOP 3/1	WS TOP 3/1			WK TOP 3/1		
TO 218 (Multiwatt)		WG 218				
TO 247	WS 247			WK 247		
TO 220	WS 220	WG 220		WK 220		WB 220
4 X TO 220	WS 4 220					
3159	WS 3159			WK 3159		WB 3159
TO 126				WK 126		
SOT 32				WK 32		
TO 247/1	WS 247/1					
nsulating tube						
TO-220 Ø 11 mm,	WSC-220					
length 25 mm						
TO-3 PF Ø 13.5 mm,	WSC-3 P					
length 25 mm						
TO-247 Ø 14.5 mm,	WSC-247					
length 30 mm						
nsulating tube as	s meterpiece					
TO-220 Ø 11 mm	WSM-220					
TO-3 PF Ø 13.5 mm	WSM-3 P					
ape material (wi	dth)					
24 mm				WKT 24		
30 mm	WST 30					WBT 30
36 mm	WST 36					
85 mm	WST 85					
300 mm		WGT 300		WKT 300		WBT 300
	F	oil WS	Foil W	G F	oil WK	Foil WB
naterial thickness).3 mm		0.2 mm		0.15 mm
material hardness		Shore A		87 Shore A		90 Shore A
dielectric strength		10 kV		6.5 kV		3 kV
hermal resistance		.4 K/W			.45 K/W	0.34 K/W
hermal conductivity		2 W/m·K				
nsulation resistance		10 ¹⁵ Ω·cm	1.13 W/m·K 0.92 W/m·K 5.7·10 ¹⁵ Ω·cm		1.6·10 ¹⁵ Ω·cm	
extensibility		100 %		2 %		4 %
AICHISIDIIIIY						
emperature range				-60°C +180°C	-	

Thermal conductive foil \rightarrow E7-10 **Heatsinks for PCB GEL** thermal conductive foils → E12-15 **Heatsinks for BGA** Thermal conductive paste $\begin{array}{c} \rightarrow \quad \mathbf{E} \ \mathbf{21} - \mathbf{22} \\ \rightarrow \quad \mathbf{E} \ \mathbf{23} - \mathbf{24} \end{array}$ **Extruded heatsinks** Thermal conductive glue **Technical introduction**

E 4

Downloaded from Arrow.com.

Ν

C

-

E

G

ł

k

p

ļ

D

Insulating cap

C

	I.	J

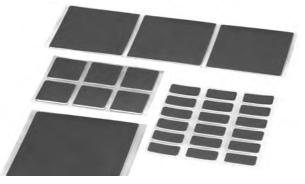
G

Ν

Π.

Ε	5

Downloaded from Arrow.com.

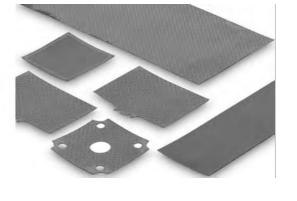

Thermal conductive foil GEL thermal conductive foils Thermal conductive paste Thermal conductive glue $\begin{array}{rrrr} \rightarrow & \text{E} \ 7 - 10 & \text{He} \\ \rightarrow & \text{E} \ 12 - 15 & \text{He} \\ \rightarrow & \text{E} \ 21 - 22 & \text{Ex} \\ \rightarrow & \text{E} \ 23 - 24 & \text{Te} \end{array}$

Heatsinks for PCB Heatsinks for BGA Extruded heatsinks Technical introduction $\begin{array}{r} \rightarrow \quad A \ 89 - 112 \\ \rightarrow \quad B \ 17 - 20 \\ \rightarrow \quad A \ 22 - 83 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

	↓				
art. no.	type		C	lim. [mm]	
		A	В	С	D
WSI 220 210	TO 220	11	21.0	5.0	0.9
WSI 220 225	TO 220	11	22.5	5.0	0.3
WSI TOP 3 235	TOP 3	18	23.5	5.0	0.9
WSI TOP 3 280	TO 3 PL/TO 247	16	28.0	5.0	0.3
WSI TO 3 PL TO 3 PL/TO 247		22	34.0	5.5	0.9
		Foil WSI		Foil W	SI
material thickness		0.9 mm 0.3 mm			n

	Foil WSI	Foil WSI				
material thickness	0.9 mm	0.3 mm				
material hardness	75 Shore A					
dielectric strength	15 kV	10 kV				
thermal resistance	0.96 K/W	0.4 K/W				
thermal conductivity	1.22 W/m·K					
insulation resistance	2.9·10 ¹⁵ Ω·cm					
extensibility	100 %					
temperature range	-60°C +180°C					
class of flammibility	UL 94 V-0					

Thermal conductive foil one-sided adhesive



- good thermal characteristics with high operating temperature
- thin material thickness for optimal thermal resistance
- high dielectric strength, electrically insulating

art. no.	type of delivery				
WLFT 8943	plates, usable area 300x200mm				
		WLFT 8943			
description		one-sided adhesive, filled Copolymer			
overall thickness	5	0.17 mm			
filling material		ceramic			
specific thermal	resistance	4.7°C cm ² /W			
thermal conduct	ivity	0.4 W/m·K			
temperature ran	ıge	-40°C +150°C			
volume resistan	ce	2.5·10 ¹³ Ω/cm			
dielectric strengt	th	62,7 kV/mm			
peel strength at ure and 24 h	ambient temperat-	6 N/cm			
class of flammib	ility	UL 94 V-0			

- cuttings and customised cut-outs acc. to customer specific requirements

- k

N

Thermal conductive material **Heatsinks for PCB Profiles for PCB mounting Heatsinks for transistors**

E 2 – 5 → → A 89 – 93 A 89 – 112 → → C 4 – 9

GEL thermal conductive foils **Spacers** Insulating distance sleeves **Technical introduction**

→ E12 – 15 → E 40 E 32 – 33 → → A 2 – 8

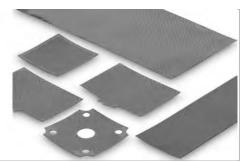
E 6

Downloaded from Arrow.com.

N

1

:


C

ł

1

Thermally conductive foil both sides adhesive

- good thermal charactaristics

B

C

D

G

Н

- double-sided adhesive layers

replaces mechanical fastenings

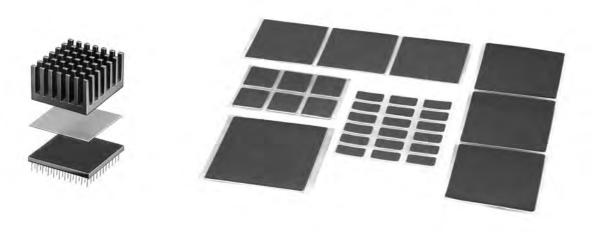
- cuttings and cut-outs upon request

art. no.	width [mm]	type of delivery	art. no.	width [mm]	type of delivery
WLFT 404 R25	25	sold by the meter	WLFT 414 R100	100	sold by the meter
WLFT 404 R50	50	sold by the meter	WLFT 414 R200	200	sold by the meter
WLFT 404 R100	100	sold by the meter	WLFT 405 R25	25	sold by the meter
WLFT 404 R200	200	sold by the meter	WLFT 405 R50	50	sold by the meter
WLFT 414 R25	25	sold by the meter	WLFT 405 R100	100	sold by the meter
WLFT 414 R50	50	sold by the meter	WLFT 405 R200	200	sold by the meter

art. no.	dimensions [mm]	type of deliv-	art. no.	dimensions [mm]	type of deliv-
		ery			ery
WLFT 404 100x100	100x100	plate	WLFT 414 200x200	200x200	plate
WLFT 404 100x200	100x200	plate	WLFT 405 100x100	100x100	plate
WLFT 404 200x200	200x200	plate	WLFT 405 100x200	100x200	plate
WLFT 414 100x100	100x100	plate	WLFT 405 200x200	200x200	plate
WLFT 414 100x200	100x200	plate			

	WLFT 404	WLFT 414	WLFT 405			
description	insulating, doub	non insulating, double-sided adhesive				
overall thickness	0.127 r	nm ^{±0.03}	$0.15 \text{ mm} \pm 0.03$			
truss material	polyimide (Kapto	on MT) 0.025mm	aluminium foil 0.05mm			
glue layer	acryle	ate (pressure sensitive) double	-sided			
thermal conductivity	0.4 V	0.4 W/m·K				
specific thermal resistance	3.7°C	3.4°C cm ² /W				
temperature range		-30°C +125°C				
holding force (overlapping)	0.86	MPa	0.93 MPa			
holding force (shear rate)	AI 25°C 0.897 [MPa] / AI 150°C 0.345 [MPa] / Cu 25°C 0.828 [MPa] / Cu 150°C 0.31 [MPa] / AI ₂ O ₃ 25°C 1.17 [MPa] / AI ₂ O ₃ 150°C 0.34 [MPa]	AI 25°C 0.86 [MPa] / AI 150°C 0.38 [MPa] / Cu 25°C 1.1 [MPa] / Cu 150°C 0.48 [MPa] / AI ₂ O ₃ 25°C 1.0 [MPa] / AI ₂ O ₃ 150°C 0.41 [MPa]				
dielectric strength	5 kV (AC)					
class of flammibility		UL 94 V-0				

Ν


N

E 7

Thermal conductive material Heatsinks for PCB Profiles for PCB mounting Heatsinks for transistors $\begin{array}{l} \rightarrow \quad E \ 2 - 5 \\ \rightarrow \quad A \ 89 - 93 \\ \rightarrow \quad A \ 89 - 112 \\ \rightarrow \quad C \ 4 - 9 \end{array}$

GEL thermal conductive foils Spacers Insulating distance sleeves Technical introduction $\begin{array}{r} \rightarrow \quad E \ 12 - 15 \\ \rightarrow \quad E \ 40 \\ \rightarrow \quad E \ 32 - 33 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

Thermally conductive foil both sides adhesive

- double sided adhesive layer
- optimal adhesion of different substrates
- very good thermal conductivity, electrical insulating
- easy handling due to double sided protection foil
- optimized surface moistening and excellent impact strength - cutouts and different punchings according to customer drawing

art. no.	type of delivery
WLFT 8805	plates, usable area 300x200mm
WLFT 8810	plates, usable area 300x200mm
WLFT 8815	plates, usable area 300x200mm
WLFT 8820	plates, usable area 300x200mm
WLFT 8940	plates, usable area 300x200mm

	WLFT 8805	WLFT 8810	WLFT 8815	WLFT 8820	WLFT 8940	
description		double sided adhesive, filled acrylic polymer				
overall thickness	0.13 mm	0.25 mm	0.38 mm	0.5 mm	0.19 mm	
filling material		ceramic				
protection cover	silicone treated polyester, 37.5 - 50 μ m					
thermal conductivity	0.6 W/m·K				0.9 W/m·K	
specific thermal resistance	3.1°C cm ² /W	5.7°C cm ² /W	7.6°C cm²/W	9.7°C cm ² /W		
temperature range		permanent (up to 100°C		permanent up to 150°C	
volume resistance	5.2·10 ¹¹ Ω/cm	3.9·10 ¹¹ Ω/cm	3.8·10 ¹	¹ Ω/cm	2.5·10 ¹³ Ω/cm	
dielectric strength	37 kV/mm				55 kV/mm	
peel strength at ambient temperat- ure and 72 h	5.8 N/cm	8.3 N/cm	9.8 N/cm	11.9 N/cm	6 N/cm	
class of flammibility		UL 7	46 C		UL 94 V-0	

-

:

C

k

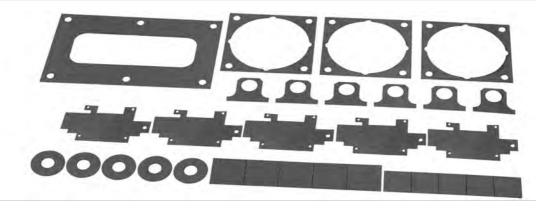
E 8

Thermal conductive material **Heatsinks for PCB Profiles for PCB mounting Heatsinks for transistors**

E 2 – 5 → A 89 – 93

→

Spacers A 89 – 112 →


Insulating distance sleeves C 4 – 9

Technical introduction

GEL thermal conductive foils

→ E12 – 15 → E 40 E 32 – 33 → → A 2 – 8

High thermoconducting graphite foils

- high-compressed anisotropic natural graphite
- very good thermal characteristics
- optimal for heat spreading
- high operating temperature range
- different material thicknesses and coatings upon request
- customer specified cuttings and stampings acc. to drawing

art. no.	width	type of delivery	art. no.	width	type of delivery
	[mm]			[mm]	
WLFG 9010 R 25	25	sold by the meter	WLFG 9020 R 25	25	sold by the meter
WLFG 9010 R 50	50	sold by the meter	WLFG 9020 R 50	50	sold by the meter
WLFG 9010 R 100	100	sold by the meter	WLFG 9020 R 100	100	sold by the meter
WLFG 9015 R 25	25	sold by the meter	WLFG S 900 K R 25	25	sold by the meter
WLFG 9015 R 50	50	sold by the meter	WLFG S 900 K R 50	50	sold by the meter
WLFG 9015 R 100	100	sold by the meter	WLFG S 900 K R 100	100	sold by the meter

	WLFG 9010	WLFG 9015	WLFG 9020	WLFG S 900 K	
description	base film made of graphite, electrically conductive	graphite foil, electrically conductive			
version		adherent layer on one side			
overall thickness	0.15 mm	0.2 mm	0.25 mm	0.175 mm	
thermal resistance	0,09 K/W	0,07 K/W	0,23 K/W	0,08 K/W	
thermal conductivity z (x/y)	5.5 (55) W/m·K	6 (55) W/m·K	4 (55) W/m·K	7.5 (<450) W/m·K	
specific thermal resistance	36°C mm ² /W	28.8°C mm ² /W	72°C mm²/W	34°C mm ² /W	
temperature range		-40°C	+500°C		
hardness range		30 Sh	ore D		
tensile strength	5.5 N/mm ²	6 N/mm ²	5.5 N/mm ²	10 N/mm ²	
elongation at break		10 % 5 %			
tightness		l g/cm ³ <1.6 g/cm ³			
class of flammibility		UL 94 V-0			

Ξ

H

Μ

N

E 9

Thermal conductive material Heatsinks for PCB Profiles for PCB mounting Heatsinks for transistors $\begin{array}{r} \rightarrow \quad E \ 2 - 5 \\ \rightarrow \quad A \ 89 - 93 \\ \rightarrow \quad A \ 89 - 112 \\ \rightarrow \quad C \ 4 - 9 \end{array}$

GEL thermal conductive foils Spacers Insulating distance sleeves Technical introduction $\begin{array}{rrr} \rightarrow & E \ 12 - 15 \\ \rightarrow & E \ 40 \\ \rightarrow & E \ 32 - 33 \\ \rightarrow & A \ 2 - 8 \end{array}$

Heat conductive silicon foam foil

- elastomer foam with closed cell structure
- good heat conductor e.g. between components, heatsinks and casing parts
- electrical insulating
- can be compressed even with a low contact pressure
- absorbs shocks and vibrations

art. no.	material thickness [mm]
WSF 16	1.60 ±0.4
WSF 32	3.20 ±0.8
WSF 635	6.35 ±1.2
WSFS 635	6.35 ±1.2

Thermal resistance at 3.2 mm material thickness:

compression %	contact	10	25	50
contact pressure PSI	>1	5	12	34
R _{th} K/W (1 in ² x 3.2 mm)	6	4.5	2.5	1
heat conductivity W/mK	0.3	0.4	0.45	0.65

– WSFS 635 double sided adhesive and $\ensuremath{\,\text{WSF}}$ adhesive upon request

- according to NASA gas emission requirements

	WSF	WSFS 635				
version	no adhesive	one-sided self-adhesive				
thermal conductivity	0.108 W/m·K (substrate)					
hardness range	13 Shore D					
compression, 25%	18 PSI					
temperature range	-62°C +205°C					
extensibility	150 %					
tensile strength	120) PSI				
dielectric strength	4 kV	/mm				
tightness	1.118 g/cm ³					
class of flammibility	UL 94 V-1 (at thickness ≥3.2mm)					
type of delivery	plates 914x914mm/ cuttings on customer's requirements					

K

L

N

Thermal conductive material \rightarrow E 2 - 5Kapton insulator washersGEL thermal conductive foils \rightarrow E 12 - 15Heatsinks for PGAThermal conductive paste \rightarrow E 21 - 22Heatsinks for BGAThermal conductive glue \rightarrow E 23 - 24Technical introduction

 $\begin{array}{l} \rightarrow \quad E \ 16 \\ \rightarrow \quad B \ 11 - 16 \\ \rightarrow \quad B \ 17 - 20 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

E 10

Downloaded from Arrow.com.

N

-

Silicone free thermal adhesive foils

B

C

D

Ξ

G

silicone free gap-filler with good thermal characteristics
smooth, compressible and elastic
cut outs, punchings and modifications according to customer specification
other material thicknesses upon request

art. no.	material thick-	R _{th} (100 kPa)	R _{th} (100 kPa)	art. no.	material thick-	R _{th} (100 kPa)	R _{th} (100 kPa)
	ness [mm]	[°C in²/W]	[°C cm²/W]		ness [mm]	[°C in²/W]	[°C cm²/W]
GEL F 15 10	1.0 ±0.2	1.06	6.56	GEL F 15 G 10	1.0 ±0.2	1.16	7.55
GEL F 15 15	1.5 ± 0.2	1.44	8.01	GEL F 15 G 15	1.5 ± 0.2	1.52	9.22
GEL F 15 20	2.0 ± 0.3	1.83	11.26	GEL F 15 G 20	2.0 ± 0.3	1.93	10.89

	GEL F 15	GEL F 15 G			
version	standard	polyamide film mash reinforced			
thermal conductivity	1.5	W/m·K			
volume resistance	2 · 10	O ³ MΩ/m			
hardness range	53 5	Shore 00			
temperature range	-40°C.	+105°C			
extensibility	1	50 %			
dielectric constant	9,12 [50 Hz] / 8,55	5 [1 kHz] / 5,83 [1 MHz]			
dielectric loss factor	0,152 [50 Hz] / 0,133	5 [1 kHz] / 0,034 [1 MHz]			
dielectric strength	11	kV/mm			
tightness	2.1	g/cm ³			
class of flammibility	UL	94 V-0			
type of delivery		on both sides covered with protective foil/ plates, usable area 300x200mm/ cuttings c customer's requirements			

Ν

N

E 11

Thermal conductive material Thermal conductive foil Thermal conductive paste Thermal conductive glue

→ E2-5 \rightarrow E7 – 15 → E 21 – 22 → E 23 – 24

Extruded heatsinks Heatsinks for LEDs Heatsink profile-overview Technical introduction

→ A 22 – 83 → B 35 – 48 A 13 – 17 → → A 2 – 8

Gel thermal conducting foils

highly heat-conductive silocon foil
smooth, elastic and compressible
equals uneven surfaces very well (Gap-Filler)

art. no.	material thick-	R _{th} (100 kPa)	R _{th} (100 kPa)	art. no.	material thick-	R _{th} (100 kPa)	R _{th} (100 kPa)
	ness [mm]	[°C in²/W]	[°C cm²/W]		ness [mm]	[°C in²/W]	[°C cm²/W]
GEL 05	0.5 ±0.1	0.69	4.45	GEL G 05	0.5 ±0.1	0.63	4.04
GEL 10	1.0 ±0.2	1.03	6.64	GEL G 1	1.0 ±0.2	1.17	7.56
GEL 15	1.5 ± 0.2	1.39	8.96	GEL G 15	1.5 ± 0.2	1.59	10.27
GEL 20	2.0 ± 0.3	1.52	9.78	GEL G 2	2.0 ±0.3	2.07	13.33
GEL 25	2.5 ± 0.3	2.10	13.58	GEL G 25	2.5 ± 0.3	2.61	16.81
GEL 30	3.0 ±0.3	2.35	15.15	GEL G 3	3.0 ±0.3	2.89	18.66
GEL 35	3.5 ± 0.3	2.56	16.51	GEL G 35	3.5 ± 0.3	3.35	21.63
GEL 40	4.0 ± 0.4	3.25	20.95	GEL G 4	4.0 ±0.4	3.56	22.96
GEL 45	4.5 ± 0.4	3.38	21.82	GEL G 45	4.5 ± 0.4	3.89	25.10
GEL 50	5.0 ±0.5	3.52	22.70	GEL G 5	5.0 ± 0.5	4.22	27.23

	GEL	GEL G 05 - 25	GEL G 3 - 5			
version	standard	polyamide film mash reinforced, adherent layer on one sid				
thermal conductivity		1.5 W/m·K				
volume resistance		1·10 ⁶ MΩ/m				
hardness range		49 Shore 00				
temperature range		-60°C +200°C				
extensibility	100 %	60) %			
dielectric constant	5	5.8 [50 Hz]/ 5.6 [1 KHz]/ 5.5 [1 MHz]				
dielectric loss factor	0.048	3 [50 Hz]/ 0.015 [1 KHz]/ 0.003	[1 MHz]			
dielectric strength	14 kV/mm (AC)	8 kV/m	nm (AC)			
tightness		2.6 g/cm ³				
class of flammibility	UL 94 V-0	UL 94 V-1 UL 94 V-0				
type of delivery	on both sides covered with	on both sides covered with protective foil/ plates, usable area 300x200mm/ cuttings on customer's requirements				

Thermal conductive material Thermal conductive foil Thermal conductive paste Thermal conductive glue

→

Extruded heatsinks Heatsinks for LEDs

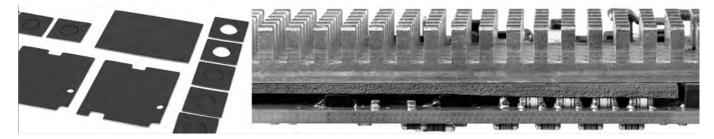
Heatsink profile-overview

- E 23 24 **Technical introduction**
- → A 22 83 → B 35 – 48 → A 13 – 17 → A 2 – 8

E 12

1

-


E

C

K

N

Gel thermal conducting foils

- GEL thermal conductive foils with very good thermical characteristics

- for balancing non-planarities and differences in components (Gap Filler)

- soft, elastic and compressible

- customer specific cuts and punchings according to drawing

art. no.	material thick-	R _{th} (100 kPa)	R _{th} (100 kPa)	art. no.	material thick-	R _{th} (100 kPa)	R _{th} (100 kPa)
	ness [mm]	[°C in²/W]	[°C cm²/W]		ness [mm]	[°C in²/W]	[°C cm²/W]
GEL 28 05	0.5 ±0.15	0.23	1.48	GEL 28 G 05	0.5 ± 0.15	0.29	1.85
GEL 28 10	1.0 ±0.2	0.44	2.76	GEL 28 G 10	1.0 ±0.2	0.47	2.99
GEL 28 15	1.5 ± 0.2	0.61	3.82	GEL 28 G 15	1.5 ±0.2	0.72	4.53
GEL 28 20	2.0 ±0.3	0.80	5.00	GEL 28 G 20	2.0 ±0.3	0.97	6.07
GEL 28 25	2.5 ± 0.3	0.90	5.65	GEL 28 G 25	2.5 ± 0.3	1.15	7.23
GEL 28 30	3.0 ±0.3	1.10	6.90	GEL 28 G 30	3.0 ± 0.3	1.23	7.69
GEL 28 35	3.5 ± 0.3	1.27	7.97	GEL 28 G 35	3.5 ± 0.3	1.35	8.46
GEL 28 40	4.0 ±0.3	1.39	8.69	GEL 28 G 40	4.0 ±0.3	1.67	10.47
GEL 28 50	5.0 ± 0.3	1.67	10.47	GEL 28 G 50	5.0 ± 0.3	1.92	12.02

	GEL 28	GEL 28 G			
version	standard	polyamide film mash reinforced			
thermal conductivity	2.	5 W/m·K			
volume resistance	3.6	10 ⁴ MΩ/m			
hardness range	50 Shore 00	55 Shore 00			
temperature range	-60°C	+200°C			
extensibility	64 %	32 %			
dielectric constant	8,98 [50 Hz] / 8,6	3 [1 kHz] / 8,05 [1 MHz]			
dielectric loss factor	0.0826 [50 Hz]/0.03	00 [1 kHz]/0.0052 [1 MHz]			
dielectric strength	15	5 kV/mm			
tightness	2.	7 g/cm ³			
class of flammibility	U	UL 94 V-0			
type of delivery		on both sides covered with protective foil/ plates, usable area 300x200mm/ other dimensions upon request			

C

D

M

N

E 13

Thermal conductive material Thermal conductive foil Thermal conductive paste Thermal conductive glue $\begin{array}{r} \rightarrow \quad E \ 2 - 5 \\ \rightarrow \quad E \ 7 - 15 \\ \rightarrow \quad E \ 21 - 22 \\ \rightarrow \quad E \ 23 - 24 \end{array}$

Extruded heatsinks Heatsinks for LEDs Heatsink profile-overview Technical introduction $\begin{array}{r} \rightarrow \quad A \ 22 - 83 \\ \rightarrow \quad B \ 35 - 48 \\ \rightarrow \quad A \ 13 - 17 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

Downloaded from Arrow.com.

Thermal adhesive foils

- gap filler with exceptionally good thermal conductivity and low outgassing

- especially smooth, compressible and elastic

- cut outs, punchings and modifications according to customer specification

- other material thicknesses upon request

art. no.	material thick-	R _{th} (100 kPa)	R _{th} (100 kPa)	art. no.	material thick-	R _{th} (100 kPa)	R _{th} (100 kPa)
	ness [mm]	[°C in²/W]	[°C cm²/W]		ness [mm]	[°C in²/W]	[°C cm²/W]
GEL 45 05	0.5 ± 0.15	0.61	3.94	GEL 45 G 05	0.5 ± 0.15	0.64	4.17
GEL 45 10	1.0 ±0.2	0.96	6.27	GEL 45 G 10	1.0 ±0.2	0.97	6.28
GEL 45 15	1.5 ± 0.2	1.30	8.42	GEL 45 G 15	1.5 ± 0.2	1.71	11.06
GEL 45 20	2.0 ±0.3	1.52	9.85	GEL 45 G 20	2.0 ± 0.3	1.71	11.06
GEL 45 25	2.5 ± 0.3	1.71	11.08	GEL 45 G 25	2.5 ± 0.3	2.03	13.11
GEL 45 30	3.0 ±0.3	1.94	12.52	GEL 45 G 30	3.0 ± 0.3	2.28	14.76
GEL 45 35	3.5 ± 0.35	2.20	14.20	GEL 45 G 35	3.5 ± 0.35	2.54	16.40
GEL 45 40	4.0 ±0.4	2.46	15.88	GEL 45 G 40	4.0 ± 0.4	2.80	18.12
GEL 45 45	4.5 ± 0.45	2.68	17.34	GEL 45 G 45	4.5 ± 0.45	3.03	19.56
GEL 45 50	5.0 ± 0.5	2.84	17.34	GEL 45 G 50	5.0 ± 0.5	3.22	20.82

	GEL 45	GEL 45 G			
version	standard	polyamide film mash reinforced			
thermal conductivity	4.5 W/m·K				
volume resistance	1.4.10	⁵ Ω/cm			
hardness range	45 Sho	pre 00			
temperature range	-60°C	+200°C			
extensibility	50 %				
dielectric constant	8,98 [50 Hz] / 8,63 [1 kHz] / 8,05 [1 MHz]			
dielectric loss factor	0,0249 [50 Hz] / 0,0219	[1 kHz] / 0,00675 [1 MHz]			
dielectric strength	11 kV	//mm			
tightness	3.2 g	/cm ³			
class of flammibility	UL 94 V-0				
type of delivery	on both sides covered with protective foil/ plates, usable area 300x200mm/ cuttings on customer's requirements				

Thermal conductive material Thermal conductive foil Thermal conductive paste Thermal conductive glue

E 23 – 24

→

Extruded heatsinks Heatsinks for LEDs

Heatsinks for LEDs Heatsink profile-overview

- Technical introduction
- $\begin{array}{l} \rightarrow \quad A \ 22 83 \\ \rightarrow \quad B \ 35 48 \\ \rightarrow \quad A \ 13 17 \\ \rightarrow \quad A \ 2 8 \end{array}$

1

:

l

C

k

N

Ν

Gel thermal conducting foils

- GEL silicone foils with especially high thermal conductivity
- balances non-planarities and differences in components (Gap Filler)
- soft, elastic and compressible
- cuts, punchings and special designs according to customer specifications

art. no.	material thick-	R _{th} (100 kPa)	R _{th} (100 kPa)	art. no.	material thick-	R _{th} (100 kPa)	R _{th} (100 kPa)
	ness [mm]	[°C in²/W]	[°C cm²/W]		ness [mm]	[°C in²/W]	[°C cm²/W]
GEL 60 05	0.5 ±0.1	0.20	1.30	GEL 60 G 05	0.5 ± 0.1	0.21	1.37
GEL 60 10	1.0 ±0.2	0.33	2.11	GEL 60 G 10	1.0 ± 0.2	0.31	1.99
GEL 60 15	1.5 ± 0.2	0.53	3.45	GEL 60 G 15	1.5 ± 0.2	0.48	3.08
GEL 60 20	2.0 ± 0.3	0.61	3.91	GEL 60 G 20	2.0 ± 0.3	0.62	4.00
GEL 60 25	2.5 ± 0.3	0.72	4.67	GEL 60 G 25	2.5 ± 0.3	0.77	4.96

	GEL 60	GEL 60 G
version	standard	polyamide film mash reinforced
thermal conductivity	6 W,	/m·K
volume resistance	1.106	MΩ/m
hardness range	52 Sh	ore 00
temperature range	-60°C	+200°C
extensibility	80 %	
dielectric constant	6.4 [50 Hz]/6.4 [1 kHz]/6.4 [1 MHz]	
dielectric loss factor	0.035 [50 Hz]/0.005 [1 kHz]/0.001 [1 MHz]	
dielectric strength	13 kV/mm	
tightness	3.2 g/cm ³	
class of flammibility	UL 94 V-0	
type of delivery	on both sides covered with protective foil/ plates, usable area 300x200mm/ other dimension upon request	

- especially soft design

- levels smallest air gaps and unevennesses
- cuts and contours with cutouts according to customer specifaction

art. no.	material thick-	R _{th} (10	0 kPa)	R _{th} (100 kPa)	art. no.	material thick-	R _{th} (100 kPa)	R _{th} (100 kPa)
	ness [mm]	[°C in	2/W]	[°C cm²/W]		ness [mm]	[°C in²/W]	[°C cm²/W]
GEL 27 S 25	2.5	0.9	94	6.05	GEL 27 S 50	5.0	1.69	10.91
version:			standa	ırd				
thermal conduc	ctivity:		2.7 W	/m·K				
volume resistance:		2.107	MΩ/m					
hardness range:		53 Shore 00						
temperature range:		-60°C +200°C						
extensibility:		45 %						
dielectric streng	gth:		15 kV/mm					
tightness:			3 g/cm ³					
class of flammibility:			UL 94 V-0					
		on both sides covered with protective foil/ plates, usable area 300x200mm/ other dimensions upon request						

K

E 15

Thermal conductive material Thermal conductive foil Thermal conductive paste Thermal conductive glue

 \rightarrow E2-5 → E7-15

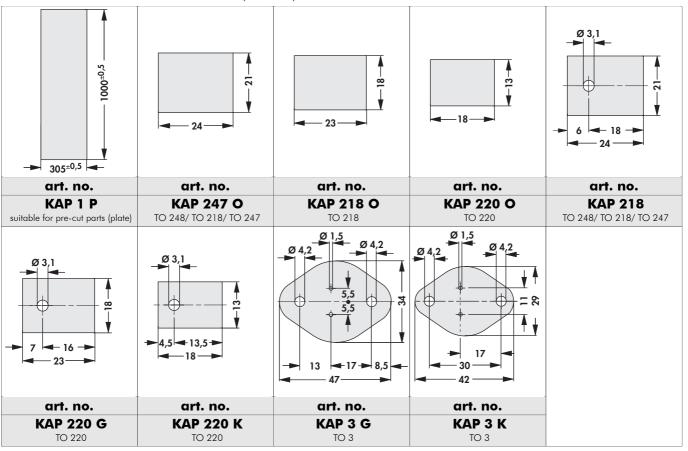
→

Heatsinks for LEDs → E 21 – 22 E 23 – 24

Heatsink profile-overview Technical introduction

Extruded heatsinks

→ A 22 – 83 → B 35 – 48 A 13 – 17 → → A 2 – 8


D

Ξ

G

Kapton insulator washers

- very low thermal resistance
- optimised heat conductivity
- best mechanical charactaristics
- polyimide-carrier foil with silicone-free phase changing thermal conductive layer completely coated on both sides
- clean processing, no abrasion of the coating
- stacked foils do not stick together
- good resistance against cleening agents
- no cold flow
- low pressure force necessary, thus particularly applicable for spring-fixing of semiconductors
- cuttings and special versions according to customer's requirements
- the thermal details refer to an area of 1 inch² (6.45 cm²)

	КАР
material	polyimide-carrier foil with silicone-free phase changing thermal conductive layer completely coated on both sides
material thickness 0.077mm (substrate 0.05mm)	
thermal conductivity	0.45 W/m·K (substrate)
insulation resistance	10 ¹⁴ Ω
thermal resistance	0.15 K/W [at 1 inch ² ; = 6.45 cm ² ; = TO 3 (KAP 3)]
temperature range	-40°C +150°C
phase change temperature	52 °C
extensibility	30 %
dielectric strength	7.8 kV
class of flammibility	UL 94 V-0

Profiles for PCB components Heatsinks for PCB Profiles for PCB mounting Heatsinks for transistors

Downloaded from Arrow.com.

 $\begin{array}{r} \rightarrow \quad A \ 91 \\ \rightarrow \quad A \ 89 - 93 \\ \rightarrow \quad A \ 89 - 112 \\ \rightarrow \quad C \ 4 - 9 \end{array}$

Finger-shaped heatsinks → Distance sleeves for PCB's in HP grid→ Spacers → Technical introduction →

id → E39 → E40 → A2-8

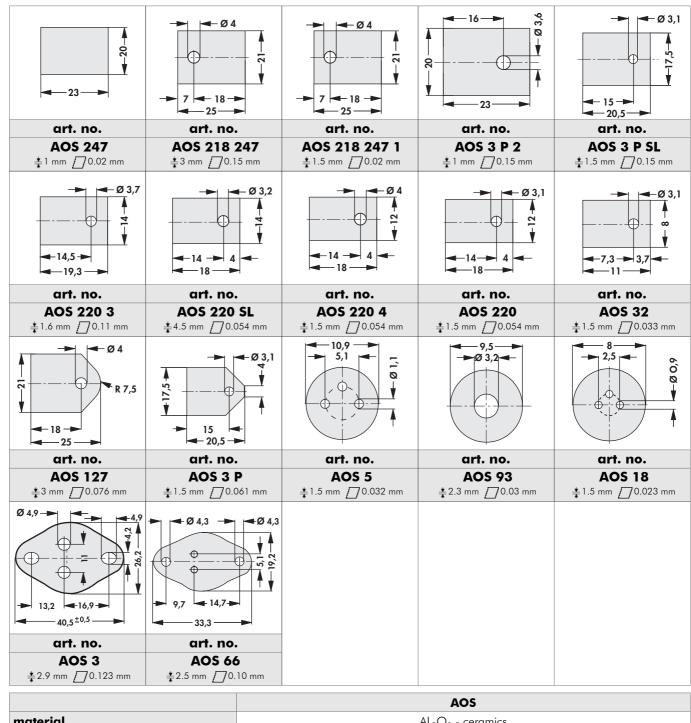
C 2 – 3

N

-

:

Aluminium oxide wafers


- other thicknesses and versions on request

★ = thickness; □ = flatness

Ξ

÷.

G

	AOS	
material	AL_2O_3 - ceramics	
thermal resistance	0.3 K/W [at 1 inch ² ; = 6.45 cm ² ; = TO 3 (AOS 3 G)]	
specific electrical resistance	>10 ¹⁴ Ω/cm	
thermal conductivity	25 W/m·K	
dielectric constant	9	
linear expansion coefficient	~8·10-6/K	
snap through stability	10 kV/mm	

M

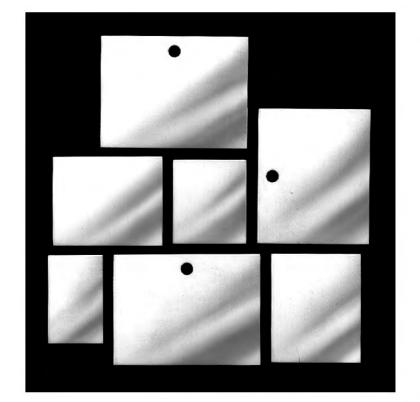
E 17

Thermal conductive material GEL thermal conductive foils Thermal conductive paste Thermal conductive glue $\begin{array}{r} \rightarrow \quad E \ 2 - 5 \\ \rightarrow \quad E \ 12 - 15 \\ \rightarrow \quad E \ 21 - 22 \\ \rightarrow \quad E \ 23 - 24 \end{array}$

 5
 Thermal conductive foil
 →

 - 15
 Kapton insulator washers
 →

 - 22
 Mica wafers
 →


 - 24
 Technical introduction
 →

 $\begin{array}{rrr} \rightarrow & \text{E 7 - 10} \\ \rightarrow & \text{E 16} \\ \rightarrow & \text{E 19} \\ \rightarrow & \text{A 2 - 8} \end{array}$

Aluminium oxide wafers according to customer's instructions

- laser-cut versions with outer dimensions and cutouts according to customer's requirements

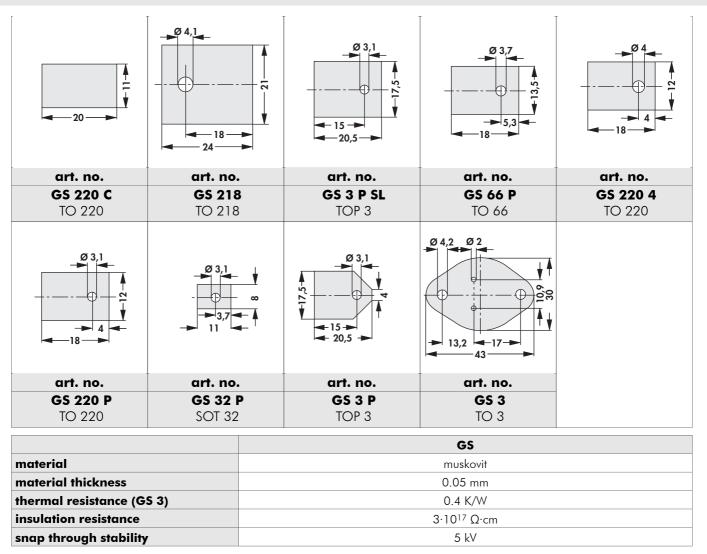
- other plate dimensions upon request
- max. plate dimension 180 x 180 mm

material thickness [mm]	outer dimensions [mm]
2.000	114x114
2.540	114x114
1.500	114x114
1.270	114x114
1.000	114x114/165x115/160x113
0.800	114x114/165x115/160x113
0.635	106.5x106.5/ 114x114/ 165x115/ 160x113
0.500	106.5x106.5/ 114x114
0.400	106.5x106.5/ 114x114
0.300	106.5x106.5/ 114x114
0.250	106.5x106.5/ 114x114

1

L

N


N

E 18

Thermal conductive material GEL thermal conductive foils Thermal conductive paste Thermal conductive glue $\begin{array}{r} \rightarrow \quad E \ 2 - 5 \\ \rightarrow \quad E \ 12 - 15 \\ \rightarrow \quad E \ 21 - 22 \\ \rightarrow \quad E \ 23 - 24 \end{array}$

Thermal conductive foil Kapton insulator washers Mica wafers Technical introduction $\begin{array}{rrr} \rightarrow & \text{E 7} - 10 \\ \rightarrow & \text{E 16} \\ \rightarrow & \text{E 19} \\ \rightarrow & \text{A 2} - 8 \end{array}$

Mica wafers

G

B

0

D

Ξ

E

N

E 19

Thermal conductive material Thermal conductive foil GEL thermal conductive foils Thermal conductive paste $\begin{array}{rrr} \rightarrow & \text{E} \ 2 - 5 \\ \rightarrow & \text{E} \ 7 - 10 \\ \rightarrow & \text{E} \ 12 - 15 \\ \rightarrow & \text{E} \ 21 - 22 \end{array}$

Thermal conductive glue Kapton insulator washers Aluminium oxide wafers Technical introduction $\begin{array}{rrr} \rightarrow & E \ 23 - 24 \\ \rightarrow & E \ 16 \\ \rightarrow & E \ 17 - 18 \\ \rightarrow & A \ 2 - 8 \end{array}$

Free standing film

- self-supporting differential phase changing thermal interface material, contains no substrate (Free Standing Film)
- materials with phase change temperature at 52 °C;
- best thermal conductivity, exceeding phase change temperature point, material flows into all gaps between components and heatsink
- thixotropic, does not migrate from the interface area
- no lowering of thermal conductivity though thermal cycling
- application with very low contact pressure, due to non elastomeric material, particularly suitable for clamp mounting of components
 electrically non-conductive, but not an insulator
- self adhering characteristics, also suitable for large areas
- no toxic ingredients
- custom required shapes on request
- all with protection foil on both sides

art. no.	basin	dimensions [mm]
FSF 52 P	plate, protection foil on both sides	330x343x0.127 ±0.025

	FSF 52 P
phase change temperature	52 °C
colour	white
tightness	2 g/cm ³
thermal conductivity	0.9 W/m·K
thermal resistance (1 in ² , TO 3) at	0.03 K/W
contact pressure of	0.031 N/mm ²
temperature range	≤+200°C
adhesive holding force	0.35 N/mm ²
class of flammibility	UL 94 V-0
dielectric constant	3.8 [1 kHz]
	3.4 [1 MHz]

Downloaded from Arrow.com.

E 20

74

-

D

:

Thermal transfer compounds

Silicon thermal transfer compound

- thermal transfer compound used to reduce the thermal transmission resistance between semiconductor and heatsink

Silicone-free thermal transfer compound

- thermal transfer compound used to reduce the thermal transmission resistance between semiconductor and heatsink

2

cartridge (310 ml)

	A COMPANY A	and and a second	
art. no.	basin	delivery quantity [ml]	delivery quantity [g]
WLPF 05	syringe	2	
WLPF 10	syringe	5	
WLPF 20	syringe	10	
WLPF 50	syringe	20	

	WLP	WLPF	
composition	silicone oil, inorganic filling material	silicone free synthetic liquid. Metal oxide filling.	
consistance	pa	stey	
colour	white	white-grey	
tightness	1.1 g/cm ³	approx. 2 g/cm ³	
thermal conductivity	0.61 W/m·K	>0.7 W/m·K	
specific electrical resistance	>10 ¹² Ω/cm		
flashpoint	none (DIN 53213)	of the basic oil >280°C (ISO 2592)	
drop point	>260°C		
thermal resistance	no bleeding at (4 h/200°C)	<1% (96 h/200°C)	
temperature range	-40°C +250°C	-40°C +150°C	
acid number	< 0.01 mg KOH/g		
solubility in water	inso	luble	

E 21

WLPF 300 S

Mica wafers Thermal conductive foil Thermal conductive paste Thermal conductive glue

 \rightarrow E 19 \rightarrow E7 – 10 → E 21 – 22 → E 23 – 24

Thermal conductive material Insulating caps Aluminium oxide wafers **Technical introduction**

→ E2-5 → E 51 E 17 – 18 → → A 2 – 8

300

D

Ξ

Thermal transfer compounds

Ceramic filled, silicone-free thermal conductive paste with high thermal conductivity

- suitable especially for silicone-sensitive applications

- no drying out, hardening or melting of the thermal conductive paste
- high long-term stability
- further package sizes, container types such as cans, cartridge, etc. upon request

art. no.	basin	delivery quantity [ml]	
WLPK 3	syringe	3	
WLPK 5	syringe	5	
WLPK 10	syringe	10	
		WLPK	
composition	silicone-fr	silicone-free, synthetic fluid ceramic filled	
consistance		pastey	
colour		silver	
tightness		1.4 g/cm ³	
thermal conductivity		10 W/m·K	
dielectric strength	not app	olicable, because conducting	
temperature range		-60°C +150°C	
solubility in water	y in water insoluble		

Mica waters
Thermal conductive foil
Thermal conductive paste
Thermal conductive glue

N

Α

-

:

Thermally conductive adhesive

- thermally conductive, electrically non-conductive adhesive
- two part epoxy resin adhesive, metaloxide filled
- fully replaces mechanical fastenings
- excellent function and application characteristicsto be stored at a cool and dark place

WLK 5	0	WLK 10	
art. no.	composition	art. no.	composition
WLK 5	5 g resin/0.5 g hardener	WLK 10	10 g resin/1 g hardener
		0	
	A CARANA		Alon
art. no.	composition	art. no.	composition
	composition 30 g resin/3 g hardener	art. no. WLK 120	composition 120 g resin/12 g hardener
	•		•
WLK 30	•	WLK 120	120 g resin/12 g hardener
WLK 30 thermal conductivity	30 g resin/3 g hardener	WLK 120 WLK	120 g resin/12 g hardener m∙K
WLK 30 thermal conductivity specific thermal resist	30 g resin/3 g hardener	WLK 120 WLK 0.836 W/r	120 g resin/12 g hardener m∙K W
WLK 30 thermal conductivity specific thermal resist volume resistance	30 g resin/3 g hardener	WLK 120 WLK 0.836 W/r 1.2 m·K/	120 g resin/12 g hardener m·K W
WLK 30 thermal conductivity specific thermal resist volume resistance temperature range	30 g resin/3 g hardener	WLK 120 WLK 0.836 W/r 1.2 m·K/ 1016 Ω/c -56°C + 1	120 g resin/12 g hardener m·K W
art. no. WLK 30 thermal conductivity specific thermal resist volume resistance temperature range hardening time glue layer mixture proportion	30 g resin/3 g hardener	WLK 120 WLK 0.836 W/r 1.2 m·K/ 1016 Ω/c -56°C + 1	120 g resin/12 g hardener m·K W cm 49°C c. 8 h / 120°C approx. 20 min

D

Μ

N

Thermal conductive glue fan cooler for Pentium and MMX heatsinks for Pentium III FC PGA Technical introduction $\begin{array}{rrrr} \rightarrow & E & 23 - 24 \\ \rightarrow & B & 59 \\ \rightarrow & B & 57 \\ \rightarrow & A & 2 - 8 \end{array}$

Thermally conductive adhesive

- solvent-free and thermal conductive two part adhesive
- epoxy based filled with aluminium oxide
- composition of hardener and resin (1:1) with statical mixing tube
- lockability of the container via Luer-Lock System
- good usage and working properties

art. no.	basin	contents of delivery
WLK DK 4	syringe	1x 4 ml syringe / 3x mixer WLK M4
WLK DK 10	syringe	1x 10 ml syringe / 3x mixer WLK M4
WLK DK 50	cartridge	1x 50 ml cartridge / 3x mixer WLK M50

	WLK DK				
thermal conductivity	1 W/m·K				
specific thermal resistance	118°C cm/W				
volume resistance	8·10 ¹¹ Ω/cm				
temperature range	-50°C +145°C				
working life at room temperature	approx. 30 min				
hardening time	25°C approx. 4 h/50°C approx. 1 h/85°C approx. 10 min/125°C approx. 2 min				
glue layer	Epoxid				
mixture proportion	1:1				

Accessories

more package sizes and container types upon request
 store cool and dry

art. no.	contents of delivery
WLK M 4	10x mixer für 4 & 10 ml syringe (packing unit 10 pieces)
WLK M 50	10x mixer für 50 ml cartridge (packing unit 10 pieces)
WLK P	1x applicator gun for 50 ml cartridge

E 21 – 22

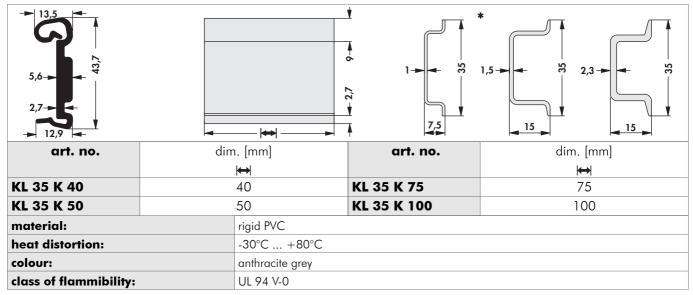
1

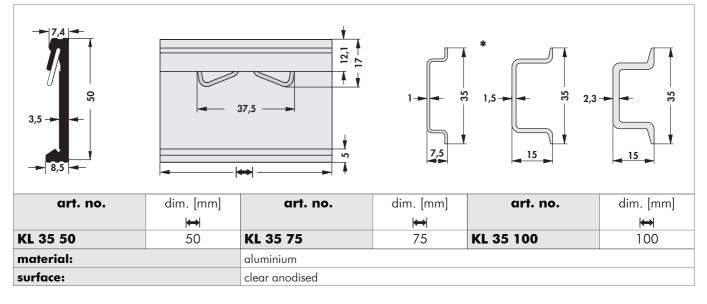
C

Ν

N

Fastening for mounting rail





- universal, solid plastic clip fastening for all 35 mm mounting rails
- suitable for rail material thicknesses from 1 to 2.3 mm according to DIN EN 60 715 (formerly DIN EN 50 022)
- registrated design DE 200 07 435.0
- fast and easy mounting of heatsinks, casings etc. due to direct snap up on the mounting rail
- safe hold due to a stable extruded plastic profile with integrated spring back
- electroconductive material or surface on request
- special lengths and treatments on customer's request
- * = examples of mounting rail versions suitable for **KL 35 K**

- safe hold due to a stable extuded profile with integrated stainless steel spring

- special lengths (≥40mm), treatments and surfaces on request
- * = examples of mounting rail versions suitable for KL 35

M

Distance sleeves for PCB's in HP grid \rightarrow E 39Mounting pads for transistorsExtractors for guide rails \rightarrow E 30Mounting parts for heatsinksInsulting clamping parts \rightarrow E 45Vibration dampersVibration dampers \rightarrow E 41Technical introduction

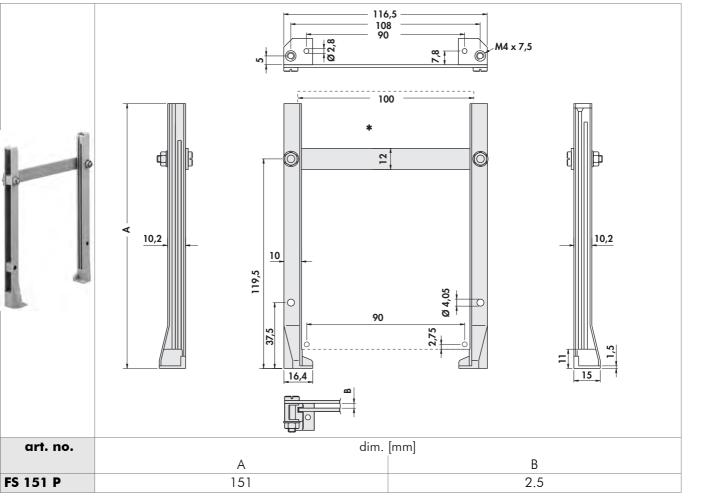
E 25

E 47

E 49

→

D


Ξ

÷.

Guide rails

Screw-on type

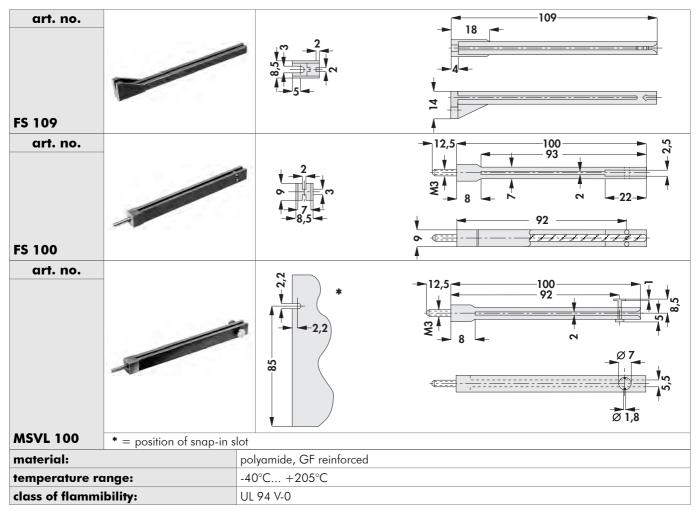
- for eurocards
- connectors according to DIN 41612 or VG 95324 mountable
- high stability through inner reinforcements
- stable foot mounting trough inserted brass- thread inserts
 groove depth: 2.2 mm, groove width 1.9 mm
- suitable for PCB thicknesses from 0.5 to 1.85 mm
- * = printed circuit board

art. no. CLIP 151 only for FS 151 P	$\begin{array}{c} \\ \hline \\ $			
material:	polycarbonate, GF reinforced			
mperature range: -40°C +125°C				
class of flammibility:	UL 94 V-0			

Solder pins	→ E 43	Distance sleeves for PCB´s in HP grid →	E 39	
Snap-in guide rails	→ E 29 – 30	Mounting pads for transistors \rightarrow	E 47	E 26
Extractors for guide rails	→ E 30	Vibration dampers \rightarrow	E 41	E 20
Insulting clamping parts	→ E 45	Technical introduction \rightarrow	A 2 – 8	

1

:


C

k

Guide rails

Screw-on type

art. no.		dim. [mm]			
	A	В	С		
FS 6 065	65	50	7		
FS 6 070	70	50	12		
FS 6 080	80	67	5		
FS 6 090	90	67	15		
FS 6 100	100	84	8		
FS 6 110	110	84	18		
FS 6 120	120	84	28		
FS 6 130	130	84	38		
material:	polycarbonate, GF rei	nforced			
temperature range:	-20°C +130°C				
thread nut:	brass nickel-plated				
class of flammibility:	UL 94 V-0				

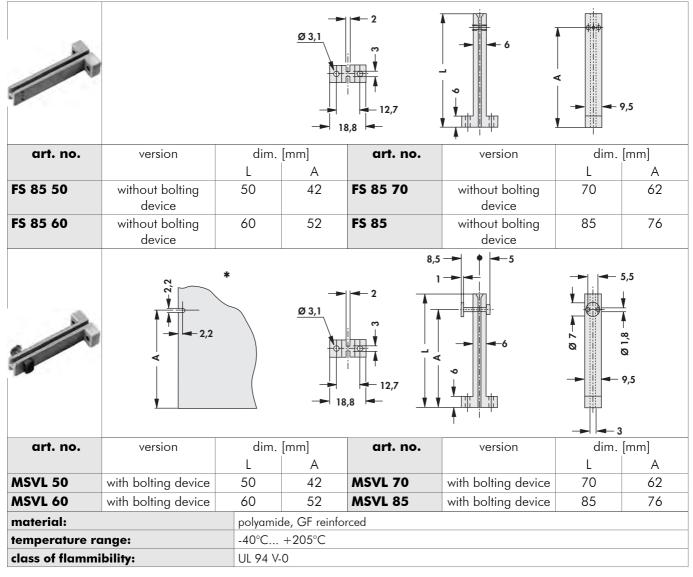
N

E 27

Solder pins Snap-in guide rails Extractors for guide rails Insulting clamping parts $\begin{array}{rrr} \rightarrow & \mathsf{E} \ 43 \\ \rightarrow & \mathsf{E} \ 29 - 30 \\ \rightarrow & \mathsf{E} \ 30 \\ \rightarrow & \mathsf{E} \ 45 \end{array}$

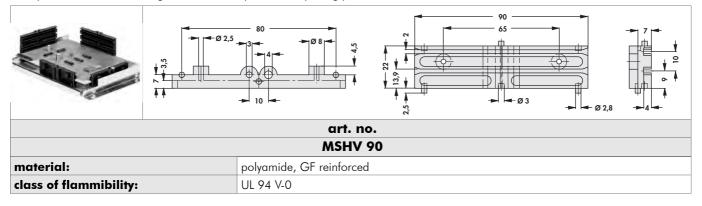
Distance sleeves for PCB´s in HP grid →E 39Mounting pads for transistors→E 47Vibration dampers→E 41Technical introduction→A 2 - 8

B


D

G

Guide rails


Lockable mounting rails

- lockable by pushing the plastic pin or the metal button
- no conductive connection to the PCB
- the PCB requires a snap-in slot in accordance to the drawing
- other position with locking device on request
- -* = position of snap-in slot

- the guide bars have got mounting holes for vertical and horizontal assembly of printed circuits

- they can also be stacked together horizontally or vertically using pins and treatments

Solder pins	→ E 43	Distance sleeves for PCB´s in HP grid →	E 39	
Snap-in guide rails	→ E 29 – 30	Mounting pads for transistors \rightarrow	E 47	E 28
Extractors for guide rails	→ E 30	Vibration dampers \rightarrow	E 41	E 20
Insulting clamping parts	→ E 45	Technical introduction \rightarrow	A 2 – 8	

Δ

:

C

N

Guide rails

Snap-in

Δ

B

C

D

E

G

н

Κ

Ľ

narrow version

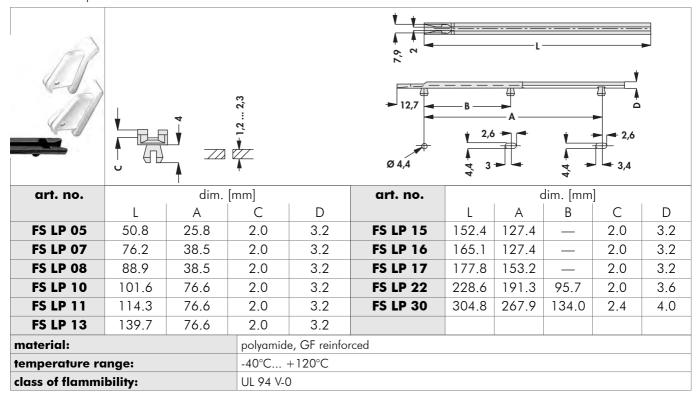
	3,4	C'C C'I ↓ 6,4 ↓ ↓ 6,4 ↓ ↓ Ø 3,2 ↓ ↓ Ø 3,2 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		R 1,5	L	
art. no.	dim.	[mm]	art. no.		dim. [mm]	
	L	A		L	A	В
FS S 06 2	63.5	50.8	FS S 15 2	152.4	139.7	
FS S 07 2	76.2	63.5	FS S 16 2	165.1	152.4	
FS S 08 2	88.9	76.2	FS S 19 3	190.5	177.8	88.9
FS S 10 2	101.6	88.9	FS S 20 3	203.2	190.5	95.2
FS S 11 2	114.3	101.6	FS S 21 2	215.9	203.2	
FS S 12 2	127.0	114.3	FS S 21 3	215.9	203.2	101.6
FS S 13 2	139.7	127.0				
material:		nylon, natural colour	ed			
emperature ra	nge:	-40°C +120°C				
class of flammil	bility:	UL 94 V-2				

wide version

	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	L		2'9 - 1	L FS BF		
	3,2,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,	£'2 2'1 - 12,	7 Ø 4,6	AR		→ 1,2 2,3 3,2 → 1	4,3 4,3 4,3 4,3 4,3 4,3 4,3 4,3 4,3 4,3
art. no.	version	dim.	[mm]	art. no.	version	dim.	[mm]
		L	A			L	A
FS BT 06	deep groove	63.5	38.1	FS BF 06	shallow groove	63.5	38.1
FS BT 08	deep groove	88.9	63.5	FS BF 07	shallow groove	76.2	50.8
FS BT 10	deep groove	101.6	76.2	FS BF 10	shallow groove	101.6	76.2
FS BT 11	deep groove	114.3	88.9	FS BF 11	shallow groove	114.3	88.9
FS BT 13	deep groove	139.7	114.3	FS BF 13	shallow groove	139.7	114.3
FS BT 15	deep groove	152.4	127.0	FS BF 15	shallow groove	152.4	127.0
FS BT 16	deep groove	165.1	139.7	FS BF 19	shallow groove	190.5	165.1
FS BT 19	deep groove	190.5	165.1	FS BF 20	shallow groove	203.2	177.8
FS BT 20	deep groove	203.2	177.8				
naterial:		nylon, n	atural coloure	d			
emperature ra	ange:		+120°C				
lass of flammi		UL 94 V					

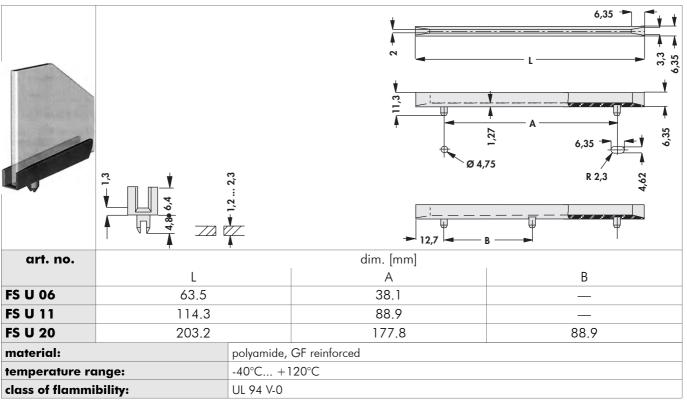
Ν

E 29


Solder pins Snap-in guide rails Extractors for guide rails Insulting clamping parts $\begin{array}{rrr} \rightarrow & \mathsf{E} \ 43 \\ \rightarrow & \mathsf{E} \ 29 - 30 \\ \rightarrow & \mathsf{E} \ 30 \\ \rightarrow & \mathsf{E} \ 45 \end{array}$

Distance sleeves for PCB's in HP grid →E 39Mounting pads for transistors→E 47Vibration dampers→E 41Technical introduction→A 2 - 8

Guide rails


Ejectors

low profile
suitable for ejectors art. no. AHG V 14 und AHG V 17

– deep guideway

bevelled entrance zone

Solder pins	\rightarrow	E 43	Diste
Snap-in guide rails	→	E 29 – 30	Μου
Extractors for guide rails	→	E 30	Vibr
Insulting clamping parts	→	E 45	Tech

 Distance sleeves for PCB's in HP grid →
 E 39

 30
 Mounting pads for transistors
 →
 E 47

 Vibration dampers
 →
 E 41

 Technical introduction
 →
 A 2

	207	
•	E 47	
•	E 41	
•	A 2 – 8	

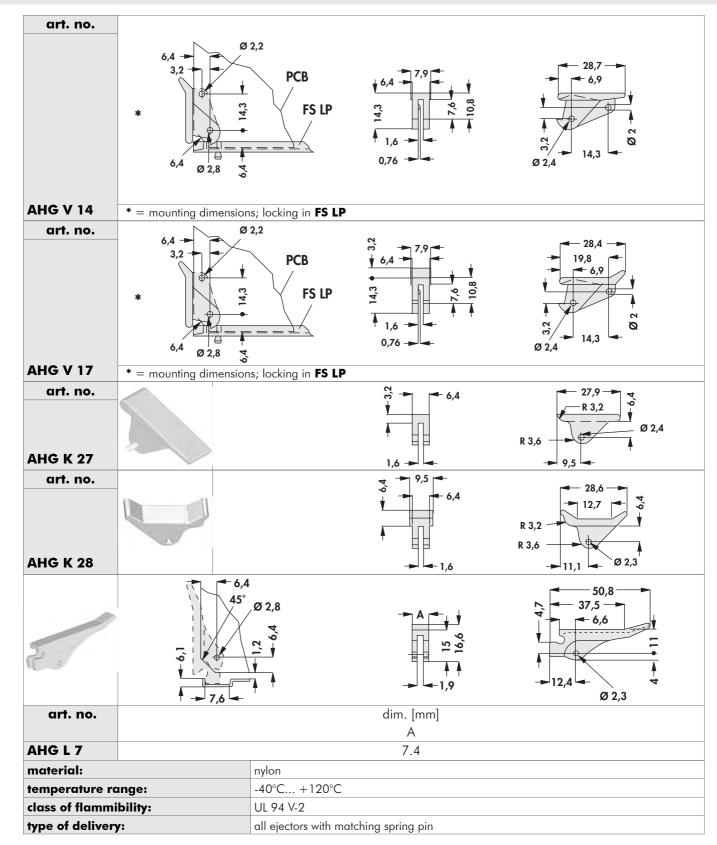
N

-

:

ŝ

Ejectors


.

Б

Ξ

÷.

G

Ν

E 31

Solder pins Snap-in guide rails Extractors for guide rails Insulting clamping parts $\begin{array}{rrrr} \rightarrow & \mathsf{E} \ 43 \\ \rightarrow & \mathsf{E} \ 29 - 30 \\ \rightarrow & \mathsf{E} \ 30 \\ \rightarrow & \mathsf{E} \ 45 \end{array}$

Distance sleeves for PCB's in HP grid \rightarrow E 39Mounting pads for transistors \rightarrow E 47Vibration dampers \rightarrow E 41Technical introduction \rightarrow A 2 - 8

Downloaded from Arrow.com.

Insulating spacers with internal and external thread

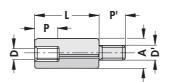
1

-

F

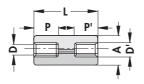
C

k


field of applications:

- insulated assembly of stacked PCB
- insulated assembly of stacked heatsinks with varying capacities
- insulated assembly of chassis plates in cases
- insulated supports in the wiring
- mechanicaly very stable as threads are made of brass
- other lengths on request
- dimensions = nominal size: deviation ± 0.5 mm
- ... please indicate length "L"

art. no.				dim. [mm]		
	A	D/D'		L	P/P'	
ISAB 25 A	8.0	M2.5/M2.5		10/ 15/ 20/ 25	6.0	
ISAB 3 A	8.0	M3/M3		10/20	6.0	
ISAB 4 A	8.0	M4/M4		15/20	6.0	
ISAB 6 A	12.7	M6/M6		25	12.7	
dielectric stren	gth:		27 kV/mm			
creeping curre	- nt resis	stance:	CTI	500		
thread inserts:			brass			
temperature range: -3			-30°C +85°C (short term +200°C)			
			raw			
plastic body: p			polyc	polyamide 66		
colour:			natu	ral (opaque)		


Spacers	→	E 40	Mounting material for semiconduct.	→	E 44 – 48	
Screw mounted guide rails	→	E 26 – 30	Mounting parts for heatsinks	→	E 49 – 50	E 32
Ejectors	→	E 31	Thermal conductive material	→	E 2 – 24	EJZ
Vibration dampers	→	E 41	Technical introduction	→	A 2 – 8	
•						

Insulating spacers with internal and external thread

art. no.		dim. [mm]						
	A	D/D'	L	P/P'				
ISAB 25 B	8.0	M2.5/M2.5	10/ 13/ 15/ 18/ 20/ 25/ 30	6.0				
ISAB 3 B	8.0	M3/M3	10/ 13/ 15/ 18/ 20/ 25/ 30/ 35/ 40	6.0				
ISAB 4 B	8.0	M4/M4	15/ 20/ 25/ 30/ 40	6.0				
ISAB 5 B	9.5	M5/M5	20/ 30/ 40	10.0				
ISAB 6 B	12.7	M6/M6	25/ 30/ 35/ 40/ 50	12.7				

- dimensions = nominal size: deviation ± 0.5 mm; at **ISAB 3 C ...** L=10 => P/P'=3.5

art. no.			dim [mm]				
uri. no.			dim. [mm]				
	A	D/D'	L	P/P'			
ISAB 25 C	8.0	M2.5/M2.5	10/ 13/ 15/ 18/ 20/ 25/ 30	6.0			
ISAB 3 C	8.0	M3/M3	10/ 13/ 15/ 18/ 20	6.0			
ISAB 4 C	8.0	M4/M4	15/35	6.0			
ISAB 5 C	9.5	M5/M5	20	10.0			
ISAB 6 C	12.7	M6/M6	25	12.0			
ISAB 6 C	12.7	M6/M6	30	12.7			
dielectric stren	gth:	27	27 kV/mm				
creeping curre	nt resis	tance: CTI	СТІ 600				
thread inserts:		bras	S				
temperature range: -3			-30°C +85°C (short term +200°C)				
surface: ray			raw				
plastic body: p		poly	polyamide 66				
colour:		natu	natural (opaque)				

E 33

Ν

N

Spacers Screw mounted guide rails Ejectors Vibration dampers

 $\begin{array}{rrr} \rightarrow & E \ 40 \\ \rightarrow & E \ 26 \ -30 \\ \rightarrow & E \ 31 \\ \rightarrow & E \ 41 \end{array}$

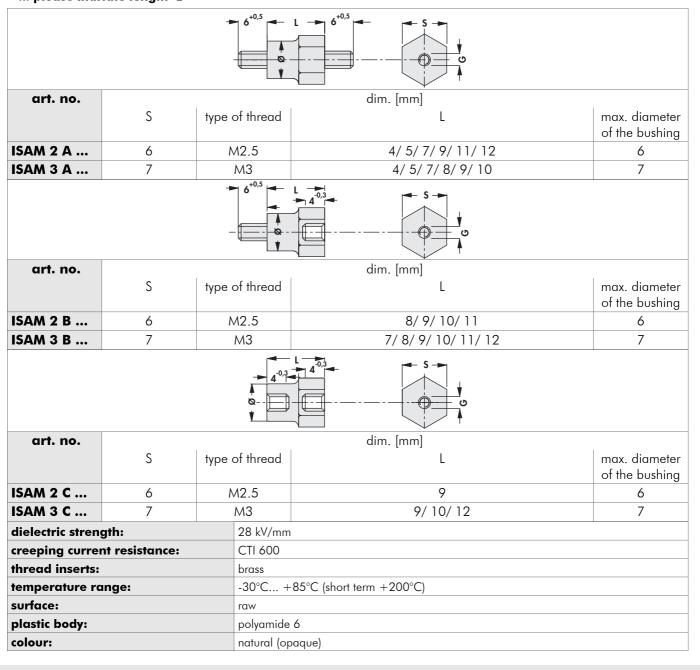
Mounting material for semiconduct. \rightarrow E 44 - 48Mounting parts for heatsinks \rightarrow E 49 - 50Thermal conductive material \rightarrow E 2 - 24Technical introduction \rightarrow A 2 - 8

Downloaded from Arrow.com.

P

Б

Ξ


G

Miniature spacers with threads

- allows compact, insulated constructions

- reduced volume in case of stack assembly
- insulated mounting of heatsinks, PCB, housingparts etc.
- very good mechanical stability due to brass inserts dimensions = nominal size: deviation ± 0.5 mm
- ... please indicate length "L"

Screw mounted guide rails \rightarrow E 26 - 30MoEjectors \rightarrow E 31The	unting material for semiconduct. \rightarrow E 44 - 48unting parts for heatsinks \rightarrow E 49 - 50rmal conductive material \rightarrow E 2 - 24unical introduction \rightarrow A 2 - 8
---	--

Downloaded from Arrow.com.

Δ

D

G

ŀ

K

ŀ

N

N

34

Distance hexagonal bolts insulating

field of applications:

В

C

D

E

G

E

- insulated assembly of stacked PCBs
- insulated assembly of stacked heatsinks with varying capacities
- insulated assembly of chassis plates in cases
- insulated supports in the wiring
- mechanicaly very stable, as threads are made of brass
- other lengths on request
- dimensions = nominal size: deviation ± 0.5 mm
- … please indicate length "L"

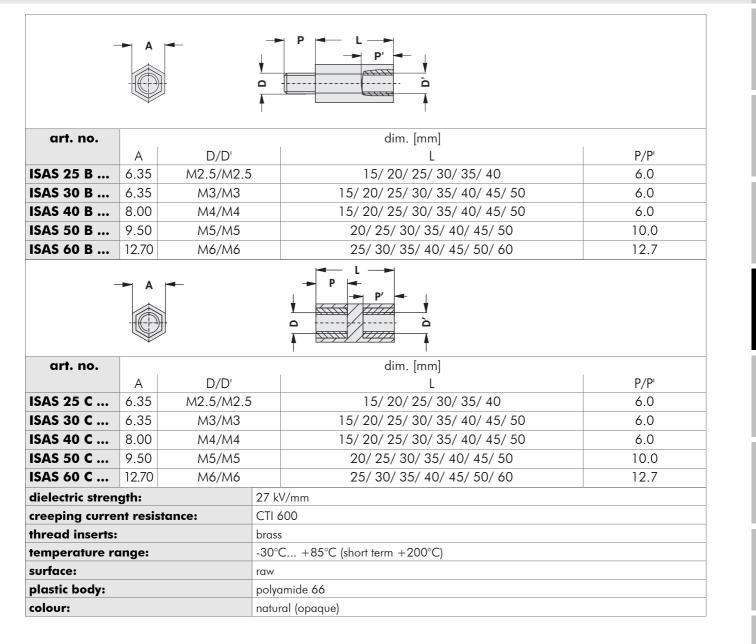
_	A			P - L - P' -	
art. no.				dim. [mm]	
	A	D/D'		L	P/P'
ISAS 25 A	6.35	M2.5/M2.5		15/20/25/30/35/40	6.0
ISAS 30 A	6.35	M3/M3		15/20/25/30/35/40/45/50	6.0
ISAS 40 A	8.00	M4/M4		15/20/25/30/35/40/45/50	6.0
ISAS 50 A	9.50	M5/M5		20/ 25/ 30/ 35/ 40/ 45/ 50	10.0
ISAS 60 A	12.70	M6/M6		25/ 30/ 35/ 40/ 45/ 50/ 60	12.7
dielectric stren	gth:		27 kV/mm		
creeping curre	nt resis	stance:	СТІ 600		
thread inserts:			brass		
temperature ra	ange:		-30°C +85°C (short term +200°C)		
surface:			raw		
plastic body:			polyamide 66		
colour:			natu	ral (opaque)	

Μ

N

1

Κ


	E	3	5

Spacers Screw mounted guide rails Ejectors Vibration dampers

 $\begin{array}{rrr} \rightarrow & E \ 40 \\ \rightarrow & E \ 26 \ -30 \\ \rightarrow & E \ 31 \\ \rightarrow & E \ 41 \end{array}$

Downloaded from Arrow.com.

Distance hexagonal bolts insulating

Spacers Screw mounted guide rails **Eiectors Vibration dampers**

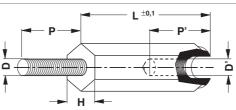
→ E 49 – 50 E 2 – 24 A 2 – 8

E 36

-

:

Spacers with internal and external thread


- other lengths and threads on request

– … please indicate length "L"

- other lengths and threads on request

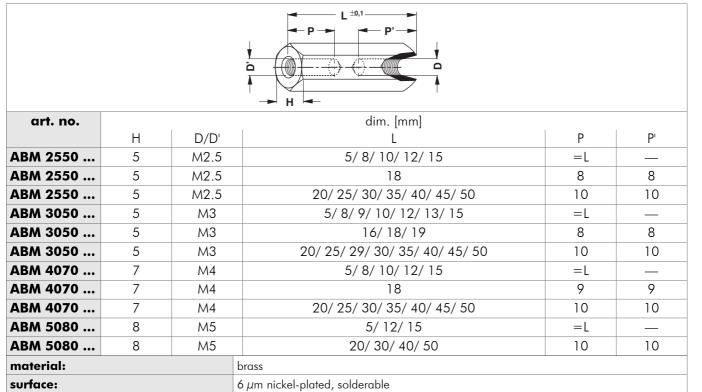
– ... please indicate length "L"

art. no.	dim. [mm]						
	Н	D/D'	L	P	P'		
GBP 3060	6	М3	10	8	7		
GBP 3060	6	М3	12	8	8		
GBP 3060	6	М3	15/ 18/ 20/ 25/ 30	8	10		
GBP 4080	8	M4	10	8	7		
GBP 4080	8	M4	12	8	9		
GBP 4080	8	M4	15/ 18/ 20/ 25/ 30/ 35/ 40/ 45	8	10		
material:			polyamide, GF reinforced				
temperature range:			-30°C +110°C				
colour:			black				

D

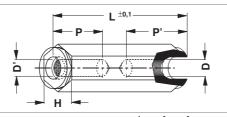
E 37

Spacers Screw mounted guide rails Ejectors Vibration dampers $\begin{array}{l} \rightarrow \quad \mathsf{E} \ 40 \\ \rightarrow \quad \mathsf{E} \ 26 - 30 \\ \rightarrow \quad \mathsf{E} \ 31 \\ \rightarrow \quad \mathsf{E} \ 41 \end{array}$


Mounting material for semiconduct. \rightarrow E 44 - 48Mounting parts for heatsinks \rightarrow E 49 - 50Thermal conductive material \rightarrow E 2 - 24Technical introduction \rightarrow A 2 - 8

Downloaded from Arrow.com.

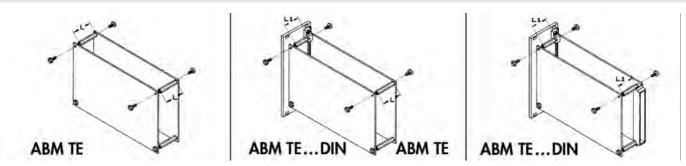
Distance sleeves with internal thread


- other lengths and threads on request

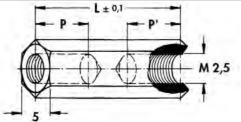
- ... please indicate length "L"

- other lengths and threads on request

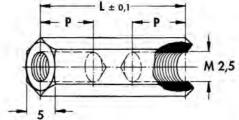
- ... please indicate length "L"



art. no.			dim. [mm]				
	Н	D/D'	L	Р	P'		
ABP 2550	5	M2.5	10	=L	_		
ABP 2550	5	M2.5	15/ 20/ 25/ 30	6	6		
ABP 3060	6	M3	10/ 12/ 15	=L			
ABP 3060	6	M3	20	8	8		
ABP 3060	6	M3	25/30	10	10		
ABP 4080	8	M4	10/ 15/ 20	=L	_		
ABP 4080	8	M4	30/40	10	10		
material:			polyamide, GF reinforced				
temperature range:			-30°C +110°C				
colour:			black				


→ E 49 – 50 E 2 – 24 A 2 – 8

-


Distance sleeves for PCB in HP grid

- these internally threaded distance sleeves mount PCBs to the correct pitch for insertion into subracks
- ABM TE: spacer between two PC boards
- ABM TE ... DIN:spacer between two PC boards, one of them equipped with DIN-connector resp. A front panal/PCB Interconnection deviece VS 1
- spacers with internal and external thread to HP grid on request

art. no.	suitable for TE	dim. [mm]	
		L	P/P'
ABM TE 04	4	18.72	8
ABM TE 06	6	28.88	8
ABM TE 08	8	39.04	8

art. no.	suitable for TE	dim. [mm]			
		L	Р		
ABM TE 04 DIN 4		12.72	=L		
ABM TE 06 DIN	6	22.88	8		
ABM TE 08 DIN 8		33.04	8		
material:		brass			
surface:		nickel-plated, solderable			

– ... please indicate length "L"

art. no.			dim. [mm]
un. no.			uni, įninij
	A	D	L
AHM 3260	6	3.2	1/ 2/ 3/ 4/ 5/ 6/ 7/ 8/ 9/ 10/ 12/ 15/ 18/ 25/ 30
AHM 4380	8	4.3	2/ 3/ 4/ 5/ 6/ 7/ 8/ 9/ 10/ 12/ 15/ 18/ 20
material:			brass
surface:			8 μ m nickel-plated, solderable

Ν

Spacers Screw mounted guide rails Ejectors Vibration dampers $\begin{array}{rrr} \rightarrow & E \ 40 \\ \rightarrow & E \ 26 \ -30 \\ \rightarrow & E \ 31 \\ \rightarrow & E \ 41 \end{array}$

Mounting material for semiconduct. \rightarrow E 44 - 48Mounting parts for heatsinks \rightarrow E 49 - 50Thermal conductive material \rightarrow E 2 - 24Technical introduction \rightarrow A 2 - 8

Downloaded from Arrow.com.

E 39

Ξ

G

Distance spacers

- special lengths on request

Ìllin.		7				
art. no.	C [mm]	art. no.	C [mm]	art. no.	C [mm]	
DR 071 V0	1	DR 079 V0	9	DR 725 V0	25	
DR 072 V0	2	DR 710 V0	10	DR 730 V0	30	
DR 073 V0	3	DR 711 V0	11	DR 735 V0	35	
DR 074 V0	4	DR 712 V0	12	DR 740 V0	40	
DR 075 V0	5	DR 713 V0	13	DR 745 V0	45	
DR 076 V0	6	DR 714 V0	14	DR 750 V0	50	
DR 077 V0	7	DR 715 V0	15	DR 760 V0	60	
DR 078 V0	8	DR 720 V0	20			
lii.		8				
art. no.	C [mm]	art. no.	C [mm]	art. no.	C [mm]	
DR 081 V0	1	DR 089 V0	9	DR 825 V0	25	
DR 082 V0	2	DR 810 V0	10	DR 830 V0	30	
DR 083 V0	3	DR 811 V0	11	DR 835 V0	35	
DR 084 V0	4	DR 812 V0	12	DR 840 V0	40	
DR 085 V0	5	DR 813 V0	13	DR 845 V0	45	
DR 086 V0	6	DR 814 V0	14	DR 850 V0	50	
DR 087 V0	7	DR 815 V0	15	DR 860 V0	60	
DR 088 V0	8	DR 820 V0	20			
]]]]]]]]]						
art. no.	C [mm]	art. no.	C [mm]	art. no.	C [mm]	
DR 105 V0	5	DR 125 V0	25	DR 140 V0	40	
DR 110 V0	10	DR 130 V0	30	DR 145 V0	45	
DR 115 V0	15	DR 135 V0	35	DR 150 V0	50	
DR 120 V0	20					
material:		polyamide				
heat distortion:		180°C				
temperature range:		+180°C				
colour:		black				
class of flammibility:		UL 94 V-0				

	ľ	l	l
		1	

C

D

.

E

C

ł

Γ

k

ľ

N

E 40

Spacers Screw mounted guide rails Ejectors **Vibration dampers**

→ E 40 → E 26 – 30 → E 31 → E41

 $\begin{array}{c} \rightarrow \quad E \ 2 - 24 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

Downloaded from Arrow.com.

Contructional elements to vibration damping and insulation

- universal applicable round metal, antivibration buffers for solving vibration problems
- other lengths and hardness range on request
- ... please indicate height "H"

Field of applications:

- reduction of dynamic component stress
- vibration insulation for disc drives and motors
- impact reducing on sensitive instruments
- reduction of the noise level
- prevention of vibration resonance phenomena (amplified effect)
- compensation of mechanical inbalances

~								
art. no.				dim.	[mm]			
	Н		type of th	read		ØD		L
SMP 410 A	10		M4			10		10
SMP 415 A	15		M4			15		10
SMP 515 A	15		M5			15		12
0								
art. no.				dim.	[mm]			
	Н	ty	pe of thread	Ø	D	Ľ		L
SMP 410 B	10		M4	1	0	4		10
SMP 415 B	15		M4	1	5	4		10
SMP 515 B	15		M5	1	5	5		12
1				G -				
art. no.				dim.	[mm]			
	Н		type of th	read		ØD		Ľ
SMP 410 C	15/20		M4			10		4
SMP 415 C	15/20		M4			15		4
SMP 515 C	20		M5			15		5
material:		ru	rubber-metal connection					
rubber:			natural rubber (NR according to ISO)					
hardness range:			\sim 50 Shore A					
extensibility and tebsile strength:			very good					
colour:			black					
metall parts:			steel tin-plated					
temperature range	**	-4	10°C +80°C (sh	ort term +9	0°C)			

D

L

Ν

E 41

Screw mounted guide rails Ejectors Insulating distance sleeves Spacers $\begin{array}{rrr} \rightarrow & E\ 26\ -\ 28 \\ \rightarrow & E\ 31 \\ \rightarrow & E\ 32\ -\ 39 \\ \rightarrow & E\ 40 \end{array}$

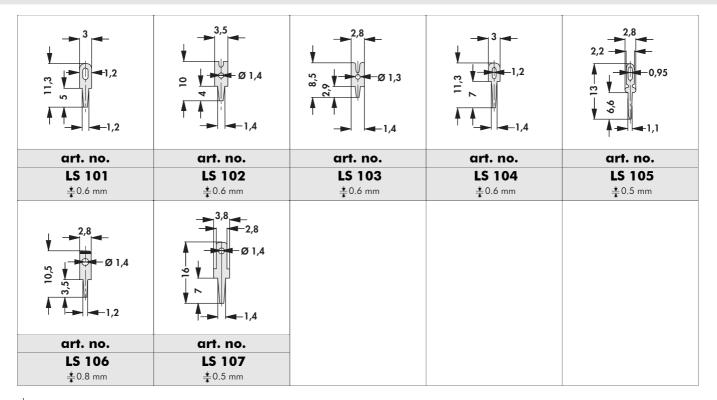
 Insulting clamping parts
 →
 E 45

 Mounting parts for heatsinks
 →
 E 49 - 50

 Mounting material for semiconduct.
 →
 E 44

 Technical introduction
 →
 A 2 - 8

Solder terminals


	1
LSD 07520	
LSD 08910	
$\begin{array}{c c} \hline art. no. \\ \hline \\ $	E
LSD 08920	
art. no.	G
art. no.	ŀ
LSD 13520 material: insulating body: PTFE (teflon)	
contact pin:brass, 2 μ m Ni, 4 μ m Ag	
temperature range: -200°C +260°C	

Δ

L

N

Solder pins

	LS
material	brass, 6 μm Sn

E 43

Solder terminals	÷
Distance sleeves for PCB's in I	HP grid <i>→</i>
Spacers	→
Insulting clamping parts	→

→	E 42
I→	E 39
→	E 39 – 40
→	E 45

Downloaded from Arrow.com.

В

C

D

E

G

Μ

Mounting kits for insulation of power transistors

MST 3 MSTS 3		000 0 0 0	MST 220 MSTS 220		
art. no.	for transistor	version	contents of delivery		
MST 3	TO 3	with mica wafer GS 3	1 mica wafer, 2 insulator sleeves, 1 tin-plated solder lug, 2 cheese head screws, nickel-plated, 2 screw nuts M3 nickel-plated		
MSTS 3	TO 3	with silicone wafer WS 3	1 silicone wafer, 2 insulator sleeves, 1 tin-plated solder lug, 2 cheese head screws, nickel-plated, 2 screw nuts M3 nickel-plated		
MST 220	TO 220	with mica wafer GS 220	1 mica wafer, 1 tin-plated solder lug, 1 cheese head screw, nickel- plated, 1 screw nut M3 nickel-plated		
MSTS 220	TO 220	with silicone wafer WS 220	1 silicone wafer, 1 insulator sleeve, 1 tin-plated solder lug, 1 cheese head screw, nickel-plated, 1 screw nut M3 nickel-plated		

Snap rivet for quick fastening of TO 220

- detachable plastic snap rivet for quick fastening of transistors onto heatsinks and cooling plates (e.g. FK 212-CB, FK 216-CB, FK 222-220. FK 232. FK 233. FK 235-L 1)
- suitable for material thickness: 1 1.5 mm
- suitable for hole diameter: 3.5 4 mm
- -* = bottom view, pin not inserted

	Ø 6,4	Ø 4,6	
--	-------	-------	--

art. no.	for transistor		
EPN 1	TO 220		
material:	polysulphone, GF reinforced		
temperature range:	-70°C +180°C (5s+260°C)		
class of flammibility:	UL 94 V-0		

→ E 49 – 50

→ E 26 – 30

C 2 – 3

→ E 40

→

Retaining springs for transistors Technical introduction $\begin{array}{l} \rightarrow \quad E \ 41 \\ \rightarrow \quad E \ 2 \ - \ 24 \\ \rightarrow \quad A \ 115 \ - \ 117 \\ \rightarrow \quad A \ 2 \ - \ 8 \end{array}$

E 44

Spacers Guide rails for PCBs Finger-shaped heatsinks

Mounting parts for heatsinks

Downloaded from Arrow.com.

_

Ϊ.

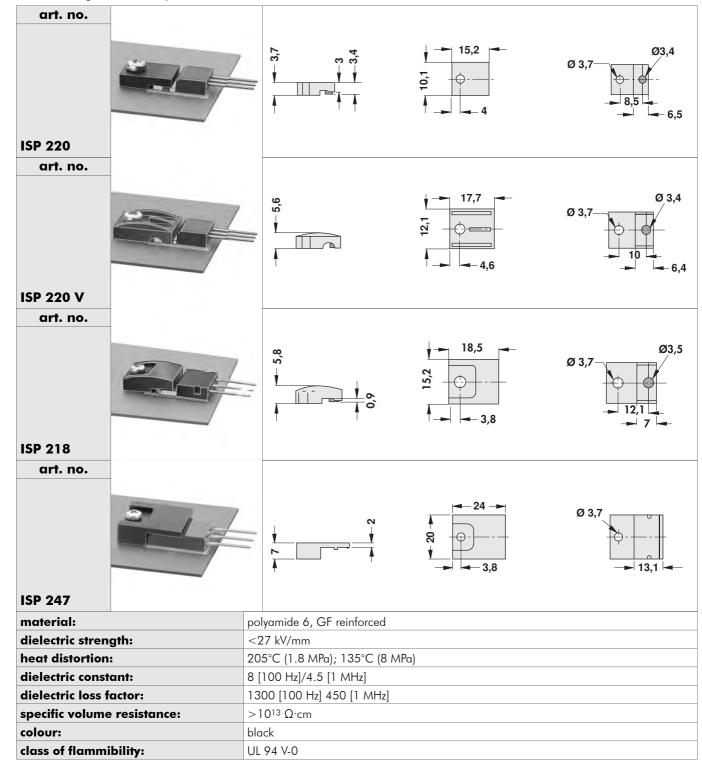
6

D

:

F

G


K

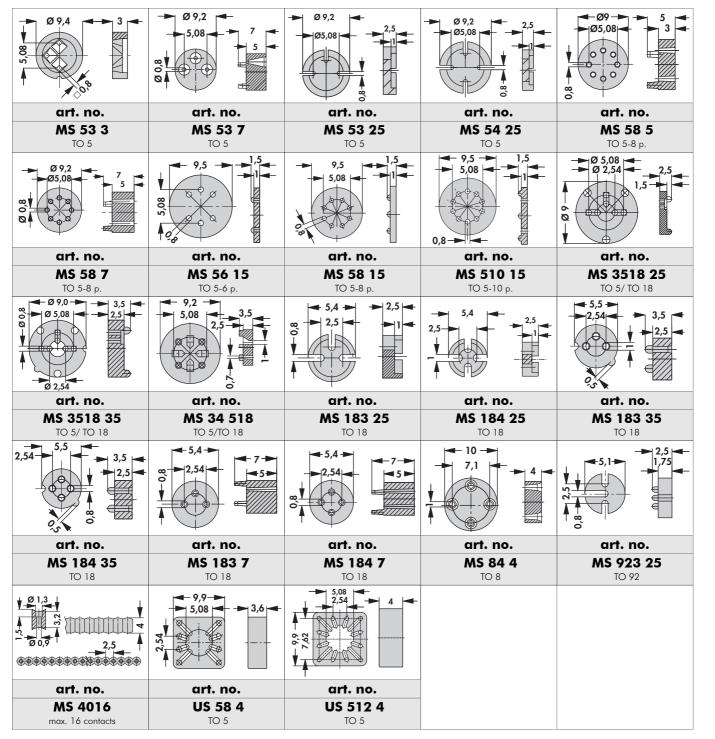
l

Insulating clamping parts for power transistors

Plastic insulating clamping parts for mounting transistors in cases TO 220, TO 218 and TO 247 for enhanced dielectric stengths

- electrically insulating assembly of the transistor by means of a plastic clamping part
- pin reaching into the hole of the transistor plate
- fastening of clamping part onto the mounting plate by screws, no electroinsulating connection to the transistor
- dielectric strength only determined by the insulating washer between transistor and mounting surface
- no insulating bush necessary, thus no dielectric breakdown

E 45


Profiles for PCB components Heatsinks for PCB Profiles for PCB mounting Thermal conductive material $\begin{array}{r} \rightarrow & A \ 91 \\ \rightarrow & A \ 89 \\ \rightarrow & A \ 89 - 112 \\ \rightarrow & E \ 2 - 23 \end{array}$

Insulating distance sleeves Vibration dampers 12 Aluminium oxide wafers Technical introduction $\begin{array}{rrrr} \rightarrow & E & 32 - 34 \\ \rightarrow & E & 41 \\ \rightarrow & E & 17 - 18 \\ \rightarrow & A & 2 - 8 \end{array}$

.

Ξ

Mounts

* = transfer washer: the US-pads convent the TO 5 pin circle to a pitch of 2.54 mm

material:	polyamide 6, GF reinforced
temperature range:	-40°C +205°C
class of flammibility:	UL 94 V-0 (at thickness ≥3mm), UL 94 V-1

Mounting parts for heatsinks Heatsinks for PCB Profiles for PCB mounting Thermal conductive material → E 49 – 50 → A 89 – 93

→

 $\rightarrow A 89 - 93$ $\rightarrow A 89 - 112$

- 50 Insulating distance sleeves- 93 Finger-shaped heatsinks
- A 89 112 Retaining springs for transistors

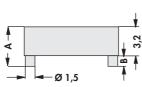
E 2 – 24 Technical introduction

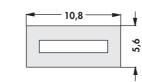
 $\begin{array}{l} \rightarrow \quad E \ 32 - 34 \\ \rightarrow \quad C \ 2 - 3 \\ \rightarrow \quad A \ 115 - 117 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

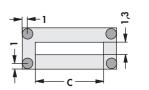
E 46

-

Ī


h


Mounts


Mounts for power transistors

- for TO 220, TO 219, TO 202 and similar
- for vertical and horizontal mounting
- also suitable as mounting bracket for angled connections

90						
art. no.	colour	dim. [mm]				
		A	В	С		
MLW 32	white	3.2	_	7.1		
MLW 44	white	4.4	1.3	7.1		
MLW 51	white	5.1	1.9	7.1		
material:		polyamide 6 (nylon)				
temperature ra	inge: -4	-40°C +120°C				
class of flammi	bility:	UL 94 V-2				

Mounts for rectangular LEDs

– for LED 2x4 mm oder 2x5 mm

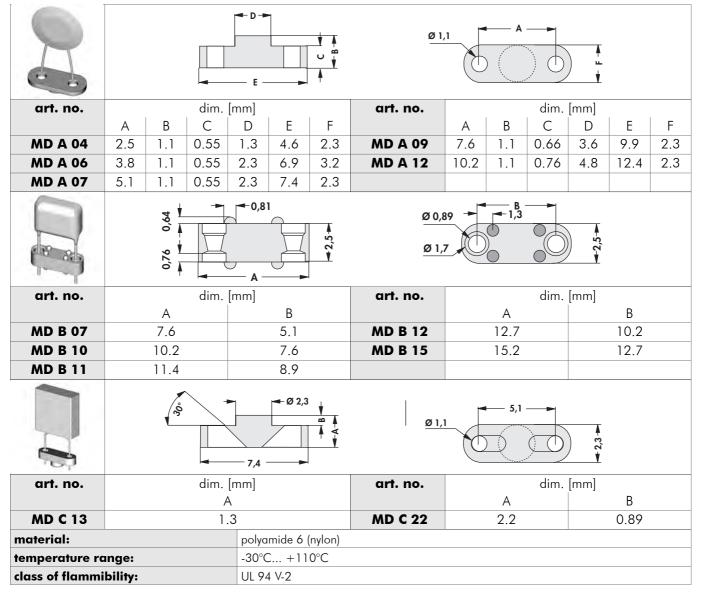
- symmetric version for easy assembly

self-adhesive

		5,2 - 2,5 1,25 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	I		
art. no.	colour		dim. [mm]		
		A	В	С	
MRL 20	white	2	0.5	1	
material:	р	olyamide 6 (nylon)			
temperature range:		-40°C +120°C			
class of flammibility:		UL 94 V-2			

÷.

G


Downloaded from Arrow.com.

Mounting parts for heatsinks Heatsinks for PCB Profiles for PCB mounting Thermal conductive material $\begin{array}{r} \rightarrow \quad E 49 - 50 \\ \rightarrow \quad A 89 - 93 \\ \rightarrow \quad A 89 - 112 \\ \rightarrow \quad E 2 - 24 \end{array}$

Insulating distance sleeves Finger-shaped heatsinks Retaining springs for transistors Technical introduction $\begin{array}{rrr} \rightarrow & E & 32 - 34 \\ \rightarrow & C & 2 - 3 \\ \rightarrow & A & 115 - 117 \\ \rightarrow & A & 2 - 8 \end{array}$

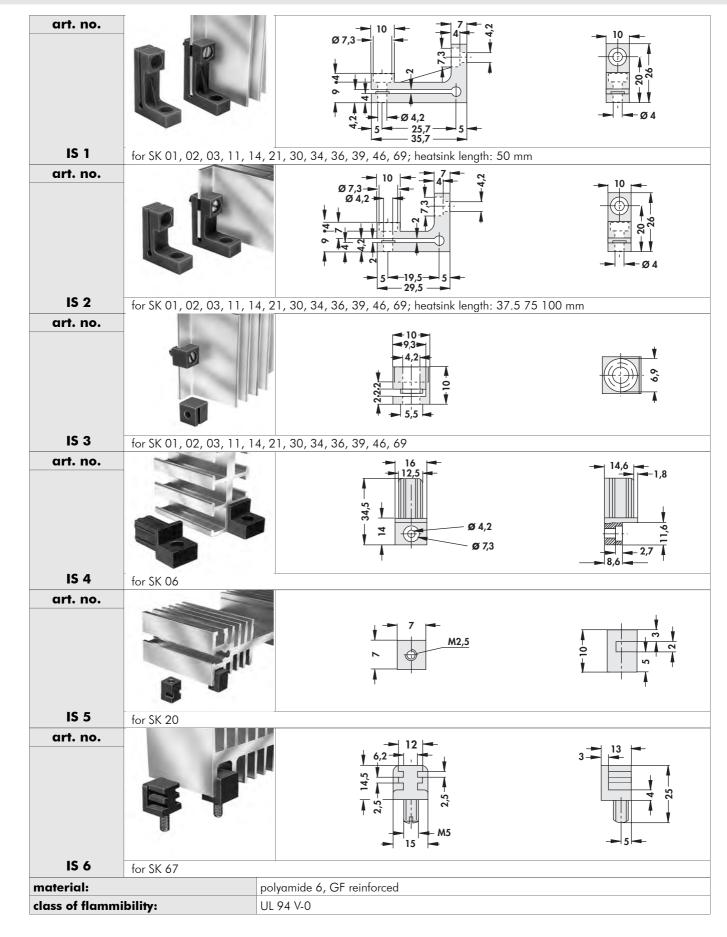
Mounts for discrete components

- suitable for various components e.g. resistors, capacitors etc.

Profiles for PCB components Heatsinks for PCB Profiles for PCB mounting Thermal conductive material $\begin{array}{l} \rightarrow \quad A \ 91 \\ \rightarrow \quad A \ 89 \\ \rightarrow \quad A \ 89 - 112 \\ \rightarrow \quad E \ 2 - 23 \end{array}$

Insulating distance sleeves Finger-shaped heatsinks Retaining springs for transistors Technical introduction $\begin{array}{r} \rightarrow \quad E \ 32 - 34 \\ \rightarrow \quad C \ 2 - 3 \\ \rightarrow \quad A \ 115 - 117 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

E 48


Downloaded from Arrow.com.

- 11

4

-

Mounting parts for heatsinks

E 49

Ν

Heatsink profile-overview Profiles for PCB mounting Heatsinks for PCB Insulating distance sleeves

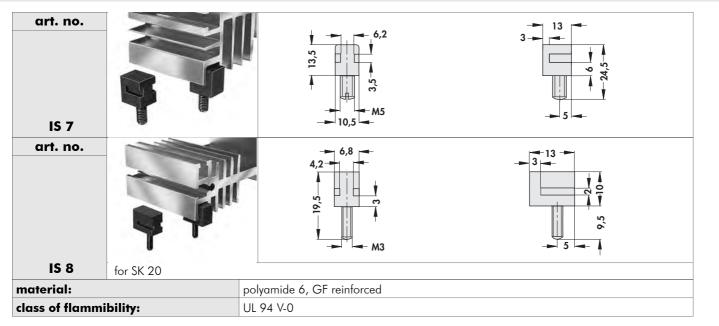
A 13 – 17 **Insulting clamping parts** A 89 – 112 A 89 – 93 → → E 32 – 34 **Technical introduction**

Mounting pads for transistors Mounting pads for single components→

E 47 E 48 A 2 – 8 →

E 45 →

→


Downloaded from Arrow.com.

.

Б

÷.

Mounting parts for heatsinks

Sockets for power transistors TO 3

	₹'9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
art. no.	no. of contacts				
TF 3 2	3				
insulating body material:		stanyl PA 4.6			
contact:		CuSn-alloy, CuSn 6; Ni 1-2µm, Au 0.2µm			
current rating:		15 A max.			
contact resistance:		<10 mΩ			
temperature range:		-65°C +290°C			
capacity:		1 pF			
test voltage:		1650 V			
class of flammibility:		UL 94 V-0			

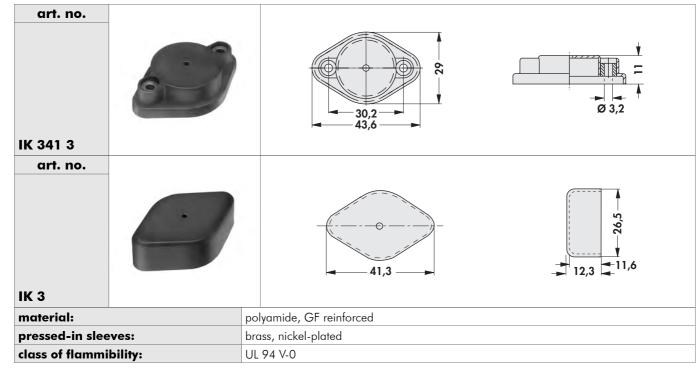
Heatsink profile-overview	→ A 13 – 17	Insulting clamping parts → E 45		
Profiles for PCB mounting	→ A 89 – 112	Mounting pads for transistors \rightarrow E 47	E 50	
Heatsinks for PCB	→ A 89 – 93	Mounting pads for single components→ E 48	EJU	
Insulating distance sleeves	→ E 32 – 34	Technical introduction \rightarrow A 2 – 8		

Δ

-

F

C


k

1

N

Insulating caps

- different transistor flange levels will be by the sleeves

E 51

Mica wafers Thermal conductive material Mounting for TO 3 angle **Die-cast heatsinks**

E 19 → \rightarrow E2-5 → A 125

Aluminium oxide wafers Thermal conductive paste Thermal conductive glue → A 125 – 128 Technical introduction

→ E17-18 → E 21 – 22 → E 23 – 24 → A 2 – 8

P

C

Б

Ξ

Ν

N

Downloaded from Arrow.com.

Insulating bush

Ø 7,1	Ø 9,3 -	2,5 -	Ø 6,3 → Ø 6,3 → Ø 3,2 → Ø 4,4 →		Ø 9,2 Ø 9,2 Ø 3,1 Ø 4 Ø 6,2
art. no.	art. no.		art. no.	art. no.	art. no.
IB 1 / IBT 1	IB 2 / IBT	2	IB 3 / IBT 3	IB 4 / IBT 4	IB 5
	Ø 8 9 1 0 0 0 0 0 0 0 0 0 3,3 0 0 4,3	T ' - 7,5 T	Ø 6	Ø 6	Ø 6,4 →
art. no.	art. no.		art. no.	art. no.	art. no.
IB 6 / IBT 6	IB 7 / IBT	7	IB 8 / IBT 8	IB 9 / IBT 9	IB 10 / IBT 10
Ø 3,8	Ø 8 -	4,4	Ø 6,5 C ¹ Ø 3,1 Ø 3,85 Ø 4,15	Ø 7,5	Ø7- 07- 07- 07- 07- 07- 07- 07- 0
art. no.	art. no.		art. no.	art. no.	art. no.
IB 11 / IBT 11	IB 12 / IBT	12	IB 13	IB 14 / IBT 14	IB 15 / IBT 15
Ø 7 - Ø 7 -			Ø 3,1 Ø 3,5		
art. no.	art. no.		art. no.		
IB 16	IB 17		IB 18 / IBT 18		
		IB	1 - IB 7 / 18	IBT 1 - IBT 15 / 18	IB 8 - IB 17
material			de 4.6, GF reinforced	PTFE (teflon)	thermoplastic resin
¢		,	200 x 05000		1000 00000

material	polyamide 4.6, GF reinforced	PTFE (teflon)	thermoplastic resin
form stability	-40°C +250°C	-260°C +250°C	-40°C +200°C
	(1.8 MPa)		
dielectric strength	30 kV/mm	40 kV/mm	38 kV/mm
class of flammibility		UL 94 V-0	
class of flammibility		UL 94 V-0	

Mica wafers Thermal conductive material Mounting for TO 3 angle **Insulating distance sleeves**

→ E19 \rightarrow E2-5 → A 125

Aluminium oxide wafers Thermal conductive paste Thermal conductive glue → E 32 – 128 Technical introduction

→ E17 – 18 → E 21 – 22 $\begin{array}{c} \rightarrow \quad E \ 23 - 24 \\ \rightarrow \quad A \ 2 - 8 \end{array}$

E 52

Downloaded from Arrow.com.

Δ

C

D

-

E

G

l

k

p

Ν

OBERFLÄCHEN VEREDELUNG GMBH

High quality surface treatment for electronic components

Gold-plating

properties:

process: materials: coating system: high resistance to wear, good corrosion resistance, temperature stability and solderability drum technology non-ferrous metals copper/nickel/gold

Tin-plating

properties: process: materials: coating system: solderable layers with improved tarnishing and corrosion resistance drum technology non-ferrous metals copper/nickel/tin

Degreasing performance:

process:

material: alumir min. component size: 30 x 3 max. component size: 600 x max. component weight: 80 kg

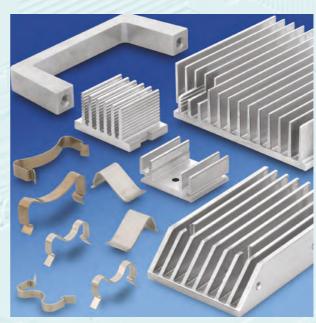
degreasing of oily or greasy metallic surfaces steam degreasing using chlorinated hydro-carbons in hermetically sealed equipment aluminium and aluminium alloys 30 x 30 x 30 mm 600 x 400 x 380 mm 80 kg

Anodising performance:

process:

materials: max. component size: colour:

fabrication of corrosion resistant, decorative oxide films anodic oxidation in fully automated equipment aluminium and aluminium alloys 1500 x 2000 x 450 mm natural aluminium or black


High quality surface treatment for electronic components

Transparent passivating (surface free from chromium VI)

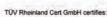
characteristics: environmental compatibility due to chrome free passivation of the aluminium surfaces process: fabrication of conversion coatings by immersion process

materials: aluminium und aluminium alloys max. component size: 1500 x 2000 x 450 mm colour: natural aluminium or black

OBERFLÄCHEN-VEREDELUNG

Vibratory grinding

characteristics:	deburring, removing of sharp edges,		
	rough and fine grinding		
process:	treatment using vibration technique and		
	grinding tools (trowalization)		
materials:	metallic, aluminium favourized		
max. component size: 230 x 200 mm			



Anodisation facility

- economization of water by using spray-rinsing, automized ion exchange installation, cascade water guided system and recirculation of splash water
- reduction of electrical energy by means of current density regulation
- reduction of chemicals by recirculation of the dragged-off chemicals using a compensation of the evaporation losses
- recycling of the sulphuric acid out of the anodizing bathes

Certificate Standard ISO 9001:2008

Certificate Registr. No. 01 100 052055

Fischer Oberflächenveredelung GmbH Nottebohmstraße 26 D - 58511 Lüdenscheid

surfaces for electronics: goldplating, tinplating, nickelplating anodizing, passivating, deburring.

An audit was performed, Report No. 052055. Proof has been furnished that the requirements according to ISO 9001:2008 are fulfilled. The due date for all future audits is 06-12 (dd.mm).

The certificate is valid from 2014-12-15 until 2017-12-14. First certification 2005

2014-11-11

Validity

www.tuv.com

General Business conditions

1. General provisions

Our deliveries are exclusively subject to the conditions set forth herein which shall be deemed to be explicitly accepted by the purchaser. No conditions which may appear on the purchaser's order shall be binding on us, even without our express contradiction.

2. Quotations and orders

Our quotations are not binding on us. This applies also to information contained in price lists, leaflets etc.. Delivery dates stated in our quotations or given to the purchaser by any other means are approximate, and we endeavour to keep to them. Delays in delivery shall give no right to claims, unless we have explicitly confirmed such delivery dates and an adequate period of grace granted to us has expired. Orders shall only be binding on us when they are explicitly confirmed in writing, regardless of the form in which they have been placed with us. Furthermore the characteristics of our samples cannot be regarded as guaranteed characteristics.

3. Prices

Prices shall be valid only when confirmed by us in writing. They are exclusive of VAT at the current rate and incidentals such as postage and packing, freight, insurance etc.. If delivery is made more than 4 months after the date of order, we shall be entitled to invoice the price valid at the date of despatch, even though different prices were initially confirmed. The price valid at the date of despatch shall also apply if the order was confirmed without prices. When an order on call is placed, partial deliveries shall be invoiced at the price valid at the date of despatch. Any request by the purchaser for subsequent modifications shall give us the right to amend prices.

4. Conditions of payment

Payment of the invoice amount shall become due following receipt of the invoice. Payments made within 14 days of the date of invoice give the right to a 2% cash discount. Payments 30 days after the date of invoice shall be made without any deduction. If the purchaser is in default with any payment, we are entitled to claim interest for such default at the normal rate for current accounts. If greater damage can be demonstrated to have been caused by the delay, we are entitled to request compensation for such damage.

5. Set-off, right to retention

Only uncontested or legally binding counterclaims may be offset against our invoices. Any right to a retention to be exercised by the purchaser in connection with our claims is explicitly excluded.

6. Delivery

Delivery of our goods is explicitly made on behalf of and at the risk of the purchaser. The risk shall pass on to the purchaser when the ordered goods leave our premises. The same applies if goods are collected in our premises after notification of their readi-ness. We decide at our discretion on the most economical delivery method without assuming any liability for the chosen means of delivery.

7. Specially manufactured goods

Components made according to a sample or a drawing or by special request must be taken over and paid for, unless they have a defect we are answerable for and which makes the components completely unfit for the purchaser's purposes. If their fitness for the purchaser's purposes is only reduced, the purchaser may request a reduction of payment but the contract shall not be cancelled.

8. Quantities

We are entitled to supply quantities which are above or below the ordered quantities by up to 10%. Such deviations are usual in this trade and the deliveries are deemed as being in compliance with the contract. If delivery quantities fall below the ordered quantities there shall be no right to subsequent delivery of the missing quantity.

9. Reservation of proprietary rights

- 9.1. All goods supplied shall remain our property until all of our claims resulting from the contract have been paid in full. The purchaser is entitled to dispose of the purchased goods in the ordinary course of business transactions. Reservation of proprietary rights also applies to products resulting from processing, mixing up or combining our goods with goods of third parties, in which case we are considered as manufacturers. In the case where our goods are processed, mixed up or combined with goods of third parties, and the proprietary rights of such third parties remain in force, we are entitled to co-ownership according to the proportion of the amount invoiced for such processed goods. Such right to coownership shall be safeguarded by the purchaser.
- 9.2. The purchaser shall transfer to us, as a security, his claims against third parties resulting from the re-sale of our goods in full or in the proportion of our co-ownership (see subparagraph 9.1). He is entitled to collect the amount of such claims on our behalf until revoked or until cessation of his payments made to us. The purchaser is not entitled to assign these claims to third parties.
- 9.3. The purchaser is not entitled to mortgage or transfer the goods which are subject to reservation by way of security.
- 9.4. The purchaser shall advise us immediately at any seizure of our goods or of any infringement of our rights by third parties.
- 9.5. In case of a default in payment or a deterioration in the financial situation, we are entitled to request immediate handing over of the goods which are subject to reservation. Any time limited claims shall immediately become due.
- 9.6. If the value of the securities exceeds our claims by more than 20%, securities to a corresponding amount will be released by us on request at our discretion.

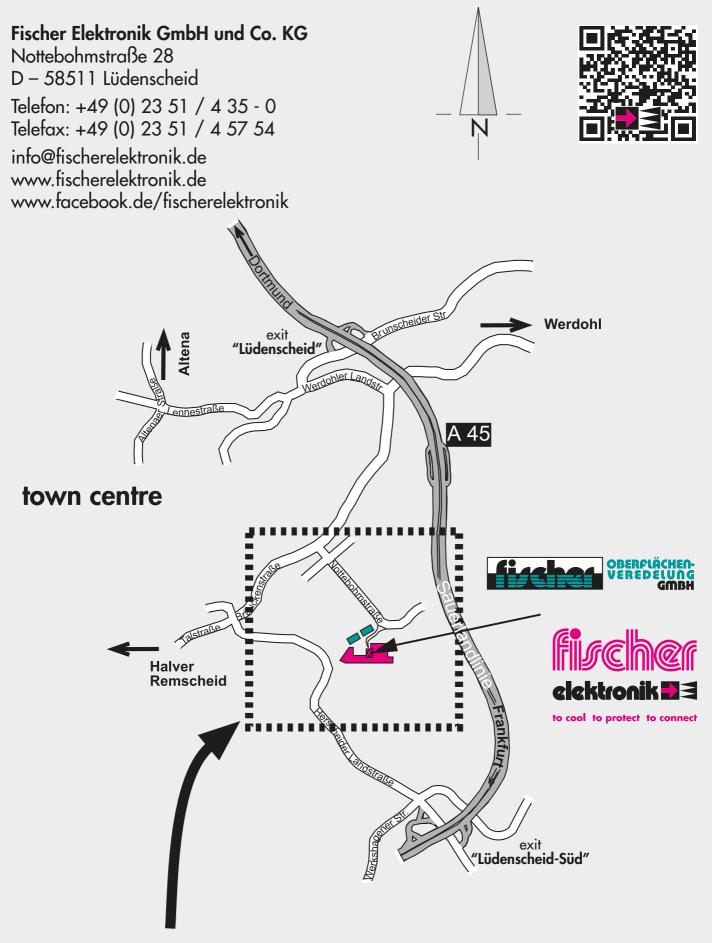
10. Warranty

- 10.1. We expressly point out that all information and data is given to the best of our knowledge and belief. The user is solely responsible for the proper use of our products and he should check their suitability for the intended application. Fischer Elektronik do not assume any warranty, whether expressed or implied, for the suitability, function or merchantibility of their products in specific or general applications, and they cannot be held liable for accidental or consequential damage due to non-observance of the above.
- 10.2. Claims for defects can only be considered if the purchaser has complied with his obligation to check and put forward a complaint as per § 377 HGB.

- 10.3. If goods have a defect attributable to us, we are obliged to provide subsequent fulfilment, excluding the purchaser's right to withdraw from the contract or to reduce the purchase price (abatement), unless we are entitled to refuse subsequent fulfilment by virtue of legal provisions. The purchaser shall grant us an adequate period of grace for subsequent fulfilment. Subsequent fulfilment may at our discretion be an elimination of the defect (rectification) or the supply of new products.
- 10.4. If rectification of the defect has failed, the purchaser shall be entitled to request a reduction in the purchase price (abatement) or to withdraw from the contract. Rectification shall be deemed to have failed after the second vain attempt, unless further attempts are reasonable in view of the object of the contract and can be reasonably imposed on the purchaser.
- 10.5. The purchaser's right to put forward further claims for damages shall remain unaffected by this.
- 10.6. The purchaser's warranty claims shall come under the limitation of time which is 12 months from the delivery of the goods to the purchaser, unless we have fraudulently concealed the defect. In this case, the legal provisions shall apply.
- 10.7 The purchaser's claims for damages shall come under the limitation of time which is 12 months from the delivery of the goods. This does not apply if the threat to life, bodily injury or injury to health is imputable to us, our legal representatives or other vicarious agents, or if we or our legal representatives have been grossly negligent, or if our vicarious agents have acted deliberately.

11. Withdrawal

When delivery in accordance with the contract is not possible for reasons beyond our control, we are entitled to withdraw from the contract. Such withdrawal shall not entitle the purchaser to assert any right against us.


12. Place of performance, place of venue, applicable law

- 12.1. The place of performance and the place of venue for deliveries and payments and for any litigation arising between us and the purchaser shall be the headquarters of our company.
- 12.2. The relations between the parties to the contract shall be exclusively governed by the law of the Federal Republic of Germany. The application of the UN Conventions on contracts for the international sale of goods is excluded.

If any provision herein is or will become invalid, such provision shall not affect the validity of the remaining provisions. The invalid provision shall be replaced by a valid provision which shall meet as closely as possible the legal and commercial purpose of the original one.

How to find us

The information given in this catalogue were established and examined carefully. Nevertheless, mistakes or printing errors, and especially technical modifications and updating and improvement of our products, cannot be excluded. All trade marks are recognised even if they are not specifically identified or mentioned. No identification does not imply that a product or trademark is not registered. No part of this catalogue may be reproduced or distributed without prior written consent of Fischer Elektronik. All data contained in this catalogue, in texts, illustrations, documents and descriptions are subject to copyright and the provisions of DIN ISO 16016. All rights reserved.

© Copyright Fischer Elektronik 1969 ... 2014

Fischer Elektronik GmbH & Co. KG

P.O. Box 1590 D-58465 Lüdenscheid

House Address

Nottebohmstr. 28 D-58511 Lüdenscheid Fon: +49 (0) 23 51 4 35-0 Fax: sales +49 (0) 23 51 4 57 54 purchasing +49 (0) 23 51 45 94 33 exports +49 (0) 23 51 43 51 85 info@fischerelektronik.de www.fischerelektronik.de

fischer elektronik=>=

Fischer Elektronik GmbH & Co. KG

 Nottebohmstraße 28

 D - 58511 Lüdenscheid

 Fon
 +49 (0) 23 51 4 35 - 0

 Fax
 +49 (0) 23 51 4 57 54

 E-mail
 info@fischerelektronik.de

 Website
 www.fischerelektronik.de

Downloaded from Arrow.com.