POO. BOX 2
COBURG, 3058

REGISTERED OFFICE: RIGGALL STREET, BROADMEADOWS, VICTORIA FACTORY: CHARLES STREET AND WILLIAMS ROAD, NORTH COBURG, VICTORIA

Your ref.

TRIMAX DIVISION

Our ref.
20th February, 1970.

Dear Sir,

We regret to advise that the necessity has arisen for us to increase the "Trimax" catalogue prices. This unfortunate situation has been created by several labour and material cost increases incurred throughout the past two years, the most recent of these being substantial increases in Nickel and Nickel Alloys.

Therefore, enclosed, please find our revised price lists for inclusion to your "Trimax" catalogue. These lists will effect all orders received as from the:
lIst March, 1970
and supersedes your present lists dated
1st January, 1968

Due to variations of labour and material proportions, comprising each unit, we were unable to apply a set percentage increase, therefore, each item has been treated individually, moreover, this method allows us to minimize these necessary adjustments.

We sincerely hope that future economic trends will allow us to maintain our new prices for a similar period to that of the preceding lists and assure you of our continued manufacture of the highest quality transformers and equipment.

Should you require any further clarification of this matter or technical assistance with your requirements, please do not hesitate to contact our Sales Department, alternatively, our agent situated in your State.

Yours faithfully,
L M ERICSSON PRY. LTD. TRIMAX DIVISION

R.C. PETERSON,

MANAGER

AUDIO TRANSFORMERS Prefix TA and MS Issued 20th February, 1970		TRADE \& RETAIL PRICES Excluding Sales Tax		```lst March, 1970 Supersedes Price List 1st January, 1968```	
TYPE	TRADE	RETAIL	TYPE	TRADE	RETAIL
TA-3	\$12.85	\$16.05	TA-914B-M1044	\$29.45	\$36.80
TA-17	12.85	16.05	TA-915B-M17	26.15	32.70
TA-37A	12.15	15.20	TA-915B-M1044	29.45	36.80
TA-47	12.85	16.05	TA-916B-M17	26.15	32.70
TA-61	12.85	16.05	TA-916B-M1044	29.45	36.80
TA-82	12.85	16.05	TA-917B-M17	26.15	32.70
TA-101	12.15	15.20	TA-917B-M1044	29.45	36.80
TA-168A	12.15	15.20	TA-931	11.45	14.30
TA-406A	12.15	15.20	MS-944	16.25	20.30
TA-605	12.85	16.05	MS-945	16.25	20.30
TA-636	12.15	15.20	MS-946	16.25	20.30
TA-710A	11.45	14.30	TA-947	12.60	15.75
TA-731A	12.60	15.75	TA-948	12.60	15.75
TA-733B	11.45	14.30	MS-977	17.60	22.00
TA-763	12.45	15.55	TA-1076	13.95	17.45
TA-770	12.85	16.05	2.TA-1094A	13.20	16.50
1.TA-793	13.20	16.50	TA-1103C	13.95	17.45
TA-796A	13.95	17.45	TA-1104B	13.60	17.00
TA-797	13.95	17.45	TA-1105A	15.06	18.80
TA-833	11.45	14.30	TA-1147-M8	19.80	24.75
TA-835	11.45	14.30	TA-1147-M1044	22.75	28.45
MS-837	17.00	21.20	TA-1693	13.20	16.50
MS-860	17.00	21.20	TA-1774	13.20	16.50
MS-866	16.25	20.30	TELEPHONE ISOL	TING TR	MERS :
MS-878	17.00	21.20	TA-1588	33.73	42.15
MS-896	16.25	20.30	TA-1704	41.05	51.31
TA-909	13.95	17.45	TA-1887	48.40	60.50
TA-913B-M17	26.15	32.70	TA-2129	35.20	44.00
TA-913B-M1044	29.45	36.80	TA-2333	35.20	44.00
TA-914B-M17	26.15	32.70	TA-2234	33.73	42.15
1.TA-793 superse	TA2252		TA-2235	33.73	42.15
2.TA-1094A superseded by TA225			TA-2305	85.05	106.30
			TA-2340	33.73	42.15
	L M ERI	PTY. LTD	TRIMAX DIVISION		

INSTRUMENT TRANSFORMERS Issued 20th February, 1970	TRADE \& RETAIL PRICES Excluding Sales Tax	1st March, 1970 Supersedes Price List 1st January, 1968
TYPE	TRADE	RETAIL
TC-2	\$12.10	\$ 15.40
TC-15	9.50	12.10
TC-16	9.50	12.10
TC-125	19.10	24.35
TC-130	29.70	37.90
TC-132	19.10	24.35
TC-152	22.00	28.05
TC-153	22.00	28.05
TC-154	22.00	28.05
TC-164	23.85	30.40
TC-165	23.85	30.40
TC-166	23.85	30.40
TC-167	23.85	30.40
TC-168	23.85	30.40
TC-169	23.85	30.40
TC-170	23.85	30.40
TC-171	26.80	34.15
TC-172	26.80	34.15
TC-181	22.00	28.05

POWER TRANSFORMERS
Issued 20th February, 1970

TRADE \& RETAIL PRICES Excluding Sales Tax

1st March, 1970
Supersedes Price List lst January, 1968

TYPE	TRADE	RETAIL	TYPE	TRADE	RETAIL
TP-16A	\$11.00	\$ 14.05	TP-2821	\$4.20	\$5.35
TP-17A	12.10	15.45	TP-2827	31.50	40.20
TP-18A	13.60	17.35	TP-2985	59.40	75.75
TP-69B	16.90	21.50	TP-3073B	46.90	59.85
TP-185A	8.10	10.35	TP-3078	17.60	22.45
TP-208A	9.20	11.70	TP-3099	2.90	3.75
TP-399B-M122	31.50	40.20	TP-3100	12.10	15.40
TP-399B-VBA	15.40	19.65	TP-3138	58.70	74.80
TP-400A-M1 22	26.40	33.65	TP-3146	3.70	4.70
TP-400A-VBA	10.30	13.10	TP-3345	58-90	74.80
TP-1454A	11.70	14.95	TP-3346	30.80	39.27
TP-1633A	13.20	16.85	TP-3395	88.00	112.20
TP-1724	11.70	14.95	TP-3518	38.10	48.60
TP-1780	9.25	11.75	TP-3569A	15.40	19.65
TP-1798A	13.30	23.40	TP-3588	12.10	15.40
TP-1803	34.50	44.00	TP-3591	58.65	74.75
TP-2069A	7.20	9.20	TP-3622	25.30	32.30
TP-2077	18.00	22.95	TP-3643	12.10	15.40
TP-2171B	8.40	10.75	TP-3794	231.70	295.46
TP-2259	16.50	21.05	TP-3828	65.30	83.20
TP-2263A	33.00	42.10	TP-3862	6.60	8.40
TP-2264	33.00	42.10	TP-3863	15.40	19.65
TP-2420	7.70	9.85	TP-3980	6.20	7.90
TP-2496	38.10	48.60	TP-3981	7.30	9.35
TP-2499	31.50	40.20	TP-3982	11.00	14.05
TP-2500	15.40	19.65	TP-4300	3.70	4.75
TP-2501	29.00	36.95	TP-4301	5.00	6.05
TP-2502	4.00	5.10	TP-4302	5.90	7.35
TP-2580	38.10	48.60	TP-4303	5.70	7.10
TP-2656	9.90	12.65	TP-4304	5.70	7.10

POWER TRANSFORMERS
Issued 20th February, 1970

TRADE \& RETAIL PRICES
Excluding Sales Tax

1st March, 1970 Supersedes Price List 1st January, 1968

TYPE	TRADE	RETAIL	TYPE	TRADE	RETAIL
TP-4305	\$7. 20	\$9.20	TP-4335	\$28.60	\$36.45
TP-4306	7.20	9.20	TP-4336	61.60	78.55
TP-4307	7.30	9.35	TP-4337	11.40	14.50
TP-4308	7.30	9.35	TP-4338	15.40	19.65
TP-4309	8.20	10.45	TP-4339	2.90	3.75
TP-4310	8.20	10.45	TP-4340	3.50	4.50
TP-4311	8.35	10.65	TP-4341	3.50	4.50
TP-4312	8.35	10.65	TP-4342	4.20	5.35
TP-4313	10.60	13.55	TP-43.43	4.20	5.35
TP-4314	10.60	13.55	TP-4344	5.10	6.55
TP-4315	12.10	15.40	TP-4345	6.60	8.40
TP-4316	12.10	15.40	TP-4346	7.20	9.20
TP-4317	10.60	13.55	TP-4347	7.20	9.20
TP-4318	11.40	14.50	TP-4348	7.20	9.20
TP-4319	11.40	14.50	TP-4349	10.60	13.55
TP-4320	12.10	15.40	TP-4350	10.60	13.55
. TP-4321	12.10	15.40	TP-4351	12.10	15.40
TP-4322	15.40	19.65	TP-4352	24.20	30.85
TP-4323	18.00	22.95	TP-4353	8.65	11.00
TP-4324	15.40	19.65	TP-4354	10.60	13.55
TP-4325	16.50	21.05	TP-4355	6.60	8.40
TP-4326	18.00	22.95	TP-4356	63.80	81.35
TP-4327	18.00	22.95	TP-4358	33.00	42.10
TP-4328	18.00	22.95	TP-4407	10.60	13.55
TP-4329	18.00	22.95			
TP-4330	18.70	23.90			
TP-4331	25.30	32.30			
TP-4332	33.00	42.10			
TP-4333	25.70	32.75			
TP-4334	25.30	32.30			

GENERAL
Issued 20th February, 1970

TRADE \& RETAIL PRICES
Excluding Sales Tax

1st March, 1970
Supersedes Price List 1st January, 1968

TYPE
TRADE
RETAIL

SHEETMETAL:

M50 Chassis and Cover	$\$ 11.70$	$\$ 14.95$
M356 Chassis and Cover	8.80	11.20
M924 Equipment Trolley	41.35	51.60
M924A Equipment Trolley with power sockets	48.15	59.90

Other sheetmetal products subject to quotation against customer's drawings.

MICROPHONE STANDS:

Table Type - Fixed	2.90	3.75
Table Type - Adjustable	8.80	11.20
Floor Type - Round Base	17.50	22.45
Floor Type - Heavy Tripod Base	20.50	26.20

AMPLIFIERS AND EQUIPMENT:

S38 - Voltage Regulator
S40 - Voltage Regulator
S82 - Voltage Regulator
S116 - Voltage Stabiliser
G1B - Ionisation Tester
41.10
52.35
41.10
52.35
106.25
627.00
385.20

Other equipment products - prices on request.

REGISTERED OFFICE: RIGGALL STREET, BROADMEADOWS, VICTORIA
FACTORY: CHARLES STREET AND WILLIAMS ROAD, NORTH COBURG, VICTORIA
Your ref.
TRIMAX DIVISION

1st May, 1965.
Our ref.

Dear Sir,

With apologies for the delay, we have pleasure in enclosing a copy of our new "Trimax" Catalogue and price list, which is effective from this date 。

We feel sure that you will realise the impracticability of listing the thousands of designs on file, and we have, therefore, endeavoured to standardise on types in popular demand.

However, if your requirements are not met by this selection, please let us have full details so that we may prepare a special quotation.

It will also be our endeavour to keep your catalogue up to date by the issue of additional sheets from time to time, so please help us by returning the slip below.

In conclusion, we regret that we had to revise our prices - which have been unchanged since 1954 - mostly upwards, although in some cases unchanged or reduced, but increased production and efficiency were no longer able to offset the steep increase in labour and material costs which have occurred over the past few years. We are still confident, however, that, as previously, "Trimax" gives the best value for money.

Yours faithfully,
L M ERICSSON PTY。LTD. TRIMAX DIVISION

R. C. PETERSON
 MANAGER

"V.B.A." MOUNTING (Reversible Mounting)

Lam.	Stack.	A	B	C	D)	E	F	G	Wt.
ET-12	1 in.	$3 \stackrel{1}{1} \mathrm{in}$.	42 in .	4 s in .	$2{ }_{\text {¢ }} \mathrm{in}$.	33 in .	23 in.	$2 t \mathrm{in}$.	6 lb .
"	$1+\mathrm{in}$.	3.1 in .	"	,	23 in .	"	$3: 1 \mathrm{in}$.	,"	7 lb ,
",	$1{ }^{1} \mathrm{im}$.	33 in .	"	"	$2 \overline{5} \mathrm{in}$.	"	$3 \stackrel{1}{2} \mathrm{~m}$.		8 lb .
,	2 m.	$4{ }^{1} \mathrm{in}$.	"	"	$3 \frac{1}{3} \mathrm{in}$.	"	$3 \bar{s} \mathrm{in}$.	"	10 lb .
,	$2 \frac{1}{2} \mathrm{in}$.	$4 \frac{3}{4} \mathrm{in}$.	"	,	$3{ }^{5} \mathrm{in}$.	"	$4 \frac{1}{2} \mathrm{in}$.	,	12 lb ,
"	3 in.	5.14 in .	"	",	$4 \frac{1}{4} \mathrm{in}$.	"	$4 \frac{7}{5} \mathrm{in}$.	"	$13 \frac{1}{2} \mathrm{lb}$.
ET-16	2 in.	$4{ }_{4} \mathrm{in}$.	5 in.	6 s in .	4 in.	$4 \frac{1}{4} \mathrm{in}$.	4.1 in .	3 in.	$16 \frac{1}{2} \mathrm{lb}$.
"	3 in.	$5{ }^{3} \mathrm{in}$.	"	"	5 in.	"	$5 . \mathrm{in}$.	"	$24 \frac{1}{2} \mathrm{lb}$.
"	$4 \mathrm{in}$.	63 in.	"	"	6 in .	"	$6 \frac{1}{4} \mathrm{in}$.		$32 \frac{1}{2} \mathrm{lb}$.
EI-18	2 in.	$5{ }^{\frac{1}{4} \mathrm{in} .}$	$5{ }^{5} \mathrm{in}$.	$6 \bar{s} \mathrm{~s} \mathrm{in}$.	$4 \frac{1}{8} \mathrm{in}$.	5 in.	5 in.	3 in .	
"	3 in.	$6 \frac{1}{4} \mathrm{in}$.	"	"	$5^{\frac{1}{8} \mathrm{in}}$.	"	6 in.	"	
"	4 in.	$7 \frac{1}{4} \mathrm{in}$.	"	"	$6 \frac{1}{5} \mathrm{in}$.	"	7 in .	"	
"	5 in.	$8 \frac{1}{1} \mathrm{in}$.	"	"	$7 \frac{1}{8} \mathrm{in}$.	"	8 in.		

" H^{\prime} " MOUNTING (Horizontal Mounting)

Lam.	Stack	A	B	C	D	E	F	Wt.
EI-8	4 in .	3 in .	21. in.	1.2 in.	$2 \frac{1}{8} \mathrm{in}$.	$1{ }^{5} \mathrm{~s} \mathrm{in}$.	$2^{1 / 19} \mathrm{in}$.	2 lb .
"	1 in.	"	"	$1{ }_{4}^{3} \mathrm{in}$.	"	"	"	$2 \frac{1}{17 \mathrm{lb}}$.
"	$1 \pm \mathrm{in}$.	"	"	2 in.	"	"	"	$2 \frac{1}{2} \mathrm{lb}$.
,	$1 \frac{1}{2} \mathrm{in}$.	"	"	$2 \frac{1}{4}$ in.	"	"	"	$2 \frac{3}{4} \mathrm{lb}$.
"	2 in.	"	"	$2 \frac{3}{1} \mathrm{in}$.	"	"	"	3 lb .
EIS-8	${ }_{4}^{3} \mathrm{in}$.	$3 \% \mathrm{in}$.	$3 \frac{1}{8} \mathrm{in}$.	$1 \bar{\square} \mathrm{in}$.	23 in.	$2^{3} / 10 \mathrm{in}$.	$2^{-1} / 15$ in.	$2 \frac{3}{4} \mathrm{lb}$.
"	1 in.	"	"	$1{ }^{\frac{1}{8} \mathrm{in}} \mathrm{in}$.	"	"	"	3 年 lb .
,	1tin.	"	"	$2{ }_{8}^{1} \mathrm{in}$.	"	"	"	$3 \frac{3}{4} \mathrm{lb}$.
"	$1 \frac{1}{2} \mathrm{in}$.	"	"	$2{ }^{3} \mathrm{in}$.	,	,"	"	$4 \frac{1}{4} \mathrm{lb}$.
"	2 in.	"	"	$2 \bar{k} \mathrm{in}$.	"	"	"	$5{ }^{1} \mathrm{lb}$.

"O.C." MOUNTING (Open Clamp Mounting)

Lam.	Stack	A	B	C	D	E	F	Wt.
ET-8	${ }_{4}^{3} \mathrm{in}$.	$1{ }_{5}{ }^{\text {c in. }}$	$2 \overline{5} \mathrm{in}$.	$3 \frac{1}{3} \mathrm{in}$.	1s in.	$1{ }^{15} / 15 \mathrm{in}$.	$2 \frac{3}{8}$ in.	2 lb .
"	1 in .	$2 \frac{1}{8} \mathrm{in}$.	",	,	15 in.	",	"	$2 \pm 1 \mathrm{l}$.
,"	1.4 in .	23 in .	,"	"	17 m in.	"	",	$2 \frac{1}{2} \mathrm{lb}$.
,"	13 in .	25 in.		"	$2{ }^{\frac{1}{8} \mathrm{in}} \mathrm{in}$.	"	"	231 lb .
	2 in.	38 in .			25 in .			$3 \stackrel{1}{1} \mathrm{lb}$.
EIS-8	${ }_{1}{ }^{3} \mathrm{in}$.	21 in .	$3^{3 / 18} \mathrm{in}$.	31 ${ }^{\prime \prime} \mathrm{in}$.	13 in .	$2^{-1} /{ }_{10}^{\prime \prime} \mathrm{in}$.	23 in .	${ }^{3} \mathrm{lb}$.
"	1 in.	23 in .	"	"	13 in.	"	"	34 lb .
"	13 in .	$2 \overline{8} \mathrm{in}$.	",	"	2 in .	"	"	$3 \frac{3}{4} \mathrm{lb}$.
"	12 in.	${ }_{2}^{7} \mathrm{in}$.	",	"	21 in .	",	"	$4 \frac{1}{4} \mathrm{lb}$.
EI'12	2 in .	33 in .			${ }_{23}{ }^{3} \mathrm{in}$.	91"		5 lb .
EL-12	1 in in.		35 s	$4 \frac{5}{8} \mathrm{in}$.	15 in 28 21 2 in.	$2^{\frac{1}{4}} \mathrm{in}$.	2 年 in.	$\begin{array}{ll}6 \\ 8 & \mathrm{lb} .\end{array}$
",	$2 \mathrm{mm}$.	38 in .	",		28 in .	",		10 lb.
",	$2 \frac{1}{2} \mathrm{in}$.	$3{ }^{5} \mathrm{in}$.	",	"	31 in .	"	"	12 lb.
"	3 in .	$4 \frac{1}{5} \mathrm{in}$.	"	"	$3{ }^{5} \mathrm{in}$.	"	"	$14 \frac{1}{2} \mathrm{lb}$.

"S.C." (Strap Clamp Mounting)

Lam.	Stack	A	B	C	D	E	F	Wt.
EI-5	$\bar{s} \mathrm{~s}$ in.	3 in .	9 m in.	1雪 in.	$2{ }^{1} \mathrm{in}$.	2 in.	$1 \mathrm{~s}^{\mathrm{in}} \mathrm{in}$.	$\stackrel{1}{2} \mathrm{lb}$.
EI-6	3 in .	$3 \frac{1}{2} \mathrm{in}$,	$\frac{7}{5} \mathrm{in}$.	2 in.	25 in .	23 in .	13 in .	1 lb .
"	1 in.	"	11 in in.		"	"	2 in.	$1 \pm \mathrm{lb}$.
EI-7	$\frac{7}{8} \mathrm{in}$.	$3 \frac{7}{8} \mathrm{in}$.	1 in.	21 in .	3 m m.	23 in.	$1{ }_{8}^{7} \mathrm{in}$.	$1 \frac{1}{51 \mathrm{lb}}$.
"	$1{ }^{3} / 82 \mathrm{in}$.	"	$1{ }^{3} \mathrm{in}$.		"	"	$22_{8}^{1} \mathrm{in}$.	13 lb .

'M 122" CASE

ortable. Waterproof construction.
ine, two or three waterproof gland nuts as outlets. imensions $5 \frac{1}{3}$ in. $\times 6 \frac{1}{4}$ in. $\times 7 \frac{1}{4}$ in. H.

M 717" COVERS

or major dimensions refer to "OC" tounting for EIS-8 or EI-12 Lamination.

"M 381". CASE

EIS-8 Lamination $5 \frac{1}{3}$ in, $x 3 \frac{3}{4} \mathrm{in}$. $\times 3 \frac{7}{3} \mathrm{in}$. H. EI-12 Lamination $6 \frac{1}{8} \mathrm{in}, x 4 \frac{7}{8} \mathrm{in} . x 6 \frac{1}{8} \mathrm{in}$. H.
Either type can be fitted with socket, grommets or conduit entries.

-

"M 53" CASE

(Reversible Steel Mounting)

Type	Lam.	A	B	C	D	E	F	Wt.
M53-1	EI-8 etc.	$2{ }^{7} \mathrm{in}$.	3 in.	$3 \overline{\mathrm{~s}} \mathrm{in}$.	$2^{5} / 16$ in.	$2^{7} /{ }_{16} \mathrm{in}$.	$1 \frac{1}{2} \mathrm{in}$.	$3 \frac{1}{2} \mathrm{lb}$.
M53-2	EIS-8	3 in.	$3^{4} / 18 \mathrm{in}$.	$4 \frac{1}{8} \mathrm{in}$.	$2{ }^{7} / 18 \mathrm{in}$.	$2{ }^{7} \mathrm{~s}$ in.	"	$4 \frac{1}{2} \mathrm{lb}$.
M53-3	,	$3^{7} / 18$ in.	$3 \frac{1}{4} \quad \mathrm{in}$.	$4 \frac{1}{5} \mathrm{in}$.	$2 \frac{7}{8} \mathrm{in}$.	$3^{3 / 15} \mathrm{in}$.	"	5 lh .
M53-4	L-6 etc.	3 in .	$3^{7} /{ }_{16} \mathrm{in}$.	$5 \pm \mathrm{in}$.	$2^{i} / \mathrm{id} \mathrm{in}$.	$22_{8}^{7} \quad$ in.	"	$4 \frac{1}{2} \mathrm{lb}$.

"M 294" CASE
Body size ${ }^{15} / 10$ in. $\times 2 \frac{1}{4}$ in. $\times 1 \frac{3}{7} \mathrm{in}$ Mounting centres $2^{11} / 16 \mathrm{in}$.

"M 511" CASE

Body size $1^{5} / 32$ in, $x 2 \frac{1}{4}$ in. x $1 \frac{3}{4}$ in. Mounting centres $2^{11} / 10 \mathrm{in}$.

"M 508" CASE

Single Hole-mounting Mu-Metal case. For Microphone or Pickup transformers

Diam. 1t in. Height $1 \frac{1}{4} \mathbf{i n}$, above chassis.

ILLUSTEATIINS RUP PHYSIOGC. DETAILS

STANDARD CASES FOR AUDIO AND CARRIER TRANSFORMERS

"M 91" CASE

Light steel case. Base, $2 \frac{1}{2} \mathrm{in} . x 1^{13} / 15 \mathrm{in}$. Mounting, $1^{15} / 16$ in, x $1 \frac{1}{4} \mathrm{in}$. Overall Height, $3 \frac{3}{4} \mathrm{in}$.
"M 214" CASE
Hermetically sealed, details as for "M 91".
"M 143" CASE
Light steel case, Base, 2 in. x $1 \frac{5}{8}$ in. Mounting $1 \frac{1}{2}$ in. $\times 1 \frac{1}{8}$ in. Overall Height, $3 \frac{1}{4}$ in.

"M 215" CASE

Hermetically sealed, details as for "M143".
"M 17" CASE

Drawn-steel case.
Base, $4 \frac{1}{4}$ in. $\times 2 \frac{5}{8}$ in. Mounting, $3^{3} / 16 \times 2^{3} / 18$. Overall Height, $4 \frac{5}{8}$ in.

"M 8" CASE

Drawn-steel case.
Base, $2^{9} / 15 \times 1^{15} / 16$ in. Mounting, $2 \frac{1}{4} \mathrm{in}$. $\times 1 \frac{5}{8} \mathrm{in}$, Overall Height, $3 \frac{5}{8}$ in.
"M 455" CASE
Modified "M8" case with panel to suit Relay Set mounting P.M.G. drwg. CEb34.

[^0]
IHLUSTRATINS GUd PHYSICAI DETAILS

CAST IRON COVER

I, am.	Stack	A	B	C	D	E	F	G
BUT-1	2 in .	6 in.	$8 \frac{1}{2}$ in.	$7 \frac{1}{1} \mathrm{in}$.	$5 \frac{1}{1} \mathrm{in}$.	$7{ }^{11 / 18}$ in.	4 in.	25 in.
BUT-1	$2 \frac{1}{3} \mathrm{in}$.	$6 \frac{1}{2} \mathrm{in}$.	82 in.	7 l in.	5䞨.	$7^{11 / 18} \mathrm{in}$.	4 in.	2 E in.
BUT-1	3 in.	7 in .	$8 \frac{1}{2}$ in.	$7 \frac{1}{4} \mathrm{in}$.	$6{ }^{1} \mathrm{in}$.	$7^{11 / 16} \mathrm{in}$.	4 in.	25 in.
BUT-1	4 in.	8 in.	812 in.	7.4 in.	$7 \frac{1}{4} \mathrm{in}$.	$7^{11 / 18}$ in.	4 in.	25 in ,
BUT-2	2 in.	$7 \frac{1}{8} \mathrm{in}$.	$10^{1 / 4} \mathrm{in}$ in.	87 in .	6.1 in.	9 in.	$4{ }^{7} \mathrm{in}$.	31 in .
BUT-2	3 in .	$8 \frac{1}{8} \mathrm{in}$.	$10^{1 / 10} \mathrm{in}$.	$8{ }_{8}^{7} \mathrm{in}$.	7年 in.	9 in.	$4 \frac{7}{8} \mathrm{in}$.	$3 \frac{1}{8} \mathrm{in}$.
BUT-2	4 in .	9 s in .	$10^{1 / 16} \mathrm{in}$.	$8 \frac{7}{3} \mathrm{in}$.	$8 \frac{1}{4} \mathrm{in}$.	9 in.	47 in.	31 in.
BUT-2	5 in .	$10 \frac{1}{\frac{1}{5} \mathrm{in} \text {. }}$	101/10 in.	$8^{\frac{7}{3} \mathrm{in}}$.	$9{ }^{3} \mathrm{in}$.	9 in.	$4 \frac{7}{8} \mathrm{in}$.	3 s in .

HERMETICALLY SEALED TRANSFORMERS

For use in high humidity and special conditions, sealing in this manner gives complete reliability. For dimensions of standard cases refer to pages 9 and 10 .

SHELL TYPE
 LAMINATIONS

	A	B	C	D	E	F	G	Holes
EIS-2	1.0 in.	.75 in.	. 23 in.	. 5 in.	$.26 \mathrm{in}$.			None
EI-4	1.5 in.	1.25 in.	.5 in.	.75 in.	.25 in.			None
EI-9/16	1.687 in .	1.407 in.	. 562 in.	. 843 in .	. 281 in .			None
EI-5	1.875 in .	1.562 in .	.625 in .	. 937 in .	. 312 in .			None
EII-6	2.25 in.	1.875 in.	$.75 \mathrm{in}$.	1.125 in .	. 375 in .			None
ET-7	2.625 in.	2.188 in .	. 875 in.	1.31 in.	. 437 in .			None
ET-8	3.0 in.	2.5 in.	1 in.	1.5 in.	. 5 in.	2.125 in .		Y. 218 in. slot
EIS-8	3.375 in.	3.063 in .	1 in.	2.063 in .	. 687 in .	2.687 in.		" " "
EI-9	3.375 in .	2.813 in .	1.125 in .	1.687 in.	. 562 in.	2.25 in.	2.813 in.	. 218 in .
EI-12	4.5 in.	3.75 in.	1.5 in.	2.25 in.	. 75 in.	β in.	3.75 in.	X. 218 in. D
EI-16	6 in.	5 in.	2 in .	3 in .	1 in.	4 in.	5 in.	X. 22 in. D
WI-18	6.75 in.	5.63 in.	2.25 in.	3.375 in.	1.125 in.	5.625 in.	4.5 in.	X .31 in. D
BUT-1	7 in.	7 in.	2 in.	5 in.	1.5 in.			None
BUT-2	8.5 in.	8.5 in.	2.5 in.	6 in.	1.75 in .			None
BUT-5	0.5 in.	1.75 in .	3.5 in .	8.25 in.	1.75 in .			None

CORE TYPE L.AMINATIONS

Type	A	B	C	D	E	F	Holes
L-3 L-4 L-6 LS-6 U-8	$\begin{array}{ll} 1.875 \mathrm{in} . \\ 2.5 & \mathrm{in} . \\ 3.75 & \mathrm{in} . \\ 3.75 & \mathrm{in} . \\ 5 & \mathrm{in} . \end{array}$	$\begin{cases}1.125 \mathrm{in} . \\ 1.5 & \text { in. } \\ 2.25 & \text { in. } \\ 2.75 & \text { in. } \\ 3 & \text { in. }\end{cases}$	$\begin{array}{ll} .375 \mathrm{in} . \\ .5 & \text { in. } \\ .75 & \mathrm{in} . \\ 1.25 & \mathrm{in} . \\ 1 & \text { in. } \end{array}$	$\begin{cases}1.125 \mathrm{in} . \\ 1.5 & \text { in. } \\ 2.25 & \text { in. } \\ 2.25 & \text { in. } \\ 3 & \text { in. }\end{cases}$	$\left\{\begin{array}{l} 2 \mathrm{in} . \\ 3 \mathrm{in} . \\ 3 \mathrm{in} . \\ 4 \mathrm{in} . \end{array}\right.$	1 1.5 in. 2 2 in. in.	$\begin{aligned} & \text { None } \\ & .14 \text { in. } D \\ & .22 \text { in. } D \\ & .22 \text { in. } D \\ & 22 \text { in. } D \end{aligned}$

Hermetically Sealed, Insert Mounted Cases. Glass or Ceramic Seals.

Standard Terminal Arrangement Transformer

Type	Lam. Size	Max. Stack	A	B	C	D	E	Materials	Inserts
A	EI-8	$1 \frac{1}{4} \mathrm{in}$.	$2 \frac{1}{3} \mathrm{in}$.	23 in.	$3 \frac{3}{4} \mathrm{in}$.	$1 \frac{3}{4} \mathrm{in}$.	2 in .	Tinplate	$5 / 32 \mathrm{in}$. W
B	EI-8	2 in.	$3 \frac{1}{3} \mathrm{in}$.	23 in .	$3 \frac{3}{4} \mathrm{in}$.	$2 \frac{1}{3} \mathrm{in}$.	2 in.	Tinplate	$5 / 32 \mathrm{in}$. W
C	EIS-8	13 in.	$2 \frac{3}{4} \mathrm{in}$,	3表 in.	41 in .	2 in .	$2 \frac{1}{2} \mathrm{in}$.	Tinplate	$5 / 32$ in. W
D	EIS-8	2 in .	$3{ }^{3} \mathrm{in}$.	$3{ }^{1} \mathrm{in}$.	$4 \frac{1}{4} \mathrm{in}$.	3 in.	2交 in.	Tinplate	$5 / 32$ in. W
E	EI-12	11 in.	$3 \pm \mathrm{in}$.	4 in.	$5 \frac{1}{4} \mathrm{in}$.	21 in.	3 in .	Terne 22G	$5 / 32$ in. W
F	ET-12	2 in.	4 in.	4 in.	$5^{\frac{3}{4} \mathrm{in}}$.	3 in .	3 in.	Terne 22G	$s / 3$ in. W
G	FT-12	3 in ,	5.1 in .	4 in.	$5 \frac{1}{4} \mathrm{in}$.	41 in .	3 in .	Terne 22G	$5 / 32 \mathrm{in}$, W

Type	$\underset{\text { Size }}{\text { Lam, }}$	Max. Stack	A	B	C	D	E	F	Holes	Case Material	Base Material
K	EI-16	$2 \frac{1}{1} \mathrm{in}$.	$5 \frac{1}{\text { a }} \mathrm{in}$.	$5 \frac{1}{3} \mathrm{in}$.	$71 . \mathrm{in}$.	$3 \frac{1}{4} \mathrm{in}$.	64 in .	7 in.	17/4 in.	20 g MS	18g MS
L	EI-16	4 in.	7 in .	$5 \frac{1}{2} \mathrm{in}$.	$71 . \mathrm{in}$.	5 in.	61 in .	7 in .	17/4. in,	20 g MS	18g MS
M	BUT-1	$3 \frac{1}{2} \mathrm{in}$.	$7 \frac{1}{2} \mathrm{in}$.	$8{ }^{\frac{3}{4} \mathrm{in}}$.	71. in.	$5 \frac{1}{2} \mathrm{in}$.	$9 \frac{1}{2} \mathrm{in}$.	$10 \frac{1}{} \mathrm{in}$.	17/as in.	18g MS	16 g MS
N	BUT-1	5 in .	9191in.	$8 \frac{3}{4} \mathrm{in}$.	$8 \frac{1}{2}$ in.	$7 \frac{1}{2}$ in	$9 \frac{1}{2} \mathrm{in}$.	$10 \frac{1}{3} \mathrm{in}$.	17/4 in.	18 g MS	16g MS
P	BUT-2	$3 \frac{1}{2} \mathrm{in}$.	$8 \frac{1}{2} \mathrm{in}$.	$10 \frac{1}{4} \mathrm{in}$.	10 in .	$6 \frac{1}{2}$ in	11 in.	113 l in.	${ }^{17} / 4 \mathrm{sin}$.	18 g MS	16g MS
Q	BUT-2	5 in .	10 in.	$10 \frac{1}{1}$ in	10 in	8 in.	11 in.	$11^{\frac{3}{4} \mathrm{in}}$.	$11 / 38 \mathrm{in}$.	18g MS	16 g MS
R	BUT-5	4 in.	9 in.	$13 \frac{1}{2} \mathrm{in}$.	13 in	7 in.	15 in.	$16^{\frac{1}{2}} \mathrm{in}$.	${ }^{13} / 32 \mathrm{in}$.	16 g MS	16 g MS
S	BUT-5	6 in.	11 in.	$13 \frac{1}{3}$ in.	13 in	9 in .	15 in.	$16^{\frac{1}{2}} \mathrm{in}$.	${ }^{13} / 32 \mathrm{in}$.	16 g MS	16 g MS
T	BUT-6	$3 \frac{1}{2}$ in	in.	93 in .	8 in .	7 in .	$10 \frac{3}{3} \mathrm{in}$.	$11{ }^{3} \mathrm{in}$.	$13 / 8 \mathrm{in}$.	18 g MS	16g MS
U	BUT-6	5 in.	11 in.	$9{ }^{3} \mathrm{in}$.	8 in	9 in.	$10 \frac{3}{\text { a }} \mathrm{in}$.	$11{ }^{\text {a }} \mathrm{in}$.	13/32 in.	18g MS	16g MS

1. In general, the types listed have been designed for a capacitor input filter. If a choke filter is used the H.T. current may be increased by approximately 25%.
2. \star Indicates that the design is for a choke input filter.
3. Ratings are based on a maximum ambient temperature of $40^{\circ} \mathrm{C}$. If used with a higher ambient, the loading must be reduced.
4. 240V HAS BEEN ADOPTED AS THE STANDARD SUPPLY VOLTAGE IN MOST AREAS OF AUSTRALIA, AND ALL CATALOGUE TYPE TRANSFORMERS ARE DESIGNED FOR THIS VOLTAGE. Additional primary taps can, if required, be supplied at an extra cost. In such cases it is suggested that a similar tapping arrangement to that used with "Trimax" Tap-changing Fuse Holder be used, as this gives 10 V variations from $200-250 \mathrm{~V}$ with the minimum number of taps.
5. For physical details refer to the dimension sheets.
6. Numbers underlined indicate standard transformers normally carried in stock.

$\begin{gathered} \text { Catalogue } \\ \text { No. } \end{gathered}$	Replaces Type	Secondaries				Mounting Lamination and Stack
		$\begin{gathered} \text { High } \\ \text { Tension } \\ \text { Volts A.C. } \end{gathered}$	M.A. D.C.	Filaments		
				5 v	6.3 v	
TP-4300		150/150	15		1 a	SC-EI-6 ${ }^{\frac{3}{4}}{ }^{\prime \prime}$
TP-2502		150/150	30		2a	SC-EI-7 ${ }^{\prime \prime}$
$\overline{T P-4301}$	TP-1788	150/150	40		2a	H-EI-81"
TP-4302		240/240	40		1.5a, 1.5a	H-EI-8 11/"
$\overline{\mathrm{TP}-4303}$	TP-2240	285/285	40		2 a	H-EI-8 11. ${ }^{\prime \prime}$
TP-4304	TP-2241	265/265	50		2.5a	H-EI-8 1 $\mathbf{1}_{4}{ }^{\prime \prime}$
TP-4305	TP-1886	385/385	60	2 a	2 a	H-EIS-8 14"
TP-4306	TP-1623	265/265	70		2a, 2a	H-EIS-8 11/"
$\underline{\text { TP-4307 }}$		310/310	70		2a, 2a	H-EIS-8 1 ${ }^{\prime \prime}{ }^{\prime \prime}$
$\overline{\mathrm{TP}-4308}$	TP-2242	285/285	80	2a	2 a	H-EIS-8 11/
$\overline{\mathrm{TP}-4309}$	TP-2488	285/285	80	2 a	2a, 2a	H-EIS-8 $1 \frac{1}{2}{ }^{\prime \prime}$
TP-4310	TP-2489	325/325	80	2a	2a, 2a	H-EIS-8 1 $\frac{1}{2}^{\prime \prime}$
TP-4311	TP-2490	385/385	80	2a	1.5a, 1.5a	H-EIS-8 1 ${ }^{\frac{1}{2}}{ }^{\prime \prime}$
TP-4312	TP-2377	285/285	100	2a	$1.5 \mathrm{a}, 1.5 \mathrm{a}$	H-EIS-8 11/"
$\overline{\mathrm{TP}-4313}$	TP-2491	325/325	100	2 a	2a, 2 a	VBA-EI-12 ${ }^{\prime \prime}$
TP-4314	TP-2243	385/385	100	2a	2a, 2 a	VBA-EI-12 ${ }^{\prime \prime}$
TP-4315		410/410	100	3 a	$3 \mathrm{a}, 3 \mathrm{a}$	VBA-EI-12 $11^{\prime \prime}$
TP-4316		285/285	125	3 a	4a, 4a, ct	VBA-EI-12 12 ${ }^{\prime \prime}$
$\underline{T P-4317}$	TP-2244	300/300	125	2a	2a, 2a	VBA-EI-12 $1^{\prime \prime}$
$\overline{\mathrm{TP}-4318}$	TP-2245	385/385	125	2a	2a, 2 a	VBA-EI-12 14"
TP-4319	TP-2246	325/325	150	2 a	2a, 2a	VBA-EI-12 14"
TP-4320	TP-2247	385/385	150	2a	2a, 2a	VBA-EI-12 $11^{\prime \prime}$
TP-4821	TP-2249	310/310	175	2 a	2a, 2a	VBA-EI-12 17 ${ }^{\prime \prime}$
TP-4322	TP-2256	400/400	175	3 a	3a, 3a	VBA-EI-12 $2^{\prime \prime}$

VOLTAGE DOUBLER TRANSFORMERS

$\mathrm{TP}-3980$				
$\mathrm{TP}-3981$				
$\mathrm{TP}-4407$				
$\mathrm{TP}-3982$		115,125	100	2.5 a
3 a	OC-EIS-8 1"			

SILICON DIODE BRIDGE TRANSFORMER
For use with diodes having a P.I.V. rating not less than 400 V

$\begin{gathered} \mathrm{TP}-4337 \\ \mathrm{TP}-4338 \end{gathered}$	240 240	200 300	$\begin{aligned} & 3 a, 3 a \\ & 4 a, 4 a \end{aligned}$	$\begin{aligned} & \text { VBA-EI-12 } 1_{4}^{\prime \prime} \\ & \text { VBA-EI-12 } 2^{\prime \prime} \end{aligned}$

TAPE RECORDER TRANSFORMER
This type has an Eddy Current Shield to reduce the external field

| TP-2171B | $270 / 270$ | 60 | $3 a$ | H-EIS-8 1荘" |
| :--- | :--- | :--- | :--- | :--- | :--- |

PQWR TRANSEGMERS

1. Ratings are based on a maximum ambient temperature of $40^{\circ} \mathrm{C}$. If used with a higher ambient, the loading must be reduced.
2. 240V HAS BEEN ADOPTED AS THE STANDARD SUPPLY VOLTAGE IN MOST AREAS OF AUSTRALIA AND ALI, CATALOGUE TYPE TRANSFORMERS ARE DESIGNED FOR THIS VOLTAGE. On most types additional primary taps can, if required, be supplied at an extra cost. In such cases it is suggested that a similar tapping arrangement to that used with the "Trimax" Tap-changing Fuse Holder be used, as this gives 10 V variations from $200-250 \mathrm{~V}$ with the minimum number of taps.
3. For physical details refer to the dimension sheets.
4. Numbers underlined indicate standard transformers normally carried in stock.

$\begin{gathered} \text { Catalogue } \\ \text { No. } \end{gathered}$	Replaces Type	Secondary Volts				$\underset{\text { Test }}{\text { KV }}$	Mounting Lamination and and Stack
		2.5	5	6.3	10		
TP-4339	TP-862			2 a		1	SC-EI-6 ${ }^{\prime \prime}$
TP-4340	TP-2653		3 a			1.5	SC-EI-6 1"
TP-4341	TP-2334			3 a		1	SC-EI-6 1"
$\overline{\mathrm{TP}-4342}$	TP-2655			52		1.5	H-EI-8 1"
TP-4343	TP-2654		6 a			1.5	H-EI-8 1"
TP-4344	TP-1684A			3a, 3a		1.	H-EI-8 1表"
TP-4345	TP-2856A	10act				5	OC-EIS-8 1"
$\underline{\mathrm{TP}-4346}$	TP-2497		3 a	3a, 3a,		3	H-EIS-8 14"
TP-4347	TP-2596			6a, 4a		1.5	H-EIS-8 14"
TP-4348	TP-2742				6.5 act	1.5	OC-EIS-8 $1^{\frac{1}{4}}$
TP-4349	TP-1550B		3 a	3a, 3a, 3a, 3a ct		1	VBA-EI-12 ${ }^{\prime \prime}$
TP-4350	TP-2643		$3 \mathrm{a}, 3 \mathrm{a}$,	3a, 3a, 3a		1.5	VBA-EI-12 $1^{\prime \prime}$
TP-4351	TP-2515			10a, 10a		2	VBA-EI-12 12 ${ }^{\prime \prime}$
TP-4352	TP-3329A		15act			9	M336-EI-12 14"

TP-435s	Prim: 240V	Secondaries: 1V, 2V, 4V, 4V, 10V, 10V (Six separate windings with marked polarity.) All 1.8a.	OC-EIS-8 11'"

1. The inductance figures given are for rated direct current, and used under conditions equivalent to a capacitor input filter. For choke input filters which have a higher ripple voltage, the inductance would increase by approximately 10%.
2. These chokes may be operated safely at the maximum D.C. current shown but the inductance will decrease by approximately 25%.
3. Numbers underlined indicate standard chokes normally carried in stock.

Catalogue No.	D.C. MA		Inductance Henries	D.C. ResistanceOhms	Maximum D.C. Working Volts	Mounting Lamination and Stack
	Rated	Maximum				
TZ-460	10	15	50	2,200	300	SC-ET-5 $\frac{5}{8}{ }^{\prime \prime}$
TZ-461	30	40	30	900	300	SC-EI-6 $\frac{3}{4} /{ }^{\prime \prime}$
TZ-5	40	50	10	500	300	SC-EI-5 ${ }^{\prime \prime}{ }^{\prime \prime}$
TZ-277	40	60	15	500	300	SC-EI-6 ${ }^{3 \prime}{ }^{\prime \prime}$
TZ-56	60	100	20	350	500	OC-EI-81"
TZ-462	60	100	30	600	500	OC-EI-8 $1^{\prime \prime}$
TZ-3	100		20	300	500	OC-EIS-8 $1^{\prime \prime}$
TZ-463	100	150	20	400	500	OC-EI-8 14 ${ }^{\prime \prime}$
TZ-844	100	120	0.1	20	250	SC-EIS-2 1' $^{\prime \prime}$
TZ-57	120		15	200	500	OC-EIS-8 $1^{\prime \prime}$
TZ-28	125		20	200	750	VBA-EI-12 ${ }^{\prime \prime}$
TZ-464	125	150	20	375	500	OC-EIS-8 $1^{\prime \prime}$
TZ-84	150		15	150	750	VBA-EI-12 $1 \frac{1}{2}^{\prime \prime}$
TZ-465	150	200	15	210	500	OC-EIS-811 ${ }^{\prime \prime}$
TZ-466	200	250	10	100	750	VBA-EI-12 ${ }^{\prime \prime}$
TZ-673	240		1	43	1,000	SC-EI-6 ${ }_{4}^{\prime \prime}$
TZ-7	250		7.5	45	750	VBA-EI-12 $1^{\frac{1}{2}}{ }^{\prime \prime}$
TZ-469	250	300	15	100	750	VBA-EI-12 $2^{\prime \prime}$
TZ-1	250		12	65	750	VBA-EI-12 $2^{\prime \prime}$
TZ-840	250	300	1	15	500	SC-EI-7 ${ }^{\prime \prime}{ }^{\prime \prime}$
TZ-843	250	300	0.15	5	250	SC-EI-4 ${ }^{\frac{1}{2}}{ }^{\prime \prime}$
TZ-63	300	400	10	50	750	VBA-EI-12 $3^{\prime \prime}$
TZ-841	300		1	35	500	SC-EI-6 $\frac{3}{4 \prime \prime}^{\prime \prime}$
TZ-842	500		0.1	5	250	SC-EI-5 ${ }^{\prime \prime}$
TZ-394	600	800	12	60	1,000	VBA-EI-16 $2^{\prime \prime}$
TZ-11	1A	2A	0.05	0.5	250	SC-EI-6 ${ }^{\prime \prime}{ }^{\prime \prime}$
TZ-344	5 A	10A	7 mH	0.1	500	OC-EIS-8 $1^{\frac{1}{4}}$

SWINGING CHOKES

		300	$3-15$	40	750	OC-EIS-8 11"
TZ-467	$250 / 25$		$5-25$	40	750	VBA-EI-12 1'
TZ-47	$250 / 25$		$5-15$	92	2,500	VBA-EI-12 2"
TZ-610	$375 / 100$		$0.5-2$	2.25	750	VBA-EI-16 4 $4^{\prime \prime}$
TZ-550	$1.5 A / 10 \mathrm{~mA}$					

1. Auto type power transformers offer considerable economy in physical size and price as compared with their double wound equivalents. However their use is not permitted by Electrical Supply Authorities for certain conditions of operation, and this point should be checked before selecting this type in preference to the double wound.
2. Ratings are based on a maximum ambient temperature of 40 degrees C. with a temperature rise not exceeding 50 degrees C . If used with a higher ambient, the loading must be reduced.
3. In cases where the secondary is terminated in a two pin socket the primary is connected to an approved connector box.
4. For physical details refer to the dimension sheets.
5. Numbers underlined indicate standard transformers normally carried in stock.

$\begin{aligned} & \text { Catalogue } \\ & \text { No. } \end{aligned}$	$\underset{\text { Primary }}{ }$	Secondary Voltage	$\stackrel{\mathrm{VA}}{\text { Rating }}$	Mounting Lamination and Stack
TP-185A	240	11.5	100	WC-EIS-8 $1^{\prime \prime}$
TP-16A	240	115	200	VBA-EI-12 1" Sec. 2 Pin Socket
TP-17A	240	115	300	VBA-EI-12 11/" Sec. 2 Pin Socket
TP-18A	240	115	400	VBA-EI-12 $2^{\prime \prime}$ Sec. 2 Pin Socket
TP-69B	240	115	600	VBA-EI-12 3" Sec. 2 Pin Socket
TP-2499	240	115	1,000	VBA-EI-16 3" Sec. 2 Pin Socket
TP-1803	240	115	1,500	VBA-EI-16 $4^{\prime \prime}$ Terminal Panel
TP-1724	200	240	500	VBA-EI-12 $11_{4}^{\prime \prime}$ Sec. 2 Pin Socket
TP-2259	200	240	1,500	VBA-EI-12 3"Sec. 2 Pin Socket

ROMER TRANSFORNERS

 Step-Dawn Double Wound yypes or 50 g 00 - c/sppetation1. 'Iransformers with suffix (App.) are approved by the State Electricity Commission for use as Extra Low Voltage Transformers and are manufactured to the relevant Specification, S.A.A. No. C.126-1958 Ap.
2. Ratings are based on a maximum ambient temperature of 40 degrees C. If used with a higher ambient, the loading must be reduced.
3. For physical details refer to the dimension sheets.
4. In cases where the secondary is terminated in a two pin socket the primary is connected to an approved connector box.
5. Numbers underlined indicate standard transformers normally carried in stock.

$\begin{gathered} \text { Catalogue } \\ \text { No. } \end{gathered}$	Primary Voltage	Secondary Voltage	VA Rating	Mounting Lamination and Stack
TP-4355	240	12	50	OC-EIS-8 $1^{1 / 1}$
TP-1454A (App.)	240	12	100	VBA-EI-12 $1^{\prime \prime}$ Sec. 2 Pin Socket (polarised).
TP-2500 (App.)	240	12	200	VBA-EI-12 $2^{\prime \prime}$ \& M149 Terminal Box
TP-1780 (App.)	230	32	70	M381-EIS-8 14.1
TP-400A (App.)	240	32	100	M122-EI-12 $1^{\prime \prime}$
TP-2501 (App.)	240	32 ct	200	M122-EI-12 $2^{\prime \prime}$
TP-399B (App.)	240	32 ct	300	M122-EI-12 $3^{\prime \prime}$
TP-2263A (App.)	230	32	575	VBA-EI-16 $3^{\prime \prime}$ \& M149 Terminal Box
TP-2580	415	32	750	VBA-EI-16 $4^{\prime \prime}$ \& M149 Terminal Boxes
TP-2985	240	32	1,050	BUT-1. $2^{\prime \prime}$ Shrouds and Panel
TP-4356	240	32	1,500	BUT $13^{\prime \prime}$ Shrouds and Panel
TP-208A	240	110	65	WC-EIS-8 $1_{4}^{\frac{1}{4}}{ }^{\prime \prime}$ Sec. 2 Pin Socket
TP-1633A	240	110	150	VBA-EI-12 11/ ${ }^{\prime \prime}$ Sec. 2 Pin Socket
TP-1798A	240	110	300	VBA-EI-12 3" Sec. 2 Pin Socket
TP-4358	415	110	550	VBA-EI-12 3" Sec. 2 Pin Socket
TP-3345	240	110	1,000	BUT-1 $2^{\prime \prime}$ Shrouds and Panel
TP-3591	415	110	1,000	BUT-1 $2^{\prime \prime}$ Shrouds and Panel
TP-2264	240	115	550	VBA-EI-16 3" Sec. 2 Pin Socket
TP-2496	240	115	750	VBA-EI-16 4" Sec. 2 Pin Socket
TP-3138	230, 240	115	1,000	BUT-1 ${ }^{\prime \prime}$ Shrouds and Panel
TP-3828	240	110, 115, 120	1,500	BUT-1 3" Shrouds and Panel
TP-3395	240	115	2,000	BUT-5 21/ ${ }^{\prime \prime}$ Angle Frame and Panel
TP-3794	240	11.0	7,500	BUT-5 71 ${ }^{\prime \prime}$ 'Angle Frame and Panel

ISOLATION TRANSFORMERS
These types are fitted with Electrostatic shields

TP-3569A	240	240	200	VBA-EI-12 $2^{\prime \prime}$	Terminal Panel
TP-3078	240	240	250	VBA-EI-12 $3^{\prime \prime}$	or 3 Pin
TP-2827	240	240 ct	500	VBA-EI-16 $2^{\frac{1}{2}}{ }^{\prime \prime}$	Secondary and
TP-3518	240	240	800	VBA-EI-16 $4^{\prime \prime}$	Ceiling Rose on Primary.

NOTE: WHEN ORDERING PLEASE SPECIFY TERMINATIONS REQUIRED.

1. These transformers are selected from our files and are representative of types generally supplied.
2. Should a transformer with different voltages or currents be necessary, please check the details on Page 2 for SPECIAL ORDERS, and include this information with your order.
3. Orders should include the application as some extra-low-voltage transformers are subject to the Approval of Electricity Supply Authorities. Australian Standard Specification C.126/58 defines these transformers as follows:
"This specification prescribes safety requirements for fixed and portable single-phase transformer units rated at not more than 1 kVA , suitable for connection on the input side to low or medium voltage circuits, and intended for operating appliances or equipment rated at 32 volts or less.
The specification does not apply to the following types of transformer:
(i) Battery charging transformers.
(ii) Instrument transformers.
(iii) Transformers for use in mines.
(iv) Railway signalling transformers.
(v) Transformers for use in electronic equipment and the like.
(vi) Transformers which are incorporated in equipment in such a way that all parts of the secondary circuit are either insulated for 250 volts or protected from inadvertent contact.
(vii) Constant current transtormers."
4. Transformers listed below can only be used for applications coveved by (i) to (vii) above. For usage where approval is necessary refer to Page A6.

$\begin{gathered} \text { Catalogue } \\ \text { No. } \end{gathered}$	Primary Voltage	Secondary Voltage	Rating	Mounting Lamination and Stack
TP-3099	240	12	6 VA	SC-EI-6 ${ }^{3 / 4}$
TP-2821	240	22	30 VA	SC-EI-8 $1^{\prime \prime}$
TP-3146	230	30	20 VA	SC-EI-7 1"
TP-3588	110	20,22, 24	200 VA	VBA-EI-12 $2^{\prime \prime}$
TP-3643	230	20,22,24	200 VA	VBA-EI-12 $2^{\prime \prime}$
TP-3863	230,240	24	300 VA	VBA-EI-12 3"
TP-3622	230	20,22,24	350 VA	VBA-EI-16 $2^{\prime \prime}$
TP-3346	240	24	500 VA	VBA-EI-16 3"
TP-2656	220, 240, 260	62	90 VA	VBA-EI-12 $1^{\prime \prime}$
TP-3862	230, 240	110	50 VA	OC-EIS-8 $11^{\prime \prime}{ }^{\prime \prime}$
TP-4353	240	$1 \mathrm{~V}, 2 \mathrm{~V}, 4 \mathrm{~V}, 4 \mathrm{~V}, 10 \mathrm{~V}, 10 \mathrm{~V}$ (Six separate windings with marked polarity.)	All 1.8 Amp.	OC-EIS-8 $1_{4}^{1 / 1}$

1. These transformers are selected from our files and are representative of types generally supplied.
2. Should a transformer with different voltages or currents be necessary, please check the details on Page 2 for Special Orders, and include this information with your order.

	FURNACE IGNITION TRANSFORMERS
TP-3073B	$240 / 5,000-5,000 \mathrm{~V} 20 \mathrm{~mA}$
	Specially designed for Spark Ignition
	Case Size $5^{\prime \prime} \times 8 \frac{1^{\prime \prime}}{} \times 5^{\prime \prime} \mathrm{H}$
TP-4354	$240 / 12 \mathrm{~V} 1.2 \mathrm{~A}, 3 \mathrm{~V} 21 \mathrm{~A}$ Enecially designed for Hot Wire Ignition $1^{\prime \prime}$ Open Clamp Mounting

BATTERY CHARGER TRANSFORMERS
 Using Bridge Type Selenium Rectifiers

TP-2069A
$240 / 6 \mathrm{~V} 6 \mathrm{~A}$ or 12 V 3 A DC
TP-3100
$240 / 6$ or 12 V 10 A DC
OC-EIS-8 $11^{1 / \prime}$ VBA-EI-12 $2^{\prime \prime}$

SATURABLE REACTORS

1. These units are specials and made to order only. The two types listed are representative of types supplied and are designed for the control of $240 \mathrm{v} 50 \mathrm{c} / \mathrm{s}$ by 130 v 100 mA D.C. The designed range of control is from $76 \mathrm{v}-228 \mathrm{v}$
2. Should you require reactors with different ratings or control, please supply complete information with your enquiry.
TZ694
2 KVA
BUT-1 $1 \frac{1}{2}^{\prime \prime}$
TZ695
200 VA
BUT-5 $1 \frac{1}{2}{ }^{\prime \prime}$
3. These transformers are double wound and manufactured to Australian Standard Specification C. 45 using only the best materials. They are tested and inspected in our own test laboratory to ensure complete reliability.
4. While not normal stock items they are representative of the types available, and are listed as standards. However, if a special is unavoidable, refer to Page 2 covering Special Orders and include this information with your order.

$\begin{gathered} \text { Catalogue } \\ \text { No. } \end{gathered}$	Ratio in Amperes	Burden	Ratio Accuracy	Class	Mounting Lamination and Stack
TC-164	10/5	15 VA	1%	B	M273-L6 1"
TC-165	15/5	15 VA	1\%	B	M273-L6 1"
TC-166	20/5	15 VA	1\%	B	M273-L6 1"
TC-167	$30 / 5$	15 VA	1\%	B	M273-L6 1"
TC-168	$50 / 5$	15 VA	1\%	B	M273-L6 1"
TC-169	75/5	15 VA	1\%	B	M273-L6 1"
TC-170	100/5	15 VA	1\%	B	M273-L6 1"
TC-130	$300 / 5$	15 VA	1\%	BM	M273-L6 11/"
TC-171	$50 / 5$	15 VA	0.5\%	A	M273-L6 11/4
TC-172	100/5	15 VA	0.5\%	A	M273-L6 11"

Auto Transformers for Multi Range Meters
(Designed for inclusion in the meter case)

TC-2	$\begin{aligned} & 2.5,5,10,25,50,100,250,500, \mathrm{MA} \\ & 1,2.5,5,10 \mathrm{~A} / 1.11 \mathrm{~mA} \end{aligned}$	1,000 ohms	1%		L4 $\frac{1}{2}^{\prime \prime}$
Using 0-1 MA Meter 1,000 ohms/volt and Meter Rectifier					
TC-15	$1,2.5,5,10,25,50,100 \mathrm{~A} / 1 \mathrm{~A}$	1 VA	1\%	B	S/C-EI-6 ${ }^{3 /}$
TC-16	50, 100, 250, 500, mA , 1, 2.5/1A	1 VA	1\%	B	S/C-EI-6 ${ }^{\text {3/" }}$

1. These transformers are double wound and manufactured to Australian Standard Specification C. 45 using only the best materials. They are tested and inspected in our own test laboratory to ensure complete reliability.
2. For the listed protection transformers, an overcurrent factor of 50 for 0.5 seconds has been selected. With 60 Volts applied to the secondary and the primary open-circuited, the exciting current does not exceed 5 Amps. This condition corresponds to 12 times the rated secondary current.
3. While not normal stock items they are representative of the types available, and are listed as standards. However, if a special is unavoidable, refer to Page 2 covering Special Orders and include this information with your order.

Protection Current Transformers

$\begin{gathered} \text { Catalogue } \\ \text { No. } \end{gathered}$	Ratio	Burden	Ratio Accuracy	Class	System Volts	Mounting Lamination and Stack
TC-132	75/5A	15 VA	1\%	C	440	OC-EI-12 $1_{4}^{1 / 4}$
TC-153	100/5A	15 VA	1\%	C	440	OC-EI-12 $1^{\frac{1}{2}}{ }^{\prime \prime}$
TC-152	150/5A	15 VA	1\%	C	440	OC-EI-12 $1^{\frac{1}{2}}$
TC-154	200/5A	15 VA	1%	C	440	OC-EI-12 $1^{\frac{1}{2}}{ }^{\prime \prime}$

Potential Transformers

TC-181	$400 / 110 \mathrm{~V}$	15 VA	1\%	B	VBA-EI-12 $1_{2}{ }^{\prime \prime}$
TC-125	$110 / 240 \mathrm{~V}$	10 VA	1\%	B	VBA-EI-12 $\mathbf{1 4}^{\prime \prime}{ }^{\prime \prime}$

Aupip ThaNspemiss

1. Frequency characteristics: Every unit is guaranteed to have a frequency variation not exceeding $\pm 1 \mathrm{db}$ from 30 to 10,000 cycles when used under correct conditions. To keep within the guaranteed variation at high frequencies, it is essential to reduce external secondary capacities to a minimum. Actual production units usually give performances far better than this. The transformers are designed for use with secondary loaded, and the frequency characteristic is, therefore, a function of power, not of voltage transfer, obtained by careful design without making use of winding resonances. For the best high-frequency response, it is desirable to keep the capacity across the secondary of high impedance input transformers to a minimum and for this reason pentodes are preferable to triodes because of the large difference in input capacity,
2. Shielding: (a) Electro-magnetic: All types listed employ an astatic hum balancing structure with primary and secondary coils each in two separate sections. Improvement of this type over ordinary shell cores is of the order of 40 to 50 db depending on the uniformity of the interfering field. An additional advantage of this construction is the great improvement in symmetry and balance of coil sections. Outer cases of mild steel or high conductivity non-ferrous metal also give additional shielding. For particularly low-level operation where freedom from hum pick-up is absolutely essential, special types are offered which, in addition to the above incorporate triple shields of high permeability nickel iron alloy. The additional improvement is approximately 40 db .
(b) Electro-static: Transformers are guarded against this type of external interference by the use of an efficient outer case. The high conductivity, non-ferrous case is best for this purpose.
(c) Longitudinal currents: The transfer of longitudinal currents from primary to secondary is attentuated to a considerable degree by the provision of high-conductivity shields between windings, These shields also improve the balance to ground of the windings.
3. Cases: The first case listed is standard and should another type be necessary, please specify by number. Where the M66 case is standard the transformers can be supplied in the special PMG relay set mounting case M455.
4. Multi shielded transformers are designated by "MS".
5. \dagger indicates that these transformers have, at 1 Kc , better than 80 db of balance between the two halves of the primary.
6. Numbers underlined indicate standard transformers normally carried in stock.

Mixing (Line to Line) Transformers

For Line, Microphone or Pickup Matching Balanced or Unbalanced

$\begin{gathered} \text { Catalogue } \\ \text { No. } \end{gathered}$	Case Type	Impedance in Ohms		Turns Ratio	Max. Level dbm	Frequency Variation db /Cycles	Unbal. DCmA
		Primary	Secondary				
TA-636	M66, M91, M8	50	200	1-2	+18	$\pm 0.5 / 30-40 \mathrm{Kc}$	0
TA-406A	M66, M91, M8	50	600	1-3.46	+18	$\pm 0.5 / 30-40 \mathrm{Kc}$	0
TA-101	M66, M91, M8	200	200	1-1	$+18$	$\pm 0.5 / 30-40 \mathrm{Kc}$	0
TA-168A	M66, M91, M8	200	600	1-1.73	$+18$	$\pm 0.5 / 30-40 \mathrm{Kc}$	0
TA-37A	M66, M91, M8	600	600	1-1	+18	$\pm 0.5 / 30-40 \mathrm{Kc}$	0
$\overline{\text { TA-1774 }} \dagger$	M66, M91, M8	150	600	1-1	$+18$	$\pm 1 / 30-15 \mathrm{Kc}$	0
TA-1693 \dagger	M66, M91, M8	600	600	1-1	+18	$\pm 1 / 30-15 \mathrm{Kc}$	0
TA-793	M17	600	600	1-1	$+36$	$\pm 1 / 20-15 \mathrm{Kc}$	0
$\overline{\text { TA-109 }} 4 \mathrm{~A}$	M17	600	1,200	1-1.41	+36	$\pm 1 / 20-15 \mathrm{Kc}$	0
			ti Shielde	Types			
MS-944	M66, M143	50	200	1-2	$+10$	$\pm 0.5 / 30-40 \mathrm{Kc}$	0
MS-866	M66, M143	50	600	1-3.46	$+10$	$\pm 0.5 / 30-40 \mathrm{Kc}$	0
MS-945	M66, M143	200	200	1-1	$+10$	$\pm 0.5 / 30-40 \mathrm{Kc}$	0
MS-946	M66, M143	200	600	1-1.73	$+10$	$\pm 0.5 / 30-40 \mathrm{Kc}$	0
MS-896	M66, M143	600	600	1-1	$+10$	$\pm 0.5 / 30-40 \mathrm{Kc}$	0

Input (Bridging) Transformers
From 50-600 ohm Lines to Single or Push-Pull Grids

TA 17	M66, M91, M8	10,000	100,000	1-3.16	+18	$\pm 0.5 / 30-12 \mathrm{Kc}$	0
TA-731A	M66, M143	12,500	100,000	1-2.83	$+10$	$\pm 1 / 20-20 \mathrm{Kc}$	0

Input (Line to Grid) Transformers

Line, Microphone or Pickup to Single or Push-Pull Grids

Catalogue No.	Case Type	Impedance in Ohms		Turns Ratio	Max. Level dbm	Frequency Variation db $/$ Cycles	Unbal. DCmA
TA-61	M66, M91, M8	50	100,000	$1-44.7$	+18	$\pm 0.5 / 30-12 \mathrm{Kc}$	0
TA-47	M66, M91, M8	200	100,000	$1-22.4$	+18	$\pm 0.5 / 30-12 \mathrm{Kc}$	0
TA-82	M66, M91, M8	600	100,000	$1-12.9$	+18	$\pm 0.5 / 30-12 \mathrm{Kc}$	0
TA-1076	M66, M91, M8	600	50,000	$1-9.2$	+18	$\pm 1.0 / 20-50 \mathrm{Kc}$	0

NOTE: On TA-1076 external Secondary capacity must not exceed 30 pf .

	Multi Shielded Types						
MS-860							
$\overline{\text { MS-837 }}$	M66, M143	50	100,000	$1-44.7$	+10	$\pm 1.0 / 30-10 \mathrm{Kc}$	0
$\overline{\text { MS-878 }}$	M66, M143	200	100,000	$1-22.4$	+10	$\pm 1.0 / 30-10 \mathrm{Kc}$	0
$\overline{\text { MS }}-977$	M66, M143	600	100,000	$1-12.9$	+10	$\pm 1.0 / 30-10 \mathrm{Kc}$	0
	M91	50	60,000	$1-34.8$	+18	$\pm 1.0 / 30-15 \mathrm{Kc}$	0

NOTE: MS-977 is used with Secondary unterminated
Interstage Transformers
Single or Push-Pull 10,000 ohm Plates to Push-Pull Grids

TA-3	M66, M91, M8	40,000	160,000	$1-2$	Whole Sec. 120 V f	$\pm 1.0 / 30-10 \mathrm{Kc}$	0

Output (Plate to Line) Transformers

Single 7,000-10,000 ohm Plates to Line

TA-835	M66, M91, M8	20,000	50	20-1	$+24$	$\pm 1.0 / 30-12 \mathrm{Kc}$	6.5
TA-833	M66, M91, M8	20,000	200	10-1	+24	$\pm 1.0 / 30-12 \mathrm{Kc}$	6.5
TA-733B	M66, M91, M8	20,000	600	5.8-1	$+24$	$\pm 1.0 / 30-12 \mathrm{Kc}$	6.5
Push-Pull 7,000-10,000 ohm Plates to Line							
TA-931	M66, M91, M8	20,000	600	Ratio Corrected	$+24$	$\pm 1.0 / 20-15 \mathrm{Kc}$	1.0
TA-947	M66, M91, M8	30,000	50	24.5-1	$+27$	$\pm 1.0 / 30-12 \mathrm{Kc}$	1.0
TA-948	M66, M91, M8	30,000	200	12.3-1	$+27$	$\pm 1.0 / 30-12 \mathrm{Kc}$	1.0
TA-710A	M66, M91, M8	30,000	600	7.1-1	$+27$	$\pm 1.0 / 30-12 \mathrm{Kc}$	1.0

NOTE:

1. The above transformers are designed for use with the secondary winding terminated unless otherwise stated. For use unterminated the low frequency variation would increase by approximately 1 to 2 db .
2. Both primary and secondary windings are in two sections. Impedances shown are for the series connection in which a centre tap is ayailable. If coils are connected in parallel, impedances are equal to 25% of those shown, and no centre tap is available.
3. Most of the above transformers are usable in circuits with impedances differing $\pm 25 \%$ of the values shown, without exceeding the guaranteed response. (Both primary and secondary impedances would be altered in the same ratio).
4. If either the primary or secondary is terminated in the rated impedance, the impedance measured on the other side will be higher than the value shown, due to the de resistance of the transformer windings. This increase is negligible in all types with the exception of output transformers and line transformers, type TA793.
5. dbm equals decibels referred to 1 milli-watt,
6. If transformers specified with an unbalanced dc of zero, in actual use, have unbalanced de present, lowfrequency response will drop. On removal of the unbalance the response will revert to normal.
7. Type TA793 and TA1094A transformers have extremely accurate balance of coil sections and are suitable for phantom working. The transformers will also handle 17 cycles ringing current in telephone circuits. An electrostaticushield between windings is not provided in these types.

SPEMIIT PURPOSG AUDIO AND QARRIER

 -TIIQUENCYTRANSEBMEXS1. These transformers are selected from the wide range of special purpose types available.
2. Types differing from the following are included in our range, and enquiries for special types will receive our full co-operation.
3. A full statement of requirements must be included when seeking transformers of these or similar characteristics.
4. Numbers underlined indicate standard transformers normally carried in stock.

Catalogue No.	Case	Application	Impedance Ratio		Frequency Response $\pm 1 \mathrm{db}$	$\begin{aligned} & \text { Level } \\ & \mathrm{dbm} \end{aligned}$
			Primary	Secondary		
TA-770	M8-M66	Line to grid	600 bal .	200,000 ct	$50 \mathrm{c} / \mathrm{s}-8 \mathrm{Kc}$	$+10$
TA-605	M8, M66	Line matching balance of secondary better than 60 db	600 bal .	$1,200 \mathrm{bal}$.	20c/s-40Kc	+18
TA-763	M8, M66	Carrier line matching	600/150	600/150	$50 \mathrm{c} / \mathrm{s}-150 \mathrm{Kc}$	$+18$
$\overline{\text { TA-796A }}$	M8, M66	Carrier line to grid	600 bal .	60,000	$300 \mathrm{c} / \mathrm{s}-30 \mathrm{Kc}$	+18
TA-797	M8, M66	Carrier plate to line (no D.C.)	6,000	600 bal.	$1 \mathrm{Kc}-30 \mathrm{Kc}$	$+18$
TA-909	M8, M66	Carrier bridging (300 ohms)	$30,000 \mathrm{bal}$.	30,000	$30 \mathrm{c} / \mathrm{s}-50 \mathrm{Kc}$	+18
TA-1103C	M8	Carrier line to grid	600 bal.	20,000	$3 \mathrm{Kc}-150 \mathrm{Ke}$	$+18$
TA-1104B	M8	Carrier plate to line	6,000	600 bal .	$3 \mathrm{Kc}-150 \mathrm{Kc}$	+27
TA-1105A	M8	Carrier line matching Note: Bal. of windings better than 60 db up to 200 Kc and better than 40 db to 1 MC	$600 / 150$	600/150	$3 \mathrm{Kc}-500 \mathrm{Kc}$	+18
TA-1147	M8, M51	Carrier line matching auto Note: When supplied in M51 case includes 4uF condensers for D.C. isolation	600	$130 / 150$	100c/s-45Kc	$+18$
TA-913B	M17, M51	Wide band line matching auto	600	115/120	$20 \mathrm{c} / \mathrm{s}-300 \mathrm{Kc}$	
TA-914B	M17, M51	Wide band line matching auto	600	125/130	20c/s-300Kc	
TA-915B	M17, M51	Wide band line matching auto	600	135/140	20c/s-300Kc	
TA-916B	M17, M51	Wide band line matching auto	600	145/150	20c/s-300Kc	
TA-917B	M17, M51	Wide band line matching auto	600	155/160	20/cs-300Kc	

One method of protecting a telephone from high voltages appearing on the line is the use of an Isolation Transformer.

The two types listed are representative of the units we manufacture and are for use in portable equipment or in permanent locations.
Special construction and resin potting are combined to give an adequate margin of safety and also to give complete dependability under the severest climatic conditions.

TA-1588 (Resin Cast)

Dimensions	Approximately $4^{\prime \prime} \times 2 \frac{1}{2}^{\prime \prime} \times 4^{\prime \prime} \mathrm{H}$
Ratio	200 ohm ct line $/ 600$ ct equipment
Insertion loss	Not greater than $1.2 \mathrm{db} 400-4,000 \mathrm{c} / \mathrm{s}$
Balance	Line winding greater than 60 db
Test Voltage	15 KV RMS line to equipment

This transformer has electrostatic shields and is astatically wound to reduce the possibility of cross talk to a minimum.
It is used for voice frequencies and VF signalling.

	'TA-1704 (Resin Cast)
Dimensions	Approximately $5^{\prime \prime} \times 2 \frac{1}{4}^{\prime \prime} \times 3 \frac{1}{2}^{\prime \prime} \mathrm{H}$
Ratio	600 ohm ct line $/ 600 \mathrm{ohm} \mathrm{ct} \mathrm{equipment}$
Insertion loss	1 db at $1,000 \mathrm{c} / \mathrm{s}$ and not more than 2.8 db at 3 Kc
Test Voltage	20 Kv RMS line to equipment

This transformer has been designed to handle $17 \mathrm{c} / \mathrm{s}$ ringing current and is astatically wound with electrostatic shields.

Neutralising Transformers

Another recent development is a neutralising transformer which is used to protect one or more exchange lines from high voltages developed during an earth fault at a power station. This method preserves the D.C. continuity in the lines without any serious effect on the transmission quantities. Because of the application of these transformers they are not listed but full information is available on request.

AMPLIFRERTP AS4B

GENERAL:

The "Trimax" Amplifier Type A54B is a high quality amplifier designed to drive a wide range monitor loudspeaker, or to act as a distribution amplifier for a large number of lines. Two output impedances are available - 12 ohm or 3 ohm . The input is suitable for bridging a terminated 600 ohm line. The type A54B differs from the old type A54, in the use of silicon diodes in place of the thermionic rectifier, to reduce heat and improve reliability.

PHYSICAL DESCRIP'TION:

The unit is designed for standard rack mounting, and occupies three rack units ($5 \frac{1}{4 \prime \prime}$). Input, output, and power connections are by means of plugs and sockets.

SPECIFICATION

Gain 42 db continuously variable by means of input potentiometer.
Frequency Response . $\pm .5 \mathrm{db}$ from 20 cycles to 20 K.c.
$\pm 1 \mathrm{db}$ from 15 cycles to 30 Kc .
Stability The frequency response does not vary by more than 1.5 db outside the limits stated above when the output termination is varied from open circuit to 600 ohms resistance, or 50 ohms in parallel with 0.2 mfd ., and the amplifier is free from oscillations under these conditions.

Source Impedance	300
Input Impedance	Greater than 25,000 ohms.
Load Impedance	12 ohms or 3 ohms , changeable by output plug wiring.
Output Impedance	Less than 1.5 ohms and .4 ohms respectively.
Noise	Equivalent noise input to the amplifier is less than -80 dbm with the gain control in its maximum position.
Power Output	Nominally 12 watts at less than $.25 \%$ distortion at 1 Kc. A power output of approximately 20 watts is obtainable for 1% distortion.
Power Input	$200-250$ volts, $40-100$ cycles, selected by fuse position. Primary current approximately . 5 amp .
Cathode Metering	Metering jacks are provided for each tube giving approximately $\frac{1}{2}$ scale reading on a $1 \mathrm{~mA} 1,000$ ohms per volt meter.
Output Tubes Balan	A potentiometer is provided for balancing the D.C. current of the output tubes.

These units are for standard $19^{\prime \prime}$ rack mounting and occupy $5 \frac{1^{\prime \prime}}{}$ of panel space. The G4 mains operated unit is completely self contained as illustrated and the G2 requires only the D.C. power given in the specification.

There are many applications where widely varying dynamic levels are required to be measured on programme lines. The "Trimax" Extended Range Volume indicators, employing a high stability feedback amplifier in conjunction with a VU meter, have been specially designed for this purpose. Control of the Amplifier gain is by two stepped attenuators giving coarse and fine adjustment. At zero position on these attenuators the meter shows a deflection of zero VU when a voltage of 0.7746 RMS is impressed on a 600 ohm line.

SPECIFICATION

G2 Battery Operated
Power Requirement 130 V. 5 mA D.C. 24 V. 0.3 A D.C.
G4 Mains Operated
Power Requirement $200-250$ V. $50 \mathrm{c} / \mathrm{s}$ Mains.
Indicator Range -40 dbm to +33 dbm .
Level Control In 2 db steps.
Frequency Range $\pm 0.5 \mathrm{db} 20 \mathrm{c} / \mathrm{s}-60 \mathrm{Kc}$.
Attenuator Accuracy $\pm 0.1 \mathrm{db}$ at 1 Kc.
Source Impedance 300 ohms (bridging 600 ohms line).
Input Impedance 30,000 ohms.
Level Indication $4^{\prime \prime}$ Square meter.

GENERAL:

These "Trimax" regulators are ideal for use with electronic equipment and apparatus operated from $50 \mathrm{c} / \mathrm{s} 230-240 \mathrm{~V}$ A.C. mains. The effect of varying supply voltage is virtually eliminated and although the D.C. output of rectifiers is reduced because of the harmonic content and higher source impedance, it remains stable. The D.C. variation of up to 10% is seldom important when weighed against the advantages of a stable supply.

Range of Con	For an input variation from $190-260 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$ the output remains $\pm 1 \%$.
Output Voltage	The output is nominally between 230 and 240 V R.M.S. Specially selected units are available to specific voltages within this range.
Frequency	Because of the tuned saturable reactor circuit sed, the regulator is sensitive to frequency.

TYPES S38 AND S40
Power Output: 60VA max.
Connections:
S38:
Input 3-pin plug. Output 3-pin socket.

S40:

Input and output conduit entries.
Case:

Weight:
Sheet metal case $10 \frac{1}{2} \mathrm{in} . \times 4 \frac{1}{2} \mathrm{in} . \times 4 \frac{1}{2} \mathrm{in}$. H. with mounting flange at each end. Special dimples are formed on the base for normal bench use. 13 lbs .

TYPE S82
Power Output: 250VA max.
Connections: Input 3-pin plug. Output 3-pin socket.
Other methods can be provided.
Case: Sheet metal case 19 in. x $5 \frac{1}{4}$ in. $\mathrm{x} 6 \frac{1}{2} \mathrm{in}$. H. with mounting flange at each end. The unit is suitable for standard 19 in. rack mounting or normal bench use.
Weight: 30 lbs .

GENERAL

These A.C. testers have been clesigned to cover the normal production line testing of electrical appliances and components. Being portable they can be used in any suitable location where $240 \mathrm{~V} 50 \mathrm{c} / \mathrm{s}$ is available.

Any insulation breakdown in the unit under test is indicated by the glow from a neon tube which is mounted in the tip of the probe. Faults are therefore shown at the test point which ensures fast and reliable testing. Since the short circuit current is limited to less than 6 mA the unit is non lethal and accidental applications to equipment are not likely to cause damage.

The following units have been selected as standards and cover test voltages up to $3,000 \mathrm{~V}$. Other voltages can be supplied to order.

Type	Case Dimensions	Output Voltage
S47	$5 \frac{1}{2}$ in. x 5 in. $\mathrm{x} 4 \frac{1}{2} \mathrm{in} . \mathrm{H}$.	1,000V RMS
S57	$5 \frac{1}{2}$ in. x 5 in. $\mathrm{x} 4 \frac{1}{2} \mathrm{in}$. H .	1,000/1,250V
S70	$5 \frac{1}{2} \mathrm{in}, \mathrm{x} 5 \mathrm{in} . \mathrm{x} 4 \frac{1}{2} \mathrm{in} . \mathrm{H}$.	1,500 or $2,000 \mathrm{~V}$ RMS selected by switch
S56	$16 \mathrm{in} . \mathrm{x} 8 \frac{1}{2} \mathrm{in} . \mathrm{x} 11 \frac{1}{2} \mathrm{in} . \mathrm{H}$.	500-2,500 in 500 Volt Steps. This unit also includes a meter for accurately setting the voltage.
S60	$16 \mathrm{in} . \times 8 \frac{1}{2}$ in. $\times 11 \frac{1}{2}$ in. H.	$500-3,000 \mathrm{~V}$ in 500 Volt Steps. Identical to S56 except for higher voltage.

THE IDEAL METHOD OF TESTING TELEVISION and other high voltage components

Ionisation Testers provide the most convenient way of determining that the life of an electrical component is not shortened by ionisation currents occurring at or below the working voltage. These instruments enable the quality of insulating materials to be determined non-destructively and provide an excellent means of testing components for faulty impregnation and dampness.

SPECIFICATION

Output Voltage	\ldots	\ldots	\ldots	$50-1000$ volts (on 1 kV terminal)
				$500-10,000 \mathrm{volts}$ (on 10 kV terminal)

The "Trimax" Ionisation Tester Type G1B has been designed for use as either a field production or laboratory test instrument, and has been constructed in portable form rather than for mounting in a standard rack. It is non lethal in normal use but large capacities being tested can hold lethal charges. These must be treated with cation.

general description and circuit principles

Among the many uses of this instrument is the detection of ionisation and the measurement of insulation resistance of components and equipment whether they are connected to earth or isolated. Electric motors or transformers, for instance, can be tested on site. For accurate leakage current measurements a guard terminal is provided to eliminate unwanted currents. This is particularly useful when measuring the insulation resistance between two conductors in a screened cable.

EHT UNIT :

The variable D.C. output is obtained by controlling the screen voltage of an RF oscillator operating at approximately 100 Kc . The output of this oscillator is fed to a special RF transformer, then rectified, filtered and applied to a voltage divider. Ten per cent of the output is connected to the 1000 V terminal and the full voltage to the 10,000 volt terminal. Both voltages are direct reading on the meter.

VOLTMETER CIRCUIT :

The vacuum tube Voltmeter circuit uses two triodes with 100% degenerative feedback ensuring a high degree of linearity. The effect of variations in tube characteristics is kept to a minimum and the zero and sensitivity are unaffected by changes in the line voltage. Leakage currents through the sample are determined by measuring, by means of the vacuum tube voltmeter. the voltage drop across selected accurately calibrated series resistors.

AUDIO AMPLIFIER :

This is a three stage high gain amplifier using three pentode stages. The input valve is a special low noise type and the restricted frequency range of 500 cycles to 7 Kc reduces the hum frequency components by as much as 40 db . The hissing or rushing noise which shows the onset of ionisation is easily detected, but for noisy locations headphones can be used. The impedance of the headphones is not critical and when they are plugged in, the speaker is muted.

POWER SUPPLY :

Supply voltages from $200-250$ Volts A.C. 40-60 cycles can be used and the correct transformer tap is selected by adjusting the tap changing fuse holder which projects into the storage compartment.

The storage compartment is built into the bottom of the case and holds the input lead and the instruction booklet.

ATTENLTTORSNAND FADERS

The "Trimax" Model G45 Fader is a new design evolved from experience gained over twenty years of this type of manufacture, and features:

- Solid non-staining silver alloy contacts.
- Floating rotor with three contact pressure points.

- Optimum, permanently maintained contact pressure.
- Rigid four pillar construction.
- Porous bronze main bearing.
- Stainless steel spindle.
- High quality phenolic resin stud plates with acetal resin rotor bosses.
- Diamond lapped contact surfaces.
- Positive knob stop in addition to individual rotor stop.
- High stability resistors.

It can be supplied in batanced or unbalanced forms of Potentiometer and Ladder, or as Bridged-T.

ELECTRICAL SPECIFICATION:

Attenuation Range: 31 positions. The first 27 steps are 1.66 db each giving a total of 45 db . The last three steps taper to infinity.
Attenuation Setting: Indicated by dial, calibrated in 5 db increments (every 3 steps) with intermediate divisions.
Accuracy of Calibration: $\pm 0.5 \mathrm{db}$ in any 5 db section. Within 1 db of nominal in any position. Frequency Characteristics: Dependant on attenuator form and impedance, e.g., within 0.5 db from D.C. to 100 Kc . for a 600 ohm ladder in any position.
[mpedance: Our standard designs cover the impedances listed below and other values are subject to special order.
[nput and Output Impedance Tolerance: Within 10% of nominal except on last three steps.
Off-normal Contacts: These are changeover contacts, i.e., S.P.D.T. operating on the last 2 steps of the control and can be fitted to any type.
If required add letter " X " to Catalogue No.
[nsertion Loss: Ladder types 6 db . Potentiometers and bridged " T " types $0 . \mathrm{db}$.

PHYSICAL SPECIFICATION:

Cover size: $23 / 32^{"}$ square plus terminal pin projections.
Dial diameter: $2 \frac{1}{2}^{\prime \prime}$.
Escutcheon: Oval 2 $\frac{1}{2}^{\prime \prime} \times 3^{\prime \prime}$.
Overall depth behind panel: Single unit $21 / 16^{\prime \prime}$; Double unit $33 / 16^{\prime \prime}$,
Mounting: $2 \times 5 / 32^{\prime \prime}$ holes $11_{2}^{\prime \prime}$ centre distance with $\frac{1}{2} "$ dia, centre hole.

[NSTALLATION:

1. Remove knob and dial assembly, and escutcheon plate.
2. Attach to panel with the two holding screws which also hold the escutcheon plate.
3. Rotate the spindle by fingers either clockwise or anti-clockwise until the rotor stops engage.
4. Fit knob and dial assembly to spindle with approximately $1 / 32^{\prime \prime}$ clearance between dial skirt and escutcheon and rotate in same direction as in 3 until the knob firmly engages the knob stop. Tighten knob grub screws.
Note: (a) The plastic covered holding screw which also functions as the fixed part of the knob stop is normally positioned on the left-hand side of the spindle.
(b) The fader may be mounted with the terminal lugs in either a horizontal or vertical plane by correctly positioning the two holding screw holes. Faders are normally assembled for vertical plane mounting, and, if the horizontal plane is preferred, it is necessary only to loosen the dial skirt plate retainer screws on the knob, rotate the dial to the correct position, and re-tighten the screws.

MAINTENANCE:

1. Sufficient lubrication is applied to the spindle bearings during manufacture to function indefinitely, but if it appears desirable to re-lubricate, apply one small drop to each bearing, applied preferably by a piece of $1 / 16^{\prime \prime}$ dia. wire, which has been dipped in a light machine oil.
2. Contacts: These may be "dry" or lubricated. If the preference is for lubrication, use only pure lanoline or "Electrolube". If electrical noise develops, which is unlikely, clean contact surfaces with a small brush dipped in Chlorothene NU, or other high quality solvent. Abrasive cleaning should not be attempted as this would destroy the high surface finish resulting from diamond lapping.

STANDARD TYPES

Potentiometers	Unbalanced Ladder	Balanced Ladder	Bridged "T"
A7P 10K ohms	*A1L 600 ohms	"A1M 600 ohms	A2T 600 ohms
A6P 100K ohms	A2L 200 ohms	A2M 200 ohms	A3T 200 ohms
A4P 500 K ohms	A3L 50 ohms		

[^1]
ELEOTRTCA GONNECWRS

Essential requirements in comectors for use in electronic circuits are perfect conlact, full shielding, reliability, and speedy usage. These are fully met by "Trimax" electrical comnectors.

Materials used in their manufacture are the best obtainable and comply with all the relevant British Standard Specifications. Careful inspection at every stage of production ensures rejection of any faulty parts.

- All contact surfaces are silver plated, and pins are end drilled for ease of connection to cable wires.
- Average voltage drop across a single contact with a current flow of 15 amperes does not exceed 6 millivolts.
- Shells and bodies are die cast in zinc base alloy.
- Contact insulation is moulded bakelite.
- Springs are made in spring temper Phosphor Bronze.
- Easy release latch lock fittings are incorporated to prevent accidental parting of connectors.
- All castings are Cadmium plated.
- All cord grip fittings will take a cable with maximum diameter of $\frac{1}{3} \mathrm{in}$. A 2 in . length of rubber tube with inside diameter of $9 / 32 \mathrm{in}$. is supplied for use use with cables of smaller diameter.
- Contact insulation is checked at 1,500 volts R M S.
- Wall Mounting Plates are finished in florentine bronze.

90° MALE CORD GRIP PLUG

 Cat. No.
 P3MA
 P4MA
 P6MA

SOCKET MOUNTING PLATES

$4 \frac{1}{2}$ in. x 2 a in.
S3F1 One socket on plate S4F1 One socket on plate S6F1 One socket on plate S3M1 One socket on plate S4M1 One socket on plate S6MI1 One socket on plate
$4 \frac{1}{2} \mathrm{in}, x 65 \mathrm{in}$.
S3F3 Three sockets on plate S4F3 Three sockets on plate S6F3 Three sockets on plate S3M3 Three sockets on plate S4M3 Three sockets on plate S6M3 Three sockets on plate

PILOT LAMP HOLDERS

Both lamp holders are designed for lamps with a maximum dissipation of 2 watts.

INSTRUMENT TERMINALS AND PANEL

"M 57" A nickel plated brass terminal with knurled top, and end drilled $\overline{3} / 3 \mathrm{in}$. diameter to take a standard "banana" plug. Shank length $\frac{3}{4}$ in. M57/2 - Shank length 19 in.
"M 176" Identical to the M57 but with an insulated top. Available in standard colours of Red and Black. Shank length $\frac{3}{4}$ in. M176/2 Shank length $1 \frac{1}{2}$ in.
"M 62" Terminal panel suitable for mounting these terminals at ${ }^{\frac{3}{3}} \mathrm{in}$, centres on panels of a minimum thickness of .040 in .

TWO PIN PLUG

"M 682" An instrument or equipment plug with standard $\frac{8}{4} \mathrm{in}$, spacing between pins. The pins are each drilled to take "banana" plugs or another M682 either end in or crossways. Captive knurled nuts are available for loose lead connections.
"M 1058" Similar to M682 but with insulated top terminals.

The Trimax Tap-changing fuse holder is suitable for fuses up to 5 amp . capacity, and because of the alternative fuse positions, is a convenient means of tap-changing. All contact surfaces are silver plated, and the springs do not carry current. When the top cap is removed for adjustment or replacement of fuses, the line connections are broken, thus eliminating danger of shock.

VERNIER DRIVE-"M 48"

A vernier drive with a ratio of approximately $10-1$, of the friction type, using hardened steel balls and a drive spindle of silver steel. The driving spindle diameter is $\frac{1}{4} \mathrm{in}$., and the unit is for fitting to a $\frac{3}{3} \mathrm{in}$. shaft. Its overall length is 23 in., and overall diameter 1 in .

JACK MOUNTING BLOCK-"M $11^{\prime \prime}$

A handy insulating block for mounting of telephone jacks with an outside barrel diameter of . 450 in , and a length of .580 in . Using these blocks it is possible to mount a single row of jacks at $\overline{\overline{8}} \mathrm{in}$. centres. The block is provided with holes of suitable diameter to take number 4 self-tapping screws.

ROUND BASE TABLE STAND, FIXED OR ADJUSTABLE TYPES
Base Diameter 6 in.
HEIGHT: Fixed Type 14 in .
HEIGHT: Adjustable Type $14 \mathrm{in} .-21 \mathrm{in}$.

ROUND BASE FLOOR STAND

Base Diameter 12 in.
HEIGHT; Adjustable $3 \mathrm{ft} .6 \mathrm{in} .-6 \mathrm{ft} .6 \mathrm{in}$. WEIGHT OF BASE: 13 lbs.

HEAVY DUTY TRIPOD BASE FLOOR STAND
HEIGHT: Adjustable $4 \mathrm{ft} .6 \mathrm{in},-7 \mathrm{ft}$. or 3 ft. 6 in. -6 ft .6 in. As Ordered.
WEIGHT OF BASE: 22 lbs .

In the early stages of "Trimax" development it was decided to make the organisation as self contained as possible. To assist in this, a comparatively elaborate sheet metal section was established to manufacture the many types of covers, cases, chassis and cabinets used with our products.
The excellent workmanship and finish, as well as competitive pricing, has led to an expanding market in Industry and with Government Departments. To keep pace with this expansion, new machines have been installed, and company policy is to replace these machines with improved types as they become available. The working area now exceeds $10,000 \mathrm{sq}$. ft.
Facilities are available for fabrications in all standard rolled or extruded sections as well as panels, cabinets and cubicles up to 8^{\prime} by 10 gauge steel, or brass and aluminium up to $\frac{1_{4}^{\prime \prime}}{}{ }^{\prime \prime}$.
A large degreasing bath has been installed to insure completely clean surfaces for the application of primers and the finished product is normally stoved in a temperature controlled oven. Spray finishes in all standard materials are applied in a closed spray room which has a filtered air supply.

This special rack cabinet is typical of types used in Public Address and Communication Equipment. Similar cabinets can be made to special order: and our staff of highly skilled personnel are always ready to assist you.

RACK CABINEIS for standard $19^{\prime \prime}$ panels are another standard line, and can be made for any panel space, usually in multiples of 13", which is the basic unit for this type.

AMPLIFIER CHASSIS:

These are standard chassis, bases and covers for Public Address equipment and amplifiers, and are normally stock items in two sizes.
M50 Chassis. Has a detachable cover and base. Size of Base: 15 in. $x 8 \frac{1}{3} \mathrm{in} . \mathrm{x} 3 \mathrm{in}$. high.
Height of Cover: $5 \frac{1}{2} \mathrm{in}$.
Overall Height of Base and Cover: 81 $\frac{1}{2}$ in.
M356 Chassis. Has a detachable cover and base. Size of Base: 11 in. x $8 \frac{1}{2} \mathrm{in} . \times 2 \frac{1}{2} \mathrm{in}$. high. Height of Cover: $5 \frac{1}{2} \mathrm{in}$.
Overall Height of Base and Cover: 8 in.

TERMINAL BOXES:

Many types of heavy gauge terminal boxes are made and supplied to specification. The one illustrated is of 12 gauge steel finished in stoving enamel. The construction is virtually watertight being drip and splash proof.

MU-METAL SHIELDS:
The Mu-Metal shield shown is one of many shields manufactured for Cathode Ray tubes. It is annealed in a Trimax designed and built controlled atmosphere furnace to obtain the highest performance figures. Government Departments and Industry are major users of these shields.

CASES:

All types of portable cases are made. The one shown being approximately $16^{\prime \prime} \times 8 \frac{1}{2}$ " $\times 11 \frac{1^{\prime \prime}}{}$. high. This unit can be supplied with a blank chassis and panel so that special equipment can be mounted, or the case only is available. Other special cases can be supplied to order and your enquiries are wetcome.

L M ERICSSON PTY. LTD. TRIMAX DIVISION
Cnr. CHARLES \& WILLIAM STS.
COBURG, N. 13
VICTORIA

GENERAL:

This trolley is particularly suitable as a means of mounting heavy laboratory test equipment.

The shelves can be fixed in a horizontal position or at an angle ideal for cathode-ray oscilloscopes, they can also be reversed to become trays with reasonably high sides and they are adjustable to a number of different heights in any of the above forms of mounting.

Provision is made for fitting three mains sockets in parallel, which means that three mains-operated instruments can be supplied with power, when on the trolley, by the use of one extension lead.

CASTORS:

Rubber tyred castors are fitted to give silent, shock-proof and easy mobility.

FINISH:
The stock trolleys are grey hammertone but other colours can be obtained by special order.

DESPATCH \& PACKING:

In order to keep the freight to a minimum and for ease of handling and storage, the trolleys are despatched in kit form complete with nuts, bolts and castors for assembly on arrival.

The electrical fittings can be supplied, as an extra, to special order.

POWER TRANSFORMERS－TRADE \＆RETAIL PRICES
Date 1st May， 1965 Excluding Sales Tax

TYPE	TRADE	RETAIL	TYPE	TRADE	RETAIL
TP－16A	£4．13．	£5．19． 0	TP－2821	£1．12． 9	£2．1． 9
TP－17A	5． 4 。	6．13． 6	TP－2827	12．16． 9	16．7． 3
TP－18A	5.16 。	7．8． 9	TP－2985	25．13． 3	32．14． 6
TP－69B	7．3．	9． 2.9	TP－3073B	20．13． 3	26．7． 0
TP－185A	3．10．	4．9． 3	TP－3078	7．16． 9	9．19， 9
TP－208A	4． 0 。	5．2． 0	TP－3099	1．3． 3	1．9． 9
TP－399B－M122	13．13．	17．8． 6	TP－3100	5． 0 。 0	6．7． 6
TP－399B－VBA	6.10 ．	8．5． 9	TP－3138	25．3． 3	32．1． 9
TP－400A－M122	11． 0.	14． 0.6	TP－3146	1．10． 0	1．18． 3
TP－400A－VBA	3.16.	4．17． 9	TP－3345	25． 0.0	31．17． 6
TP－1454A	4.16 ．	6．3． 3	TP－3346	13．6． 9	17．0． 0
TP－1633A	5.13.	7．4． 6	TP－3395	38． 0 。 0	48．9． 0
TP－1724	5． 0 。	6．7． 6	TP－3518	16．16． 9	21．9． 3
TP－1780	4.3 。	5．6． 3	TP－3569A	6．6． 9	8．1． 6
TP－1798A	7．16．	9．19． 9	TP－3588	5．0． 0	6． 7 。 6
TP－1803	15．6．	19．11． 0	TP－3591	25．0． 0	31．17． 6
TP2069A	2．16．	3．12． 3	TP－3622	11． 0 。 0	14． 0.6
TP－2077	7.10.	9．11． 3	TP－3643	5．0． 0	6．7． 6
TP－2171B	3.6.	4．5． 0	TP－3794	96．13． 3	123．5． 0
TP－2259	7． 0 。	8．18． 6	TP－3828	29．3． 3	37．3． 9
TP－2263A	14． 6.	18．5． 6	TP－3862	2．13． 3	3．8． 0
TP－2264	13．13．	17．8． 6	TP－3863	6．10． 0	8．5． 9
TP－2420	3.6.	4．5． 0	TP－3980	2．10． 0	3． 3.9
TP－2496	16． 6.	20．16． 6	TP－3981	3.3 ． 3	4． 0 。 9
TP－2499	13． 0 ，	16．11． 6	TP－3982	4．11． 3	5．16． 6
TP－2500	6.16.	8．14． 3	TP－4300	1．8． 0	1．15． 9
TP－2501	12． 6.	15．14． 6	TP－4301	1．16． 9	2． 6.9
\Rightarrow TP－2502	1.11.	2． 0.0	TP－4302	2．6． 0	2．18． 9
TP－2580	17． 0 。	21．13． 6	TP－4303	2． 3 。 3	2．15． 3
TP－2656	3．16．	4．17． 9	TP－4304	2． 3.3	2．15．3
L M ERICSSON PTY．LTD．			TRIMAX DIVISION		

TYPE	TRADE	RETAIL	TYPE	TRADE	RETAIL
TP－4305	£2，16． 9	£3．12． 3	TP－4335	£12．6． 9	£15．14．6
TP－4306	2．16． 9	3．12． 3	TP－4336	26． 0.0	33．3． 0
TP－4307	2．18． 0	3．14． 0	TP－4337	4．3． 3	5．6． 3
TP－4308	2．18． 0	3．14． 0	TP－4338	5．8． 9	6．18． 6
TP－4309	3．8． 9	4．7． 6	TP－4339	1． 3 。 3	1． 9.9
TP－4310	3．10． 0	4．9． 3	TP－4340	1．8． 9	1．16． 6
TP－4311	3.11 .3	4．11． 0	TP－4341	1． 8 ． 9	1．16． 6
TP－4312	3．9。3	4．8． 6	TP－4342	1．12． 9	2．1． 9
TP－4313	4． 3 。 3	5．6． 3	TP－4343	1．12． 9	2． 1.9
TP－4314	4．4． 9	5．8． 0	TP－4344	1．19． 3	2．10． 3
TP－4315	4．16． 9	6.3 .3	TP－4345	2．10． 0	3．3． 9
TP－4316	4．16． 9	6．3． 3	TP－4346	2．13． 3	3．8． 0
TP－4317	4．3． 3	5．6． 3	TP－4347	2．10． 0	3． 3.9
TP－4318	4．11． 3	5．16． 6	TP－4348	2．11． 3	3．5． 6
TP－4319	4．10． 9	5．15．6	TP－4349	3．16． 9	4．17． 9
TP－4320	4．16． 9	6．3． 3	TP－4350	3．16． 9	4．17． 9
TP－4321	4．16． 0	6． 2 。 6	TP－4351	4．10． 0	5．14． 9
TP－4322	6．3． 3	7．17． 3	TP－4352	10． 0 。 0	12．15． 0
TP－4323	7．10． 0	9．11． 3	TP－4353	3．10． 0	4．9。3
TP－4324	6． 3 。 3	7．17． 3	TP－4354	3．16． 9	4．17． 9
TP－4325	6．16． 9	8．14． 3	TP－4355	2.10 ． 0	3．3． 9
TP－4326	7．10． 0	9．11． 3	TP－4356	29．0． 0	36．19． 6
TP－4327	7．10． 0	9．11． 3	TP－4358	13．13． 3	17． 8 。 6
TP－4328	7．16． 9	9．19． 9	TP－4407	3．16． 9	4．17． 9
TP－4329	7．10． 0	9．11． 3			
TP－4330	8．6． 9	10．12． 6			
TP－4331	10．16． 9	13．16． 3			
TP－4332	13．10． 0	17．4． 3			
TP－4333	11．0． 0	14． 0.6			
TP－4334	11． 0 。 0	14． 0.6			

TYPE TRADE RETAIL TYPE TRADE RETAIL

TZ－7 3．13。3 4．13。6
TZ－11－．19。3 1．4。 9
TZ－28 3．10。 0 4．9。 3
TZ－47 3．6． 9 4．5． 0
TZ－56 1。6。 0 1．13。3

TZ－57 2．3． 3 2．15。3
$\begin{array}{ccc}\mathrm{TZ}-63 & \text { 5．} 3.3 & 6.11 .9\end{array}$

－84	3．16． 9	4．17． 9

TZ－277 1． 0 。 9 1。 6。 3

| TZ | 2． 344 | 6.19 2． 6 |
| :---: | :---: | :---: | :---: |

TZ－394 10。0。0 12．15． 0
$\mathrm{TZ}-460 \quad=$ 。19。 $3 \quad 1$ ．4． 9

| TZ－461 1． 0.9 | 1．6． 3 |
| :---: | :---: | :---: |

TZ－462
1．8． 9 1．16． 6
TZ－463 1．13． $3 \quad 2$ 2． 6
TZ－464 2．6． 0 2．18． 9
$\begin{array}{cll}\mathrm{TZ} & 4.65 & 2.10 \text { 。 } 0\end{array}$ 3．3． 9
TZ－466
3。6。 9
4．5． 0
TZ－467
2．11． 3
3．5． 6
TZ－469
4．3． 3
5．6． 3
TZ－550
13．13． 3
17．8． 6
TZ－610
4．16。 9
6． 3 。 3
TZ－673
1． 0 ． 9
1． 6 。 3
TZ－694

| $\mathrm{TZ}-840$ | 1． 3.3 | 1．9。 9 |
| :--- | :--- | :--- | :--- |
| $\mathrm{TZ}-841$ | - －19． 3 | 1．4． 9 |

TC-2
E5. 0. 0
4. 6 。 9
4. 6. 9
8.13. 3
13.10. 0
8.13. 3
10. 0.0
10. 0.0
10. 0.0
10.16. 9
10.16. 9
10.16. 9
10.16. 9
10.16. 9
10.16. 9
10.16. 9
12. 3.3
12. 3. 3
10. 0.0
£6. 7. 6
5.10. 6
5.10. 6
11. 1. 0
17. 4. 3
11. 1. 0
12.15. 0
12.15. 0
12.15. 0
13.16. 3
13.16. 3
13.16. 3
13.16. 3
13.16. 3
13.16. 3
13.16. 3
15. 10. 3
15.10. 3
12.15. 0

TYPE
TRADE RETAIL
TYPE
TRADE RETAIL

TA－3
TA－17
TA－37A
TA－47
TA． 61
TA－82
TA－101
TA－168A
TA－406A
TA－605
TA－636
TA－710A
TA－731A
TA－733B
TA－763
TA－770
TA－793
TA－796A．
TA－797
TA－833
TA－835
MS－837
MS－860
MS－866
MS－878
MS－896
TA－909
TA－913B－M17
10．16． 9
11． 0.0
14． 0.6
TA－914B－M17 10．16． 9 13．16． 3
£5．0． 0 £6．7。 6
6．7． 6
6．3． 3
6．7． 6
6．7． 6
6．7． 6
ถ．3． 3
6．3． 3
6．3． 3
6．7． 6
6．3． 3
5．19． 0
TA－947
TA．－948
MS－977
TA－1076
TA－1094A
TA－11．03C
TA－11．04B
TA－1105A
TA－1147－M8
TA－1147－M51
TA－1588
TA－1693
TA－1704
TA－1774
£11．0． 0 £ 14.0 ． 6 10．16． 9 13．16． 3

11． 0.0 14．0． 6
10．16． 9 13．16． 3
11． 0.0 14．0． 6
10．16．9．13．16． 3
11．0． 0 14． 0.6
4．13． 3 5．19． 0
6．8． 0 8．3． 3
6．8． 0 8．3． 3
6．8． 0 8．3． 3
4．13． 3 5．19． 0
4．13． 3 5．19． 0
6．16． 9 8．14． 3
5．10。 0 7． 0.3
5．13． 3 7。 4． 6
5．10． 0 7。 0 。 3
5．10． 0 7． 0 ． 3
5．10． $0 \quad 7.0$ ． 3
7。6。 9 9。 7。 0
8．13． 3 11．1． 0
PRICE ON REQUEST
4．16． 96 6．3． 3

PRICE ON REQUEST
4．16． 9 6．3． 3

TYPE	TRADE	RETAIL	TYPE	TRADE RETAIL
P3MS	£-.15. 0	£-.19. 3	M62	£-1. 0 £ ${ }^{-1 .} 6$
P4MS	-. 15. 9	1. 0 . 0	M176	-. 6. 3 -. 8. 0
P6MS	-.17. 0	1. 1. 9	M682	
P3MA	-. 19. 3	1. 4.9	M1058	
P4MA	1. 0.0	1. 5. 6	M10	1. 0. 0 1. 5. 6
P6MA	1. 1.3	1. 7. 3	M48	Price on Application
P3FS	1. 5. 9	1.12. 9	M11	-. -. 8 -. -. 10
P4FS	1. 7. 3	1.14. 9		
P6FS	1.10. 9	1.19. 0		
S3F	1. 4.3	1.11. 0		
S4F	1. 6.0	1.13. 3		
S6F	1. 9.3	1.17. 9		
S3M	-.12. 0	-.15. 3		
S4M	-.12. 9	-. 16. 3		
S6M	-. 14. 0	-.17. 9		
S3F1	1.15. 3	2. 5. 0		
S4F1	1.17. 0	2. 7. 3		
S6F1	2. 0.3	2.11. 6		
S3M1	1. 2.3	1. 8. 6		
S4M1	1. 3 . 0	1. 9. 3		
S6M1	1. 4.3	1.11. 0		
S3F3	4.15. 0	6. 1,3		
S4F3	5. 0 . 0	6. 7. 6		
S6F3	5.10. 0	7. 0.3		
S3M3	2.13. 0	3. 7. 6		
S4M3	2.15. 0	3.10. 3		
S6M3	2.19. 0	3.15. 3		
M156R	-. 7. 3	-. 9. 3		
M156T	-. 6. 9	-. 8. 6		
M57	-. 4.9	-. 6. 0		
L M ERICSSON PTY. LTD.			TRIMA	DIVISION

[^0]:

[^1]: * Stock types.

