Electronic PHILIPS Æ components

and materials

Data handbook

÷.

PHILIPS

Electron tubes

Part 2 April 1980

Transmitting tubes for communications

with compliments Ref. your telen 15/3 - In Ne

 $(\phi)^{*}$

N.V. Philips' Gloellampenfabrieken Electronic Components and Materials Division Technical Publications Department - Building BA Tel. 040 - 7 23142 / 23628 - Eindhoven - The Netherlands

A. Th. van der Vlugt

PHILIPS

PHILIPS

ELECTRON TUBES

A CONTRACTOR PART 2 - APRIL 1980.

TRANSMITTING TUBES FOR COMMUNICATIONS

GENERAL SECTION A

BASES B

Alt de la se

TRIODES, T TYPES C

TRIODES, YD TYPES D

TETRODES, Q TYPES E

TETRODES, YL TYPES AND 7609/8621 F

PENTODES G

INDEX

AMPLIFIER CIRCUIT ASSEMBLIES H

ASSOCIATED ACCESSORIES K

SEE ALSO PART 1

RATING SYSTEM

(in accordance with IEC Publication 134)

ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

DATA HANDBOOK SYSTEM

Our Data Handbook System is a comprehensive source of information on electronic components, subassemblies and materials; it is made up of three series of handbooks each comprising several parts.

ELECTRON TUBES

written consent of the publisher.

SEMICONDUCTORS AND INTEGRATED CIRCUITS

COMPONENTS AND MATERIALS

The several parts contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

Where ratings or specifications differ from those published in the preceding edition they are pointed out by arrows. Where application information is given it is advisory and does not form part of the product specification.

If you need confirmation that the published data about any of our products are the latest available, please contact our representative. He is at your service and will be glad to answer your inquiries.

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part without the

October 1977

BLUE

RED

GREEN

ELECTRON TUBES (BLUE SERIES)

Starting in 1980, new part numbers and corresponding codes are being introduced. The former code of the preceding issue is given in brackets under the new code.

Part 1	February 1980	T1 02-80 (ET1a 12-75)	Tubes for r.f. heating		in 1980, new p eding issue is g
Part 2	April 1980	T2 04-80 (ET1b 08-77)	Transmitting tubes for communications	Part 1a	August 1978
Part 2a	November 1977	ET2a 11-77	Microwave tubes		
			Communication magnetrons, magnetrons for microwave heating, klystrons, travelling-wave tubes, diodes, triodes T-R switches	Part 1	March 1980
Part 7h	May 1978	ET2b 05-78	per la production de la construction de la construc		
Faitzu	Way 1576	E120 05-78	Microwave semiconductors and components Gunn, Impatt and noise diodes, mixer and detector diodes, backward diodes, varactor diodes, Gunn oscillators, sub-	Part 2	June 1979
•••		,	assemblies, circulators and isolators	Part 3	January 1978
Part 3	January 1975	ET3 01-75	Special Quality tubes, miscellaneous devices	Part 3	April 1980
Part 4	March 1975	ET4 03-75	Receiving tubes		
Part 5a	October 1979	ET5a 10-79	Cathode-ray tubes	Part 4a	December 19
			Instrument tubes, monitor and display tubes, C.R. tubes		÷.,
			for special applications	Part 4b	September 1
Part 5b	December 1978	ET5b 12-78	Camera tubes and accessories, image intensifiers		
Part 6	January 1977	ET6 01-77	Products for nuclear technology	1	
			Channel electron multipliers, neutron tubes, Geiger-Müller tubes	Part 4c	July 1978
Part 7a	March 1977	ET7a 03-77	Gas-filled tubes	Part 5a	November 19
rait 7a		E 17a 03-77	Thyratrons, industrial rectifying tubes, ignitrons, high-voltage rectifying tubes	Part 5b	March 1977
Dart 7h	May 1979				_
Fart 7D	Way 1979	ET7b 05-79	Gas-filled tubes Segment indicator tubes, indicator tubes, switching diodes, dry reed contact units	Part 6	October 197
		÷		Part 6b	August 1979
Part 8	July 1979	ET8 07-79	Picture tubes and components Colour TV picture tubes, black and white TV picture tubes,	Cimentian	
	•	* . 	monitor tubes, components for colour television, compo- nents for black and white television.	Signetics	integrated circ
Part 9	March 1978	ET9 03-78	Photomultiplier tubes; phototubes		
1,1,4,1	· · · · · · · ·			*Field-eff	ect transistors

SEMICONDUCTORS AND INTEGRATED CIRCUITS (RED SERIES)

Starting in 1980, new part numbers and corresponding codes are being introduced. The former code of he preceding issue is given in brackets under the new code.

Part 1a	August 1978	SC1a 08-78	Rectifier diodes, thyristors, triacs Rectifier diodes, voltage regulator diodes (> 1,5 W), transient suppressor diodes, rectifier stacks, thyristors, triacs
Part 1	March 1980	S1 03-80 (SC1b 05-77)	Diodes Small-signal germanium diodes, small-signal silicon diodes, special diodes, voltage regulator diodes (< 1,5 W), voltage reference diodes, tuner diodes, rectifier diodes
Part 2	June 1979	SC2 06-79	Low-frequency power transistors
Part 3	January 1978	SC3 01-78	High-frequency, switching and field-effect transistors st
Part 3	April 1980	S3 04-80 (SC2 11-77, p (SC3 01-78, p	Small-signal transistors artly) artly)
Part 4a	December 1978	SC4a 12-78	Transmitting transistors and modules
Part 4b	September 1978	SC4b 09-78	Devices for optoelectronics Photosensitive diodes and transistors, light-emitting diodes, photocouplers, infrared sensitive devices, photoconductive devices
Part 4c	July 1978	SC4c 07-78	Discrete semiconductors for hybrid thick and thin-film circuits
Part 5a	November 1976	SC5a 11-76	Professional analogue integrated circuits
Part 5b	March 1977	SC5b 03-77	Consumer integrated circuits Radio, audio, television
Part 6	October 1977	SC6 10-77	Digital integrated circuits LOCMOS HE4000B family
Part 6b	August 1979	SC6b 08-79	ICs for digital systems in radio and television receivers
Signetics	integrated circuits		Bipolar and MOS memories 1979 Bipolar and MOS microprocessors 1978 Analogue circuits 1979 Logic - TTL 1978

*Field-effect transistors and wideband transistors will be transferred to S5 and SC3c respectively. The old book SC3 01-78 should be kept until then. The old book SC2 11-77 is now obsolete.

	COMPONE	ENTS AND	MATERIALS (GREEN SERIES)
	Starting in 1980, The former code	new part numbe of the preceding	ers and corresponding codes are being introduced. I issue is given in brackets under the new code.
Part 1	July 1979	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	Assemblies for industrial use PLC modules, high noise immunity logic FZ/30 series, NORbits 60-series, 61-series, 90-series, input devices, hybrid integrated circuits, peripheral devices
Part 3a	September 1978	CM3a 09-78	FM tuners, television tuners, surface acoustic wave filters
Part 3b	October 1978	CM3b 10-78	Loudspeakers
Part 4a	November 1978	CM4a 11-78	Soft Ferrites Ferrites for radio, audio and television, beads and chokes, Ferroxcube potcores and square cores, Ferroxcube trans- former cores
Part 4b	February 1979	CM4b 02-79	Piezoelectric ceramics, permanent magnet materials
Part 6	April 19 77	CM6 04-77	Electric motors and accessories Small synchronous motors, stepper motors, miniature direct current motors
Part 7	September 1971	CM7 09-71	Circuit blocks Circuit blocks 100 kHz-series, circuit blocks 1-series, circu blocks 10-series, circuit blocks for ferrite core memory dr
Part 7a	January 1979	CM7a 01-79	Assemblies Circuit blocks 40-series and CSA70 (L), counter modules 50-series, input/output devices
Part 8	June 1979	CM8 06-79	Variable mains transformers
Part 9	August 1979	CM9 08-79	Piezoelectric quartz devices Quartz crystal units, temperature compensated crystal oscillators
Part 10	April 1978	CM10 04-78	Connectors
Part 11	December 1979	СМ11 12-79	Non-linear resistors Voltage dependent resistors (VDR), light dependant resis ors (LDR), negative temperature coefficient thermistors (NTC), positive temperature coefficient thermistors (PTC
Part 12	November 1979	CM12 11-79	Variable resistors and test switches
Part 13	December 1979	CM13 12-79	Fixed resistors
Part 14	April 1980	C14 04-80 (CM2b 02-78)	Electrolytic and solid capacitors
Part 15	May 1980	C15 05-80 (CM2b 02-78)	Film capacitors, ceramic capacitors, variable capacitors

GENERAL SECTION A

LIST OF SYMBOLS.

TRANSMITTING TUBES FOR COMMUNICATION TUBES FOR R.F. HEATING LIST OF SYMBOLS

Anode

Bandwidth; magnetic flux density

Beam plates

Capacitance between anode and all other electrodes Capacitance between anode and filament (all other electrodes being earthed) Capacitance between anode and grid (all other electrodes being earthed) Capacitance between anode and cathode (all other electrodes being earthed) Capacitance between grid and filament (all other electrodes being earthed) Capacitance between these two grids (all other electrodes being earthed) Capacitance between grid and cathode (all other electrodes being earthed) Input capacitance Neutralizing capacitance Output capacitance Harmonic distortion factor n-th order intermodulation products Total harmonic distortion Filament or heater; frequency Filament or heater centre tap Filament (and cathode) r.f. connection Grid Power gain Height above sea level D.C. anode current Tube pin which must not be connected externally Filament or heater current D.C. grid current D.C. cathode current Inter modulation products Peak value of a current Cathode Modulation factor Pressure Pressure drop of cooling air or cooling water Rate of flow of cooling air or cooling water Anode output a.c. resistance Anode to anode a.c. resistance Filament or heater resistance in cold condition

В bp Ca Caf C_{af} C_{ag} C_{gf} Cg1g2 Cgk Ci Cn Co d dn d_{tot} f f_c f(k) a G h la i.c. lf 1_q 1_k IMP l_n k m р pi

q

Ra

R_{aa}

R_{fo}

Rg

External grid resistor

а

Alexen all

A3

∘R _k R _{th} ∞∽⊘	External cathode resistor		
s S	Internal shield Transconductance		GENERAL OPERATIONAL RECOMMENDATIONS TRANSMITTING TUBES FOR COMMUNICATIONS
t T	Temperature Duration		TUBES FOR R.F. HEATING
t _a tamb	Temperature of anode body Ambient temperature		
t _{bulb}	Bulb temperature Envelope temperature	1	PREFACE
t _i Tp	Inlet temperature of cooling air or cooling water Pulse duration	1.1	In this handbook, data and curves are given for transmitting tubes for communications and tubes for r.f. heating.
to	Outlet temperature of cooling air or cooling water	1.2	The tubes are classified as follows:
t _{pin} ts	Pin temperature Seal temperature		D = Design type. Recommended for equipment design; production quantities available at date of publication.
Τw	Waiting time (time which has to elapse between switching on the filament or heater voltage and switching on of the other voltages)		C = Current type. No longer recommended for equipment design; available for equipment produc- tion and for use in existing equipment.
V _a V _a ∼	D.C. anode voltage Amplitude anode a.c. voltage Filament or heater voltage		M = Maintenance type. No longer recommended for equipment production; available for maintena of existing equipment.
V _f Vg	D.C. grid voltage		O = Obsolescent type. Available until present stocks are exhausted.
V _g ∼ V _{kf}	Amplitude grid a.c. voltage Voltage between cathode and heater		Obsolescent types of which all stocks are exhausted are called obsolete ; any data still published or these types is for reference purposes only.
V _p V _{rms} V _{tr}	Peak value of a voltage Root mean square value of a voltage Secondary transformer voltage		The status of all types is given in a type survey at the end of the general section, together with dat in condensed form. Full details are given of design and current types, divided into chapters as mentioned on the title page.
W _a W _{dr} W _g Wi	Anode dissipation Driving power Grid dissipation Input power	1.3	The characteristic data is general and independent of specific applications. This data, such as filament/heater current, amplification factor, transconductance and capacitances is given for a typical tube.
We	Output power in the load	2	CHARACTERISTIC DATA
W _{mod} W _o	Modulation power Anode output power	2.1	Inter-electrode capacitances
W _{oPEP} W _{osc} W _{Rg}	Peak envelope output power Oscillator output power Grid resistor dissipation		The published values of capacitances are average values measured on the cold tube with no operat voltages; individual deviations may however occur. The definitions of the capacitance symbols are
δ	Duty factor	22	given in the appropriate list in IEC publication 100. Amplification factor μ and transconductance S
η η_a	Efficiency Anode efficiency	22	The published values are average values and individual deviations may occur. The conditions at
$\eta_{\rm OSC}$	Oscillator efficiency		which the values have been measured are stated.
λ	Wavelength Amplification factor	2.3	
μ μg2g1	Amplification factor Amplification factor of grid 2 with respect to grid 1.		Proper functioning of the tubes can be guaranteed only if accessories (sockets, cooling devices etc. have been supplied, or approved, by the tube manufacturer.

LIST OF SYMBOLS

December 1979

3 FILAMENT/HEATER SUPPLY

3.1 General

The published value of filament/heater voltage is that which should be present at the tube terminals. Filaments fed with direct current should have their supply polarity reversed at regular intervals (say monthly) to ensure uniform wear of the filament with consequent longer life. Reduction of filament/heater voltage is sometimes recommended to compensate for heating by back-bombardment at high frequencies; see the relevant data sheets. Special precautions must be taken when operating the filaments/heaters of transmitting tubes in series and the manufacturer should be consulted before doing so.

3.2 Pure tungsten cathodes (filaments)

The published value of filament voltage is the maximum voltage required for a new tube to supply the rated output power. A lower voltage, giving longer life, will often suffice and every tube with a pure tungsten cathode is supplied together with a list stating the saturation current at various filament voltages. Thus, knowing the required emission current, the most suitable filament voltage may be selected. Alternatively the filament voltage may be adjusted until the required output power, or maximum permissible signal, is reached and further adjusted after modulation is applied in order to obtain peak output power.

Regular adjustment (say monthly) will be necessary to maintain the required conditions and, towards the end of tube life, the filament voltage may be raised above the nominal. To compensate for mains supply fluctuations, automatic or manual control of the filament voltage should be used, especially when operating at nominal, or higher than nominal, filament voltage.

3.3 Thoriated tungsten cathodes (filaments)

To achieve satisfactory life, the filament voltage should be maintained within $\pm 1\%$ and $\pm 3\%$ of the published value. Excessive deviation over a long period from these limits will be harmful. Occasional temporary deviations should not exceed $\pm 5\%$ and $\pm 5\%$ to $\pm 10\%$ for tubes for industrial purposes, unless otherwise specified. If greater deviations occur a stabilized mains supply is recommended.

3.4 Quick heating cathodes (filaments)

In general, tubes with quick heating cathodes should have their filaments only in parallel. When a sinusoidal voltage is used for heating the filament, the frequency must not be in the range 200 Hz to 5000 Hz. In addition, if a non-sinusoidal voltage from a d.c./a.c. converter is used, the r.m.s. value should be adjusted to the published value of filament voltage.

If required, the heating time may be further reduced by applying a higher value for a short time. The manufacturer should be consulted before doing so.

3.5 Indirectly heated oxide coated cathodes

To achieve satisfactory life, the heater voltage should be maintained within $\pm 1\%$ and -3% of the published value. Excessive deviation over a long period from these limits will be harmful. Occasional temporary deviations should not exceed $\pm 10\%$. In order to avoid heater cathode r.f. damage, the heater to cathode insulation and the heater itself should be decoupled for r.f.

3.6 Switching on the filament

Switching on at full filament voltage is permissible unless a maximum switch-on value of filament current is stated in the data sheet. For the published values of maximum permissible filament current during switch-on, refer to the absolute maximum of the instantaneous value under worst case conditions.

3.7 By-passing the filament

Tubes with directly heated cathodes must have the filament terminals at the same r.f. potential. For this purpose it is usual to connect a capacitor which has low reactance with respect to the operating frequency, close to and between the filament terminals. As an added safety precaution, it should be ensured that the resonance of this capacitor together with the inductance of the filament structure, falls well below the operating frequency.

3.8 Switching on electrode voltages

Unless stated otherwise (e.g. cathode heating time T_h), simultaneous switching on of filament, control grid, anode and screen grid voltages is permissible for tubes with an internal anode. Tubes with an external anode should in general not have their positive voltages applied until the cathode has reached its operating temperature. This can be checked by monitoring the filament current.

3.9 Effective cathode

If both filament limbs are marked 'f' in the data sheets, the filament may be regarded as being symmetrical in its function as cathode. If such a filament is fed with d.c. the anode return lead should be connected to the negative end of the filament. All other decoupling and circuit returns must then also be connected to this point.

If the filament is fed with a.c., the anode return lead should be connected to the centre-tap of the filament transformer or to a tapped resistor shunted across the filament. The filament decoupling will then be symmetrical with regard to this point and all other circuit returns must also be made to this point.

If one filament limb is marked 'f' and the other 'f(k)', only the one marked 'f(k)' may be used as the circuit cathode. If such a filament is fed with d.c., the negative side of the filament supply should be connected to this point.

For either d.c. or a.c. filament supply, the anode supply, as well as decoupling and other circuit returns, must be connected to 'f(k)' only.

A6

- 4 INITIAL OPERATION OF TUBE
- 4.1 Switching on the heater voltage.
 Ensure that any necessary cooling system is operative.
 Sections 3.6 and 3.8 are applicable. The grid bias may be applied simultaneously.
- 4.2 Conditioning a tube

Conditioning is recommended for new tubes, after transit and after a period of storage. It is carried out by running the filament/heater only for at least 15 minutes before energizing the other electrodes, see also section 5.6.

Industrial tubes with anode voltages above 5 kV should also be operated for approximately 15 minutes at reduced anode voltage before applying full input ($V_a \times I_a$).

Television triodes and tetrodes may be operated for 15 minutes with the specified anode current in a no-signal condition. This treatment will remove any traces of gases which could cause premature failure of the tube.

4.3 Application of screen grid voltage to tetrodes

The screen grid voltage, V_{g2} , should be applied only when the anode voltage is present. If the anode voltage is removed, a safety circuit in the anode supply should cause the simultaneous removal of drive and screen grid voltages. If high voltage transients are present, it may be necessary to protect the cathode and control grid from arcing by means of a spark gap or protection diode across the relevant electrodes.

5 LIMITING VALUES

5.1 Notation

Limiting values are the maximum or minimum permissible values of the parameters listed. These limits are given either for all operating conditions together, or for an individual application. The limiting values are applicable up to the maximum frequency stated. When operating at higher frequencies the limiting values must be decreased in accordance with the published figures or curves.

5.2 Derating of limiting values

If no limiting values have been published for a specific application, the derating factors listed in the following table must be applied. The values for class C telegraphy have been expressed as unity; the limiting values for other applications have been expressed as a factor of this unity. A rectified 3-phase supply with or without filtering is equivalent to a d.c. supply. The derating factors are determined by the physical limits of the tube and contain no safety margins. Where mains voltage fluctuations occur, further derating must be applied (see section 5.4). The nature of operation, e.g. industrial applications of heating generators, may necessitate further safety derating.

Wo = tungsten filament

Th = thoriated tungsten filament

		. ∨ _a	l _a	'. Ig .	W _{ia}	W _a a	W _{g2}
R.F. class C telegraphy	• •	1	1	.1	1	1	1
Anode mod.	* Th Wo	0.8 0.8	0.833 0.5	1	0.67 0.4	0.67 0.4	0,67 0.4
R.F. class B	Th Wo	1	0.833 0.5	1	0.833 0.5	1	0.67 0.5
A.F. class B		1 .	1	1	1	1	1
A.F. class AB		1	1	1.	1.	1	1 1 . 2
A.F. class A		1	1		Wa	1	1.
Self-rectifying oscillator	Th Wo	1.13 1.13	0.53 0.32	0.53 0.32	0.665 0.4	1	
Two-phase half-wave without filter	Th Wo	0.9 0.9	0.89 0.6	0.89 0.6	1	1	

5.3 Rating system

The limiting values should be used in accordance with the 'Absolute maximum rating system' as defined by IEC publication 134.

5.4 Absolute maximum rating system

Absolute maximum ratings are limiting values of operating and environmental conditions appli-

w able to any electronic device of a specified type as defined by its published data, which should

not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

5.5 Limiting values

WWW

Each limiting value should be regarded independently of other values; under no circumstance is any limiting value to be exceeded (e.g. if the anode voltage is decreased to a value lower than its limiting value, it is not permissible to exceed the limiting value of anode current or anode dissipation).

5.6 Electrode voltages

The voltages (V_a, V_{g1}, V_{g2} etc.) listed under limiting values should not be exceeded even with a cold tube. Special attention should be paid to this point when a screen grid is supplied via a series

When designing equipment to be operated from an unstabilized mains supply, the maximum mains voltage which occurs determines the nominal operating voltages of the tube. These nominal voltages must be lower than the limiting values. Should the tube and thus the voltage supply, be temporarily under a lower load, these voltages may rise and these increased values, occurring at the highest mains voltage, determine the nominal operating voltages.

The limiting values of voltage are d.c. values. If an a.c. or an unsmoothed d.c. supply is used, the limiting values must be decreased in accordance with the derating factors shown in the table (section

5.7 Anode dissipation

The limiting value of the anode dissipation, W_a , should not be exceeded when fluctuations in the mains supply voltage occur, or when grid drive fails. To prevent damage to the tube in the latter case, adequate fixed bias or a quick action relay in the anode lead should be provided. When forced-air or water cooling is sufficient only for an anode dissipation smaller than the absolute maximum, the smaller value must be regarded as the limiting value.

5.8 Anode input power

Usually the data sheets show the limiting value of input power Wia to be smaller than the product of limiting values of anode voltage and anode current; the latter two limits should not therefore occur

In practice, the input power W_{ia} is not always the product of the d.c. values of I_a and $V_a.$ For pulsating supply voltages the form factor should be taken into account.

Screen grid dissipation, Wg2 5.9

The screen grid dissipation is the product of screen grid voltage and current. The screen grid should be protected against failure of anode voltage, see also section 4.3.

Control grid dissipation 5.10

The control grid dissipation W_g or W_{g1} can be approximated by subtracting the power supplied to the grid bias source $(-V_q \times I_q)$ from the grid driving power (approx. 0.95 x $V_{qp} \times I_q$). When an a.c. or unsmoothed d.c. voltage supply is used, the form factor should be taken into account, see table in section 5.2 with the necessary derating factors.

5.11 Grid resistor

The maximum value of grid resistor, Rg max. (when published) should not be exceeded. This value is the maximum d.c. resistance in the grid circuit. A higher value may cause instability.

6 OPERATING CONDITIONS

6.1 General

In the published data, operating conditions for various applications have been given, stating the maximum frequency at which the conditions apply. If it is required to operate a tube at higher frequencies, the manufacturer should be consulted. The published values of operating conditions are average values derived from measurements made on a number of tubes of the same type, operating at optimum conditions.

Thus, small deviations from the published value may occur if measurements are made on an individual tube. However, some of the measured values of voltage or current must be adjusted to give the published figure. For example, the published value of output power is an average value which can be reached in practice by adjusting the r.f. or a.f. input voltage V_{gp} , when the published value of output power is not obtained at the nominal value of V_{gp} . When designing a multi-stage transmitter it is good practice to leave a margin in the output power and input voltage to allow for adjustments similar to that just described.

The published output power W_o of transmitting tubes is the tube's output, which may be determined by subtracting the anode dissipation W_a from the anode input W_{ia} . When a tube is used in a common grid circuit (grounded grid), the published value of the output power includes the power transferred from the driver.

Unless otherwise stated, losses in the anode circuit and coupling losses are not taken into account. The quoted grid input power is assumed to be 0.95 x the product of the average grid current I_g and the positive amplitude of the grid voltage $V_{g\sim}$. Losses in the grid circuit and the bleeder are sometimes accounted for by stating the required driver output power.

At high frequencies where reduced ratings have to be applied, the required driving power will often be considerably higher than the grid input power, due to circuit losses.

6.2 R.F. class C telegraphy and F.M. telephony

A class C amplifier or oscillator is one in which the grid bias is appreciably greater than the cut-off voltage so that current flows for less than one half of each cycle of the alternating grid voltage. Working to the published operating conditions will ensure good output power and efficiency. If a grid resistor is used for obtaining automatic bias, care must be taken that the anode current does not become too high if the r.f. driving power should fail. A safety device in the anode or screen grid lead should be incorporated for this purpose.

6.3 R.F. class C anode and screen grid modulation

In an r.f. class C anode modulated stage the anode voltage is modulated with a.f. and at 100% modulation the voltage is varied from zero to twice the d.c. value. With tetrodes or pentodes the screen grid voltage may also be modulated. The average values of grid bias and r.f. driving voltage remain constant during modulation. With 100% modulation the average anode dissipation is 1.5 times the value without modulation and this is taken into account, although the published limiting value of anode dissipation refers to the unmodulated power.

6.4 R.F. class B telephony

A class B amplifier is one in which the grid is biased to the cut-off voltage so that the anode current flows for approximately one half of each cycle of the alternating grid voltage. The published data for r.f. class B telephony has been determined experimentally to give a linear modulation characteristic.

6.5 R.F. class AB SSB amplifier

The given operating conditions are obtained from measurements made in a circuit without feedback and with constant screen grid voltage. They show the best compromise between output power and linearity. Linearity is measured with a two-tone test signal in which both tones have equal amplitude and are 1 kHz apart in frequency. The amplitudes of the distortion products d₃ and d₅ are in dB referred to the amplitude of either of the two equal tones. The published values of d₃ and d₅ are the worst encountered at any driving level and occur usually slightly below full output power. Distortion products of orders other than d₃ and d₅ are, in general, negligible. If the amplitudes of the distortion products are referred to the peak envelope amplitude, the figures for d₃ and d₅ are improved by 6 dB.

6.6 A.F. class B push-pull amplifier

With this method of amplification, the anode dissipation is dependent on the input signal voltage, so that maximum anode dissipation is obtained when the signal is about 60% of the value at full drive. When this is not present continuously, as is the case with broadcast and telephony services, it is permissible for the limiting value of anode dissipation to be exceeded by 10%. To suppress even harmonics, separate controllable grid bias for each tube, or a balancing circuit, should be incorporated. This data is purely arbitrary, i.e. the same output can be obtained with less modulation of the anode current (with smaller load resistance and lower peak grid current) although the efficiency would be lower. The requirements of the complete a.f. amplifier determine the choice of operation.

6.7 V.H.F and U.H.F. broadband conditions

The operating conditions for TV vision amplifiers, sound amplifiers and transposers (combined amplification of vision and sound) are compiled from measurements in tunable amplifiers which are available as accessories for the tubes concerned. These conditions generally show the nominal amplifier output (with v.s.w.r. of the load 1.1 max.) and a guaranteed linearity performance as differential phase, differential gain, I.f. linearity and intermodulation products as obtained in a 3-tone test.

6.8 Industrial operating conditions

With a single phase mains supply, smoothing will sometimes be omitted as is normal in a three phase mains supply. Operating conditions and derating factors are given for this kind of operation (section 5.2.). It must be ensured that no limiting values are exceeded because of fluctuations in the mains supply or by tolerances in other components. The published value of W_o is the actual tube output power. The output power of a self-oscillating circuit W_{OSC} is obtained by subtracting the grid dissipation W_g and the losses in the grid resistor W_{Rg} from the output power W_o . The power in the load W_l is obtained by subtracting the losses in the output circuit from W_{OSC} . A favourable load output characteristic may be obtained by automatically controlling the grid voltage and current, depending on the matching. A non-linear device e.g. a tungsten lamp or a PTC thermistor may be used to perform this function adequately and help to prevent overloading the grid.

With **self-oscillating** circuits, the frequency must be held within the available frequency band. This may be done by having large circuit capacitance, small stable self inductance, undercritical inductive coupling with the output circuit, electrostatic screening between oscillator and output circuit, etc. If the frequency of an industrial generator is restricted to a very narrow band, crystal controlled driver stages may have to be used. It will then, however, be difficult to maintain a good match between tube and load over the whole of the processing cycle. Greater safety margins will have to be set for the tube, with the tube output very dependent on variations in the load. Special measures, such as automatic tuning and/or load matching, may have to be taken.

For smaller tubes in industrial applications, operating conditions have been given for an anode supply from a single phase full-wave rectifier, a three phase half-wave rectifier (which is nearly equivalent

6.8 Industrial operating conditions (continued)

Ato d.c.) and with raw a.c. In the latter case the output is about 0.6 times that obtained with d.c. and the peak inverse voltage is equal to the full anode voltage. With a single-phase, full-wave rectified anode voltage the useful output is nearly equal to that with a d.c. supply.

6.9 Intermittent service

When data concerning intermittent service is published, it is conditional that, although the cathode may be heated continuously, the on-period is no more than 5 minutes and that the off-period is equally long or longer.

COOLING

7

7.1 Temperature limits

The maximum temperatures given in the data should be heeded and operating temperatures should be kept well below these values in the interest of tube life. Surface (envelope) temperatures may be checked with the help of suitable thermocouples, thermocrayons, thermopaints or stick-on markers.

7.2 Cooling of the tube header

In order to maintain all parts of the tube header, i.e. contact surfaces and ceramic to metal or glass to metal seals, at temperatures below the limits given in the data, it may be necessary, depending on the surroundings and ambient temperatures, to provide some extra cooling even at low frequencies. At frequencies above 4 MHz such extra cooling becomes mandatory for all types. For this purpose an axial air stream is preferred since this will ensure a more even temperature around the circumference of the individual electrodes. This will already be assisted by also ensuring an even distribution of the high frequency currents around the seals.

7.2.1 Forced air cooled tubes

The anode cooler air will in most cases also effectively cool the seals, provided it is directed in such a way that the seals are not protected from this air stream.

7.2.2 Water cooled tubes

Unless environmental conditions make it necessary, additional cooling of the seals will be mandatory only at frequencies above 4 MHz. If some of the cooling water can be branched off, this may also serve as coolant through pipes that are in good thermal contact with the respective connectors. Such pipes are already integral with the filament connectors of industrial types YD1192 to YD1432. Their use with a reliable water flow is strongly recommended.

7.3 Minimum coolant quantities

When determining the minimum coolant flow through the cooler, account must be taken of the maximum inlet temperature and the maximum anode dissipation that may occur under the prevailing circumstances.

7.3.1 Minimum forced air flow

The temperature, dissipation and flow relationships are given in the published data, tables and curves. The temperature rise of the cooling air may be found from the following formula:

$$\Delta T = \frac{50 \times W_{tot}}{\Omega}$$

where $Q = air flow in m^3/min$

Wtot = anode + grid + filament dissipation in kW

 ΔT = temperature rise in K

This formula holds for an ambient temperature of 20 °C at sea level. Whenever the ambient conditions (temperature, altitude) are beyond those shown in the published data, the tube supplier must be consulted.

- 7 COOLING (continued)
- 7.3.2 Minimum cooling water flow

The amount of cooling water required is given in the published data. The temperature rise of the cooling water may be found from the following formula:

$\Delta T = \frac{14.4 \times W_{tot}}{\Omega}$

- where Q = water flow in litres/min
 - W_{tot} = anode + grid + filament dissipation in kW
 - ΔT = temperature rise in K

7.4 Natural cooling

This is applicable only to internal anode glass envelope tubes with a maximum anode dissipation of up to about 1 kW. A chimney around and extending above the tube will assist natural convection. For operation at higher frequencies additional cooling of the electrode pins, the tube socket and the bulb is often required. Temperature checks may be carried out as noted in section 7.1.

7.5 Forced air cooling

When using air as a cooling medium the intake must be properly filtered to prevent blockage of the anode radiator. All electrical supplies to the tube should be interlocked with a flow sensor in the exhaust stream. Temperature checks may be carried out as noted in section 7.1.

7.6 Water cooling

The direction of water flow, indicated by arrows near the water inlets and outlets of the tube are for when the tube is mounted 'anode down'. When reversing the position of the tube, i.e. 'anode up', the direction of flow should also be reversed. Re-circulating systems are preferred, since, apart from saving water, they help to ensure a high standard of purity.

Some of the requirements for satisfactory cooling water are that it should not be corrosive or deposit scale, should not contain insoluble material that might cause blockages and should have a high electrical resistance to prevent electrolysis. Its mineral content and electrical conductivity should therefore be periodically checked, especially when it is not drawn from a circulating system. A non-corrosive water should be low in chlorides, oxygen and carbon dioxide. Scale formation may be avoided by maintaining a low amount of silica and bicarbonates, especially calcium bicarbonate. No exact figures can be given for impurities as they are interdependent. The cooling water must also be free from all traces of greasy substances since a small amount may form a dangerous heat barrier on the anode cooler, causing excessive anode temperatures despite an apparently adequate water flow. These greasy or oily films may be removed by repeated flushing of the cooling channels with a domestic liquid detergent or slightly soapy water to which a small quantity of industrial alcohol and 33% ammonia has been added (approx. 10 cc/l of each). The cleaning process should be completed by repeated flushing with demineralized water. The cause of such greasy deposits will usually be found elsewhere in the cooling system as the result of, for example, leaky pump glands. After the necessary repairs have been carried out, the whole system must be cleaned in a similar manner to prevent deposits forming again. The cooling water system must be interlocked with all electrical supplies to the tube. As an added safeguard, the interlocks should be activated if the water outlet temperature exceeds the indicated upper limit. To prevent the tube from running dry in the event of minor leakages in the system, the reservoir should always be above the level of the tube.

8 CHECKING PROTECTION OF THE TUBE

To verify the operation of the safety circuits noted in section **4.3**, as well as safeguarding against high and possibly destructive currents resulting from excessive transients, the following functional check is recommended.

With the tube removed, the anode supply lines (anode - cathode) are shorted at the tube position with a copper wire that is of a specified diameter for the tube type used (see table below) and has a length of approx. 2.5 cm per kV of applied anode potential. If this test wire does not fuse upon application of the full high tension, the speed of the safety circuit is adequate to protect the tube.

Industrial tubes	test wire diameter, mm
YD1150/52 YD1160/61/62 TB4/1500 TB5/2500 TB6/14 TB6/4000 TB7/8000 TB7/8000 TB7/9000 TB12/25 TB12/38 TB12/40 TB12/100 YD1140/41 YD1170 to YD1177 YD1180 to YD1187 YD1192 to YD1197 YD1202 YD1212	test wire dameter, mn 0.12 0.12 0.14 0.14 0.23 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.11 0.23 0.12 0.23 0.12 0.23 0.15 0.20 0.20 0.25 0.30
YD1342 YD1432	0.32 0.32
Tubes for communications	
QB5/3500 QBL3.5/2000 YL1420 YL1430 YL1440 YL1470 YL1520 YL1530 YL1540 YL1560 YL1590	0.25 0.11 0.17 0.17 0.17 0.17 0.17 0.17 0.12 0.11 0.11

9 CONNECTORS

9.1 Clean contact surface

Attention must be paid to a good fit on a clean contact surface of all electrode connectors as well as an even r.f. current distribution around their circumference.

9.2 Fastening the filament connector on industrial tubes

To ensure good seating of the filament connectors on industrial tubes, care should be taken that they are not crooked and that the applied clamping force is within the specified limits. In the following table the minimum and maximum torque values are given for the different tubes concerned and the corresponding connector at room temperature.

1.5					T
Tube type	Cap dia. mm	Bolt size	Connector type	Min. torque Ncm	Max. torque
YD1170/77	25	M6	40692A	400	600
YD1180/87	32	M6	40708A	500	700
YD1190/97	42	M6	40705A	600	700
YD1202 YD1212 YD1342 YD1342	54	M8	40695A	800	1000

After the system has been warmed up and cooled down several times, it is advisable to check the bolts for correct tightness and if necessary re-tighten to the correct value.

STORAGE AND MAINTENANCE

10.1 General

10

Whenever possible, the tubes should be transported and stored in their original packing in an upright position. If the tubes are to be stored in an unpacked condition they should be kept in a dry room placed in an upright position in a rack that is not subject to excessive vibration and does not exert any mechanical stress on other parts of the tube except those that normally serve for the support of the tube; e.g. the anode cooler or the anode mounting flange.

If a tube is stored for an extended period it should be subjected to the conditioning schedule outlined in section 4.2.

Care should be taken that the glass or ceramic parts of a tube are kept clean and do not contact metallic objects since a scratch on glass may initiate a fracture and metal rubbed against ceramic may leave a metallic trace that can lead to surface arcing when high tension is applied to the tube. Soiled glass parts may be cleaned with conventional non-abrasive window cleaning agents and thoroughly rinsed and dried afterwards. Soiled ceramic parts are best cleaned with domestic cleaning powders applied with a moistened tooth brush. A final thorough rinse with clean water is essential to remove all traces of the cleaning powder and the loosened dirt.

10.2 Cleaning integrally water cooled tubes

If the water cooling channels or the helix of a tube become partially blocked (reduced flow and increased back pressure) by floating particles, these can be removed with compressed air or high pressure water, taking care that the water outlet of the tube is open to air and the maximum applied inlet pressure does not exceed 50 Pa. If the impurities adhere to the cooling channel walls or are of a sedimentary nature the cleaning will have to be assisted by a solvent. In the majority of cases these will be calcium deposits. They may be removed by flushing the tube, if necessary repeatedly, with a 5 to 10% solution of hydrochloric acid or 15% citric acid. This procedure should be followed by thoroughly rinsing with distilled or demineralized water.

TRIODES YD-types & misc.

TRIODES

, T-types

fifted strates and

SURVEY

 $-m^{-1}$

N

Туре	status	cooling	Wo kW	V _f V	l _f A	V _a kV	l _a A	V _a max kV	Wa max kW	7	h x dia max mm
TAW12/20	м	w	42	21,5	80	12	2,7	12	18		631 x 163
TB25/300	С	N	0,7	6,3	5,4	2,5	0,356	2,5	-0,135		132 × 62
TB25/400	C	N	0,7	6,3	5,8	2,5	0,356	3	0,15		132 x 62
TB3/750	C	N	1,55	5	14,1	4	0,54	•4	0,35		151 x 87
TB4/1250	С	N	2,29	10	9,9	4	0,736	.4	0,45		213 x 118
TBH6/6000	с	wн	6,9	12,6	33	6	1,5	6	6		219 x 130
TBH7/8000	С	FA	6	12,6	33	6	1,5	7	6		219 x 130
TBL2/500	С	FA	0,67	3,4	19	2,5	0,38	2,7	0,5		83 x 41,5
TBL6/20	М	FA	17	6,3	154	6	4,8	5,5	10		277 x 169,5
TBL6/6000	· C	FA	9	12,6	33	5	3,8	- 5	5		195 x 122,6
TBL7/8000	С	FA	20	12,6	33	7	4	7,2	6		195 x 122,6
TBL12/40	С	FA	19,2	8	130	10	3,2	13	15		404 x 225
TBL12/100	0	FA	202	17,5	196	10	5.	15	45		660 x 286
TBW6/6000	С	W .	9	12,6	33	5	3,8	-5	5.		190 x 70,5
TBW7/8000	С	w	20	12,6	33	7	4	7,2	6		190 x 70,5
TBW12/100	0	w	202	17,5	196	12	24	15	50	-	620 x 240

COO	LING:	۴A

FA = forced air N = natural W= waterV = vapourWH = water (helix)H = heatsink

Туре	status	cooling	W _o kW	V _f V	l _f A	V _a kV	l _a A	V _a max kV	W _a max kW	-	h x dia max mm
YD1001 YD1002 YD1050 YD1051	C C M M	FA V FA FA	78 78 0,026 0,03	12,6 12,6 6,0 6,0	12,6 12,6 1,05 1,05	12 12 0,5 0,5	9,5 9,5 0,125 0,1	12 12 1 1	35 60 0,1 0,1		380 x 300 380 x 218 67 x 32 67 x 32
YD1130 YD1140 YD1141 YD1270 YD1300	C M D D	N FA FA FA FA	1,31 106 106 0,025 0,025	5 17,5 17,5 6,3 5	14,1 196 196 1,2 2	3 10 10 1,5 1,7	0,666 16 16 0,12 0,17	3 15 15 1,7 2	0,4 100 45 0,2 0,3		151,5 x 87 620 x 240 660 x 286 88,6 x 50,5 55,2 x 45,4
YD1302 YD1303 YD1304 YD1330 YD1333	D D D C C	FA FA FA FA FA	0,035 0,025 0,055 0,22 0,11	5 5 6,3 6,3	2 2 22 5,3 5,3	1,7 1,2 1,8 3 2	0,17 0,15 0,18 0,42 0,25	2 2 2 3,5 3,5	0,325 0,15 0,325 1,8 0,9		64,2 x 54,1 55,2 x 68,1 64,2 x 54,1 106 x 71 88,5 x 71
YD1334 YD1335 YD1336 2C39BA 5876	D D D M M	FA FA FA FA N	0,11 0,55 0,22 0,024 0,005	6,3 6,3 6,3 6,0 6,3	5,3 5,3 5,3 1,05 0,135	2,5 3,5 3 0,6 0,25	0,25 0,25 0,42 0,1 0,025	3,5 3,8 3,5 1 0,3	1,8 1,9 1,8 0,1 0,006		96,5 x 96 96,5 x 96 96,5 x 96 67 x 32 52 x 20
5893 6263 6264 7289 8108	M M M M M	N N FA N	0,008 0,013 0,013 0,024 0,0018	6,3 6,3 6,3 6,0 6,3	0,28 0,28 0,28 1,05 0,75	0,2 0,2 0,2 0,6 0,18	0,025 0,027 0,018 0,095 0,03	0,33 0,4 0,4 1 0,3	0,007 0,013 0,013 0,1 0,125		52 x 20 60 x 26 60 x 26 67 x 32 60 x 33
EC55 EC157 EC158	M M M	N N N	0,003 0,0018 0,0053	6,3 6,3 6,3	0,4 0,75 0,9	0,25 0,18 0,18	0,02 0,03 0,06	0,35 0,30 0,30	0,01 0,0125 0,03		62 x 23 60 x 33 60 x 33

TETRODES

1

Q-types

TETRODES

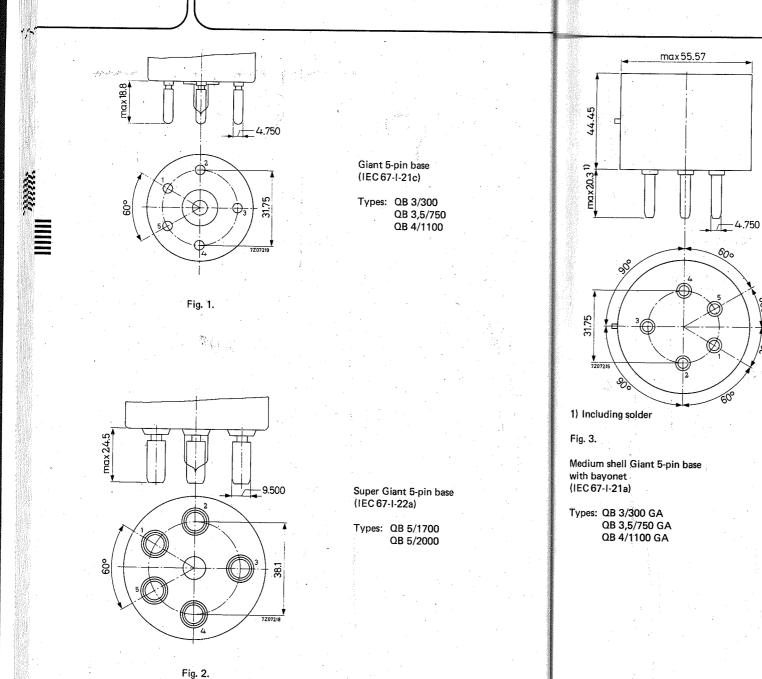
YL-types & 7609/8621

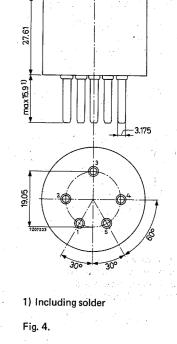
·						JRVE	ΞY										SU	RVEY					
/pe	' status	cooling	Wo	Vf	If.	Va	V _{g2}	la	V _a max	W _a max	h x dia max	Туре	status	cooling	W _o kW	V _f V	lf A	V _a kV	Vg2 V	l _a mA	V _a max kV	W _a max W	h x dia max mm
		S	W	V	A	kV	V	mA	⊳ kV	W	mm	YL1010	с	w	5,5	10	200	10		7400	10	2 kW	306,5 x 1
B2/250	0	N	275	10	5	2	400	180	2	100	191 x 66	YL1011 YL1012	C C	FA V	5,5 5.5	10 10	200	10		7400	10	2 kW	321,5 x 2
B3/200	Ċ	N	270	6	3,5	1,8	250	220	3	65	111 x 60.5	YL1020	M	N .	0,013	1,6	200 4	10 0,3	250	7400 40	10 0,5	2 kW 7	315 x 2 86 x
B3/300	С	N	550	5	6,5	2,5	350	302	3	125	130,8 × 62	YL1020	M	N	0,013	2,1	4,5	0,3	250		0,5	14	92 x
B3/300GA	С	Ν	550	5	6,5	2,5	350	302	3	125	144 x 69,1	YL1060	м	N	0.085	6,3	1,8	0,75	250				
B35/750	Ç	Ν	1000	5	14,1	:4	500	310	4	250	151,8 x 87	YL1000	C	N	0,085	6,3	1,8	1	250	1	0,8 0,85	21 30	103 x 103,8 x
B3,5/750GA	С	· N	1000	5	14,1	4	500	310	4	250	151,8 x 87	YL1071	C.	н	0,158	13,25	0,866	1	250	1	0,85	30	103,8 x
34/1100	С	N	1100	5	14,1	.4	500	350	4	400	151,8 x 87	YL1091	с	v	3,2	20	345	11	1 .	4400	12	150 kW	532 x
34/1100GA	C.	N	1100	1	14,1	4	500	350	4	400	161 x 87	YL1100	M	FA	0,045	26,5	0,52	0,7	250		0,8	75	49,6 x
35/1750 35/2000	с с	N N	1760	10	9,9	5	600	440	5	500	209 x 118	YL1101	M	FA	0,045	6,3	2,1	0,7	250	130	0,8	75	49,6 x
1			2400		22,6	5	600	600	5,5	800	248 x 153	YL1110	м	FA	0,6	6,3	7,85	2	400		2	400	61 x
L3,5/2000	С	FA	2100		58	4,3	600	850	4,5	1500	215 x 89	YL1120	Ċ	FA	5,1	12,6	14,5	5	700	700	5,5	4 kW	202 x
L4/800 L5/3500	с с	FA FA	930 4100		13,5 32,5	4 5	500 800	315 1100	4 5	500 3000	120 x 67 169 x 97	YL1130	M	N	0,013	1,1	2,9	0,275	170		0,3	4	72,9 x
W5/3500	c	W	4100		32,5 32,5	э 5	800	1100	5 5	3000	169 x 97	YL1150	C	N	0,2	6,3	1,9	0,6	250	520	0,75	75	125,5 x
05/35	Ö Ö	N	65	1,6	3,2	0,6	180	150	0,65	25	97 x 44	YL1181	С	FA	5,5	5	64	3	600	1000	6	4 kW	178 x
05/40	M	N			1		1				L.	YL1182	С	V	5,5	5	64	3	600	1000	6	4 kW .	178 x
05/40F	M.	N	50 50	6,3 12,6	1,25 0,625	0,6 0,6	180 180	112 112	0,60 0,60	20 20	97 x 44 96 x 44	YL1190	M	N	0,026	1,1	4,2	0,35	132		0,4	8	73,9 x
05/40H	M	N	50	26,5	0,020	0,6	180	112	0,60	20	97 x 44	YL1210 YL1220	M	N	0,012	6,75	0,72	0,3	175	1 ' .	0,3	5	78 x
05/40K	M	N	50	13,5	0,585	0,6	180	112	0,60	20	96,8 x 42,1		1 - L	N	0,006	6,75	0,56	0,18	180		0,25	3	66,7 x
08/200	С	N	290	6,3	3,9	1	250	385	1,1	100	150 x 72	YL1240	M	N	0,021	6,75	0,8	0,4	180		0,4	7,5	82,7 x
08/200H	с	N	290	26,5	0,85	1	250	385	1,1	100	150 x 72	YL1250 YL1290	M C	N	0,052	6,75	1,2	0,55	235		0,55	25	59 x
L1/150	C	FA	370	6	2,6	2	250	250	2	250	62,7 x 41,7	YL1290 YL1340	c	N FA	0,29	19 6	2,3 3,2	1 2,2	250 400		1,1 2,5	100 350	150 x
L1/150H	С	FA	370	26,5	0,58	2	250	250	2	250	62,7 x 41,7	YL1340	c	FA	0,77	26.5	0,73	2,2	400		2,5	350	62,6 x 62,6 x
L2/200	М	FA'	, 105	6	2,6	0,5	250	200	2	250	62,7 x 41,7	YL1360	M			1							
L2/275	С	FA	390	6	2,6	2	250	250	2.	250	62,7 x 41,7	YL1300	M.	N N	0,007	13,5 6,3	0,28 1,125	0,25 0,475	160 165		0,4 0,48	8 18	63 x 96 x
L2/275H	С	FA	390	26,5	0,58	2	250	250	2	250	62,7 x 41,7	YL1371	M	N	0.042	12,6	0.562	0,475	165		0,48	18	96 x 96 x
CÓ3/14	· 0	N	11	3,15		0,25	250	0,045	0,3	7	77,8 × 22	YL1372	M	N	0.042	26.5	0,3	0,475	165		0,48	18	96 x
C04/15	0	N	26	3	1,6	0,6	200	0,06	0,6	12	90 x 32	YL1420	D	FA	11	6,3	120	7		2300	8,5	6 kW	174 x
E02/5	M	N ···	5	6,3	0,6	0,18	180	0,055	0,18	6	66,7 x 22	YL1430	D	FA	18	8	120	8	700	3500	9,5	12 kW	211 x
E03/12	M	N	12	6,3	0,82	0,3	175	0,075	0,3	10	78 x 22	YL1440	D	FA	2,4	4,2	53	3		980	4	1500	125 x
E03/20	M	N	48	6,3	1,3	0,6	250	0,1	0,6	20	85,5 × 46	YL1460	С	Ņ	1,1	5	14,1	4		350	4	400	151,5 x
E03/32	M	N	48	6,3	1,3	0,6	250	0,1	0,6	20	85,5 x 46	YL1461	C I	N	1,1	5	14,1	4	500	350	4	400	151,5 x
E04/5	M M	N	4 26	6,3	0,6	0,25	160	0,27	0,4	16 15	63 x 44,5	YL1470	D	FA	11	6,3	120	7	600	2300	8,5	8 kW	174 x
E04/20	M	N	90	6,3 6,3	1,6 1,8	0,75 0,6	200	0,048	0,75 0,75	40	84 x 51 108,5 x 46	YL1520	D	FA	25	11,5	120	8,5	700	4600	9,5	18 kW	225 x
	(VI	11		0,0	1,0	0,0	250	0,2	0,75	40	100,5 × 40	YL1530	D	FA	35	7,5	180	10	900	2400	12	30 kW	264 x
	A _ F					.,						YL1531	D	W	35	7,5	180	10		2400	12	30 kW	340 x
OLING: F. N	A = force			= water	· (helix)		vapour	Ie:				YL1540	D	FA	2,2	4,2	53	3		500	4,2	2 kW	122 x
., N	= natur	al	VV F1	- water	(nellx)	H =	heatsin	ĸ				YL1560 YL1590	D	FA	5,5	5	130	2		6000	6	7 kW	153 x
		i							1917 - 1917 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 -			7609	C ··	FA FA	1,1 0,58	3,9 26,5	52 0,57	1	250	2000 200	4 2	2 kW 250	62,7 x
- ·								ана се			· · · ·	8621	C	FA	0,58	25,6	0,57	2		200	2	250 250	62,7 x 62,7 x
									í							120,0	0,00	0,0	200	200	٤		02,7 X
												COOLING	: FA =	= forced ai	ir W	= wate	ŕ.	V = vapo	our				
												1		= natural			r (helix)	H = heat					

January 1980 A23 AMPLIFIER CIRCUIT ASSEMBLIES

Alfred States and

SURVEY

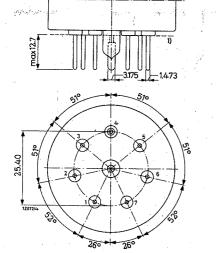

COOLING: forced air


type	band	output power	carrier frequency	power	tube	dimensions
		power	range	gain	used	in mm
		kW	MHz	dB		
Vision						
40771*	IV + V	0,5	470 to 860	15,0	YD1335/YD1336	C07 000 100
40782V*	IV + V	0,6	470 to 860	15,0	YL1590	627 x 239 x 182
40776		1,1	170 to 230	20,0	YL1540	657 x 190 x 280
40755	1.	1,2	55,25 to 67,25	11,5	YL1440	618 x 355 x 412
		1,5	77,25 to 83,25	12,0	YL1440	537 x 343 x 370
40743	111	1,55	170 to 250	14,1	YL1440	537 x 343 x 370
40783*	IV + V	5,5	470 to 860	16,5	YL1560	673 x 368 x 358
40757	1	6,25	55,25 to 67,25	12,0	YL1420	745 x 490 x 286
	1	6,25	77,25 to 83,25	12,0	YL1420	712 x 530 x 569
40745	111	8,6	170 to 230	13,8	YL1420 YL1420	712 x 530 x 569
40747	HI	18,4	170 to 230	13,8	YL1420 YL1430	620 x 610 x 420
40759	1 1	13,2	55,25 to 67,25	14,0		620 x 610 x 420
	1	13,2	77,25 to 83,25	13,0	YL1430 YL1430	712 x 530 x 569
	(20	55,25 to 67,25	13,0	YL1520	712 × 530 × 569
	. 1	20	77,25 to 83,25	13,4		700 x 500 x 500
0768	111	27,5	170 to 230	14,5	YL1520	700 × 500 × 500
		,.	170 10230	14,5	YL1520	647 × 680 × 490
Bound						
07825*	IV + V	1,1	470 to 860	16,4	YL1590	637 x 190 x 220
0778*	H .	2,2	88 to 108	22,5	YL1540	330 x 300 x 300
0777	: III	2,2	170 to 230	22,5	YL1540	
0756	I	2,4	53 to 88	14,1	YL1440	618 x 355 x 412
0744	III	2,4	170 to 260	14,1	YL1440	537 x 343 x 370
0758	t	10,5	53 to 88	15,0	YL1420	673 x 368 x 358
0746	. III	10,5	170 to 230	15,0	YL1420	712 x 530 x 569
0775	Н	10,5	88 to 108	22	YL1470	620 x 610 x 420
0760	1	12	53 to 88	15,1	YL1430	393 x 400 x 632
0748	111	13	170 to 230	15,2	YL1430	712 x 530 x 569
0769*	HL .	25	170 to 230	14,9	YL1520	620 x 610 x 420 647 x 680 x 490
ision and s	ound					047 × 000 × 490
0770* 1	IV + V	0.025	470 000			
	IV + V	0,025	470 to 860	20	YD1300	482 x 246 x 88
	IV + V	0,035	470 to 860	20	YD1302	482 x 246 x 88
0771*	IV + V IV + V	0,055	470 to 860	19	YD1304	482 x 246 x 88
	IV + V IV + V	0,11	470 to 860	16,5	YD1334	525 x 340 x 148
0782V*	IV + V IV + V	0,22	470 to 860	16,5	YD1336	525 x 340 x 148
0743	10 + 0	0,22	470 to 860	15,6	YL1590	657 x 190 x 280
)743)783*		0,55	175 to 250	14,8	YL1440	673 x 368 x 358
)745	IV + V	2,2	470 to 860	16,5	YL1560	745 x 490 x 286
//#0		2,5	175 to 225	14,8	YL1420	620 x 610 x 420
1747						
0747 0748		7 10,5	175 to 225 175 to 225	15,0 16,2	YL1430	620 x 610 x 420

* Data available on request.

В

BASES


max34.97

Medium 5-pin base (IEC 67-1-4a)

B3

1.14

Septar 7-pin base (IEC 67-1-20a)

Types: PE 1/100 QB 3/200

1) The reference line is established by the seating plane of the base and is determined by the three highest bosses.

Fig. 5.

5866

a fift of a star of the second

Willie

R.F. POWER TRIODE

			~	REFER	ENCE	DATA			
λ	Freq.	C tel	egr.	Сo	sc.	Btel	eph.	C _a n	od.
(m)	(MHz)	V _a (V)	W _o (W)	V _a (V)	W _o (W)	V _a (V)	W _o (W)	V _a (V)	Wo (W
4	75	2500 2000 1500 1000	390 295 210 126			2500 2000 1500	65 64 59	2000 1500 1000	204 153 95
2 1.5	150 200			2500 2000 2000	376 282 198				
HEATI	NG: direct	; filame		ated tung ment vo	-		v _f	= 6	.3
		* 	Fila	ment cu	rrent		I_{f}	= 5	.4
	ITANCES					;			
	o all other		-	0			C٤		.1]
Grid to	all other e	lements	except	anode			Cg	; ⁼ 4	
Anode t	o grid						Ca	ig = 5	.2 I
ГҮРІСА	L CHARA	CTERIST	ICS						
Amplifi	cation facto	or			•	μ		= 25	

COOLING: radiation/low-velocity air flow

It is necessary to direct a low-velocity air flow to the bottom and the top seal if the tube is used at or near the limiting values at frequencies above 50 $\rm MHz$.

September 1967

mm.

TB2.5/300

LIMITING VALUES (Absolute limits)	OPERATING CONDITIONS R.F. CLASS C TELEGRAPH	Y Contraction of the second
Anode voltage $V_a = max.2500 V$		- 4 4 4 m
Anode dissipation $W_a = max. 135 W$		
Grid dissipation $W_{o} = max.$ 16 W	,a 2000 200	•
Grid circuit resistance with fixed grid bias $R_g = max. 0.1 MG$	e e e	
Grid circuit resistance with automatic grid bias $R_g = max. 0.2 MG$	a 200 20	
Cathode current $I_k = max. 250 mA$		0 40 40 mA
Peak cathode current $I_{kp} = max. 1.6 A$	Peak grid A.C. voltage $V_{gp} = 390 34$	and the second
Temperature of anodo goal	* 5	3 11 10 W
Bottom temperature	Anode input power $W_{ia} = 512$ 41	0 308 205 W
- max. 180 °C	Anode dissipation $W_a = 122$ 11	
Dimensions in mn	Output power $W_0 = 390 29$	5 210 126 W
Base : giant 5p	Efficiency $\eta = 76 7$	2 68 61.5 %
Anode connector : 40712	OPERATING CONDITIONS D. F. OF ASS P. TRUTTONS	
Socket : 2422 512 01001	OPERATING CONDITIONS R.F. CLASS B TELEPHONY	
	Wavelength $\lambda = 4$	4 4 m
grid connections: 40215/01	Anode voltage $V_a = 2500$	2000 1500 V
	Grid voltage $V_g = -87$	-67 -45 V
g √a 100 100	Anode current I _a = 77	97 120 mA
$f \qquad \qquad$	Peak grid A.C. voltage $V_{g_p} = 100$	100 100 V
30% 1 2 1	Anode input power W _{ia} = 193	194 180 W
30°	Anode dissipation $W_a = 128$	130 121 W
	Output power $W_0 = 65$	64 59 W
g	Efficiency $\eta = 34$	33 33 %
Mounting a training the	Modulation depth m = 100	100 100 %
Mounting position: vertical with base up or down	Grid current $I_g = 20$	28 52 mA
	Grid input power $W_{ig} = 3.6$	5.1 9.4 W
	*5	
		4 · · · · ·

¹) Anode red hot, temperature = $850 \ ^{O}\mathrm{C}$

C4

April 1972

September 1967

175

WWW.

TB2.5/300

	· ·		
OPERATING CONDITIONS, R.F.	CLASS C ANODE MOD	ULATION; two	tubes
Wavelength	$\lambda = 4$	4	4 m
Anode voltage	V _a = 2000		1000 V
Grid voltage	$V_{g} = -225$	-180 -	-130 V
Anode current	$I_a = 255$	255	255 mA
Grid current	Ig = 80	80	80 m.A
Peak grid A.C. voltage	$V_{gp} = 415$	370	320 V
Grid input power	$W_{ig} = 30$	27	23 W
Anode input power	$W_{ia} = 510$	382	255 W
Anode dissipation	$W_a = 102$	76	65 W
Output power	$W_0 = 408$	306	190 W
Efficiency	$\eta = 80$	80 7	4.5 %
Modulation depth	m = 100	100	100 %
Modulation power	$W_{mod} = 255$	191	126 W
OPERATING CONDITIONS AS R.I			
Wavelength	$\lambda = 2$		1.5 m
Anode voltage	V _a = 2500	2000 2	000 V
Anode current	$I_a = 410$	410	346 mA
Grid current	$I_g = 80$	80	80 mA
Grid resistor	$R_{g} = 2500$	1875 1	875 Ω
Anode input power	$W_{ia} = 1025$	820	692 W
Anode dissipation	W _a = 245	230	270 W
Grid input power	W _{ig} = 28	26	26 W
Output power	W _o = 752	564	396 W
Efficiency	η = 73	69	57 %
$\mathcal{L}^{(1)}(\mathcal{L}_{\mathcal{L}}) = \mathcal{L}^{(1)}(\mathcal{L}_{\mathcal{L}}) = \mathcal{L}^{(1)}(\mathcal{L}) = $			

¹) Mean value

C6

in the second se

			<u></u>	-
OPERATING CONDITION	ONS R.F. CLASS C TELEGRAPHY	A.F. CLASS B AMPLIFIER AND MODULATOR	· · · · · · · · · · · · · · · · · · ·	
Alfred March 1	grounded grid, two tubes	LIMITING VALUES (Absolute limits)		
			0500 11	
	Vi Y Y	Anode voltage $V_a =$	max. 2500 V max. 135 W	
		Anode dissipation $W_a =$		
		$W_g = Cathode current$		
			max. 250 mA max. 1.6 A	
V _f		Peak cathode current $I_{kp} =$	max. 1.0 A	
		OPERATING CONDITIONS, two tubes		
	$\vec{+} - \vec{=}$ V_a	Anode voltage V _a = 2500	2000 V	
[(000 J	<u> </u>	Grid voltage $V_g = -86$	-65 V	
		Load resistance $R_{aa} = 18.2$	kΩ	
Wavelength	$\lambda = 3$ β	Peak grid to grid voltage $V_{ggp} = 0$ 412	0 394 V	
Anode voltage	X = 3 3 3 m	Anode current $I_a = 2x30 \ 2x178$	2x30 2x208 mA	
Grid voltage	a 2000 2000 1500 1000 V	Grid current $I_g = 0 2x42$	0 2x42 mA	
Anode current	$V_g = -200 -150 -110 -80 V$	Grid input power $\tilde{W}_{ig} = 0 2x7.8$	0 2x7.3 W	
4	$I_a = 410 410 410 410 mA$	i ia	2x60 2x416 W	
Grid current	$I_{g} = 80 80 80 80 mA$	a a	2x60 2x101 W	
Peak grid A.C. voltage	$V_{gp} = 390 340 300 260 \text{ V}$	Output power $W_0 = 0$ 700	0 630 W	
Grid input power	$W_{ig} = 158$ 126 to 200 V	Total harmonic distortion $d_{tot} = -5.0$ Efficiency $n = -78.5$	- 3.7 % - 76 %	
Anode input power	$W_{i0} = 1025$ 800 mm	Efficiency $\eta = -78.5$	- 76 %	
Anode dissipation	W = 045		, 1000 IV	
Output power	175 158 W	Anode voltage $V_a = 1500$ Grid voltage $V_{cr} = -46$	1000 V -23 V	
Efficiency	$W_{o} = 780+130$ 590+110 420+96 252+80 W^{1})	g .	-23 V 5.0 k Ω	
	$\eta = 76$ 72 68 61.5 $\%^2$)			
		Peak grid to grid voltage $V_{ggp} = 0$ 340 Anode current $I_a = 2x30$ $2x210$	0 295 V 2x30 2x210 mA	
		W	2x30 $2x210$ mA 0 $2x40$ mA	
		Grid currentIg=0 $2x40$ Grid input power W_{ig} =0 $2x6.1$	0 2x5.4 W	
			2x30 2x210 W	
			2x30 $2x73$ W	
		Output power $W_0 = 0$ 450	0 274 W	
1) Power transformed for		Total harmonic distortion $d_{tot} = -2.9$	- 2.2 %	
1) Power transferred from 2) Pure tube affi	ariving stage included	Efficiency $\eta = -71.5$	- 65 %	
2) Pure tube efficiency				

C8

September 1967

September 1967

Willia.

ЩЩ,

TB2.5/400

 $C_a \mod$.

Va (V)

2000

1500

1000

Va

(V)

2500

1000

B mod.

two tubes

0.1 pF

4.9 pF

5.0 pF

2500 V

25

60 mA

2.8 mA/V

· = 1

=

=

=

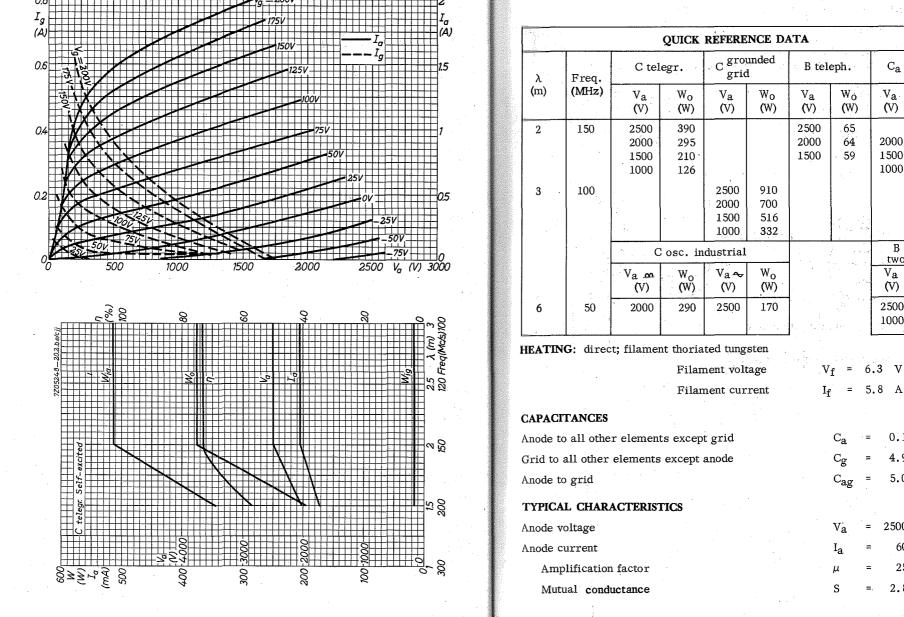
Wo

(Ŵ)

700

274

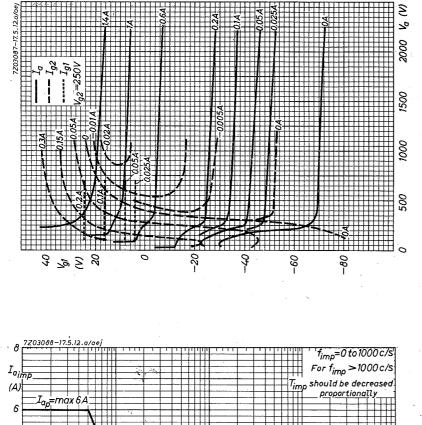
Wo


(W)

205

154

96


R.F. POWER TRIODE

C10

September 1967

September 1967

0

100

200

50

²⁰⁰⁰ 5000 10000 T_{imp} (µ sec) 500 1000

TETRODES, YL TYPES AND 7609/8621

2

1 2 5 10 20

YL1010 YL1011 YL1012

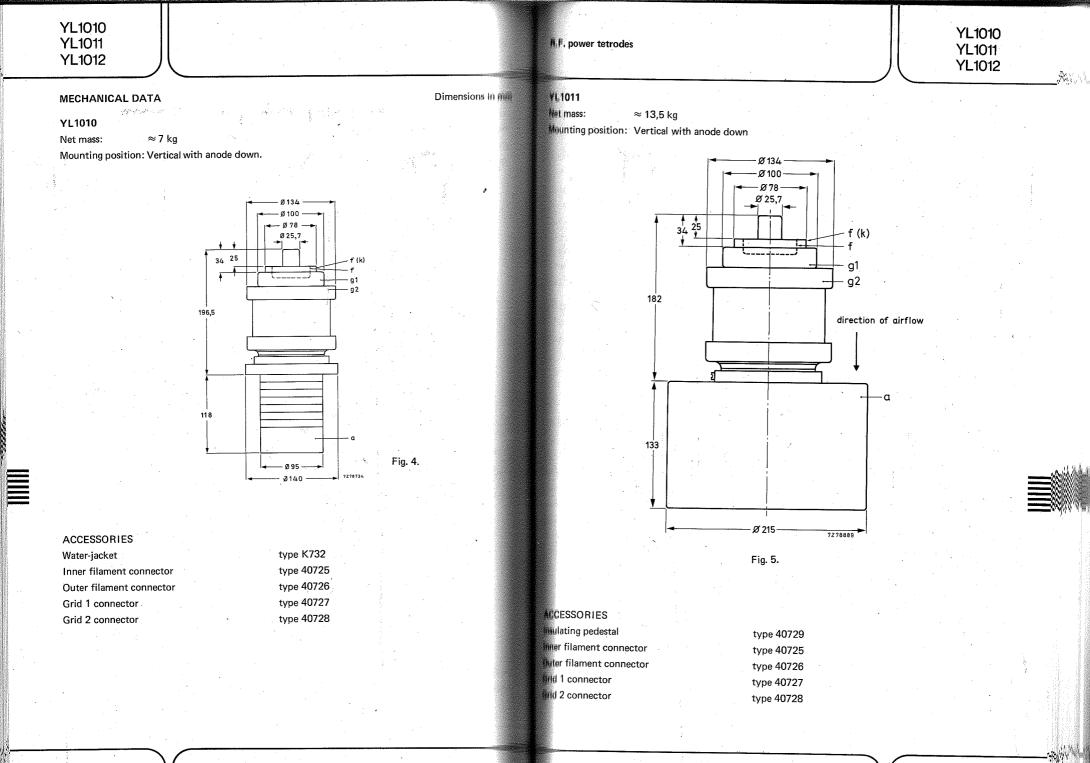
JAN O

R.F. POWER TETRODES

R.F. power tetrodes in coaxial metal-ceramic construction intended for use as v.h.f. amplifier and s.s.b. amplifier. The YL1010 is water cooled. The YL1011 is air cooled. The YL1012 is vapour cooled.

QUICK REFERENCE DATA

apple to the second

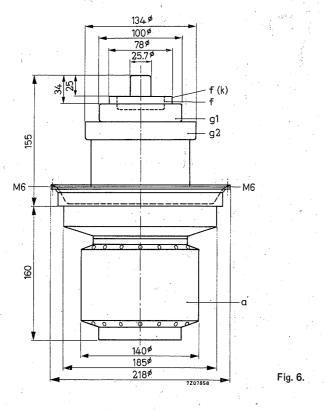

40 mm					
R.F. class-AB amplifier, single-sideband					
Frequency		f	30	30	MHz
Anode voltage		Va	8	10	kV
Output power (P.E.P.)		wo	30	33	kW
R.F. class-C telegraphy, F.M. telephony	· · ·				÷
Frequency		f.		220	MHz
Anode voltage		Va		5,5	kV
Output power	- 4	wo	•		kW
R.F. class-C anode and screen grid modulation					
Frequency		f		30	MHz
Anode voltage		Va			kV
Output power		w _o i		-	kW
HEATING: direct, thoriated tungsten filament					
Filament voltage			·	_	
Filament current			Vf		V
			۱ _f	200	А
CAPACITANCES				· .	
Anode to all except grid 1			C _{a(g1)}	42	рF
Grid 1 to all except anode			C _{g1(a)}	260	
Anode to grid 1	· ·		C _{ag1}	1,5	
TYPICAL CHARACTERISTICS			-3.		
Anode voltage			Va	3	kV
Grid 2 voltage				1,2	
Anode current			V _{g2} I _a	2,5	
Transconductance			s s		mÁ/
Amplification factor			-	6,6	11174/
· · · · · · · · · · · · · · · · · · ·			μ g2g1	0,0	

F3

YL1010 YL1011 YL1012 TEMPERATURE LIMITS AND COOLING	R.F. power tetrodes	YL1010 YL1011 YL1012
YL1010 Absolute maximum envelope and seal temperature t _{env} max 220 ^o C	Absolute maximum envelope and seal temperature t_{er} Required quantity of air, at $t_i = 25 \ ^{\circ}C$ sea	_{NV} max. 220 ^O C e cooling curve below
Absolute maximum water inlet temperature t _i max 50 ^o C Required quantity of water see cooling curves Fig.1, Fig.2 For temperatures between 20 ^o C and 50 ^o C the required quantity of water can be found by linear ,	Át t _i = 35 °C; q _{min} is 15% higher At t _i = 45 °C; q _{min} is 35% higher	
interpolation.		278888.1 1,5
$t_{o} \xrightarrow{60} \underbrace{7207860.2}{t_{o}} \underbrace{60}_{t_{o}} \underbrace{7207860.2}_{t_{o}} \underbrace{60}_{t_{o}} \underbrace{7207861.2}_{t_{o}} \underbrace{60}_{t_{o}} \underbrace{7207861.2}_{t_{o}} \underbrace{60}_{t_{o}} \underbrace{7207861.2}_{t_{o}} \underbrace{60}_{t_{o}} \underbrace{7207861.2}_{t_{o}} \underbrace{7207861.2}_{t_{o}} \underbrace{60}_{t_{o}} \underbrace{7207861.2}_{t_{o}} \underbrace{7207861.2}_{t_{$	q _{min} (m ³ /min)	(kPa)
to (°C) 9min. (Umin) 50 50 50 50 50 50 50 50 50 50 50 50 50		Δt (K)
, 30 Pi , 30 30 30 30 30 30 30 00 00 00 00 00 00		
		0,5
$0 \xrightarrow{0}{10} 10 20 30 W_{a} (kW) 40^{0}$ $0 \xrightarrow{0}{10} 10 20 30 W_{a} (kW) 40^{0}$		
Fig.1. Fig.2.		
	0 10 20 30 _{Wa} (Fig. 3.	kw) **
	YL1012 Absolute maximum envelope and seal temperature ten	_{IV} max. 220 ^o C
4 March 1979		March 1979 F5

F4

March 1979 F5



YL1010 YL1011 YL1012

YL1012

Net mass: *****≈*14,7 kg

Mounting position: Vertical with anode down

ACCESSORIES
Vapour jacket
Inner filament connect

Inner filament connector Outer filament connector Grid 1 connector Grid 2 connector type K728 type 40725 type 40726 type 40727 type 40728 II.F. power tetrodes

R.F. CLASS-AB LINEAR AMPLIFIER, SINGLE-SIDEBAND, suppressed carrier

LIMITING VALUES (Absolute maximum rating system)

Frøquency	f	up to	30		MHz
Anode voltage	Va	max		•	
Grid 2 voltage	V _{g2}		12		kV
tirld 1 voltage		max	1,4		kV
Anode current	–V _{g1}	max	350		V
Anode input power	l _a W _{ia}	max	10		A
Anode dissipation YL1010, YL1011		max	72		kW
Allode dissipation YL1012	W _a W _a	max max	30 45		kW
uild 2 dissipation	W _{g2}	max	45 600		kW
Grid 1 dissipation	W _{g1}				W
	۳gi	max	300	14 J	W
DPERATING CONDITIONS				· · · · ·	1 <u>.</u>
frequency	f		30	,	MHz
Anode voltage	Va		8	A	kV
fild 2 voltage	V _{g2}		1,2		kV
Arid 1 voltage	Vg1		-175		V *
	and the second sec	zero signal	single tone	double tone	· ·· ·
uld 1 driving voltage, peak	Vg1p	0	175	175	
Anode current	l _a	2	5,9		V ,
fuld 2 current	l _{g2}	0	250	3,8	A
and 1 current	∙g∠ Ig1	0		100	mA
hilde input power	W _{ia}	16	0	0	mA
hude dissipation	Wia Wa	16	47,2	30,4	kW
11(1 2 dissipation			17,2	15,4	kW
Milput power (P.E.P.)	W _{g2}	0	300	120	W
Hisiency	Wo	0	30	30	kW
nermodulation distortion	η		63,5	49	%
1/d order	at.				
bth order	dЗ			- 36	dB **
	d5			-44	dB **

F8

F9

.

Frequency	1. · ·		f		30		Mŀ
Anode voltage	3 T	$[\phi_{i}] \in \mathcal{F}_{i}^{(i)}$	Va		10		k٧
Grid 2 voltage			V _{g2}		1,2	- 1	k٧
Grid 1 voltage			V _{g1}		-185		۷
				zero signal	single tone	double tone	
Grid 1 driving voltage, p	eak		V _{g1p}	. 0 's	185	185	۷
Anode current			l _a	2	5,2	3,3	А
Grid 2 current			I _{g2}	0 .	250	80	m/
Grid 1 current		•	Ig1	0	0	0	m/
Anode input power			Wia	20	52	33	k٧
Anode dissipation	•		Wa	20	19	16,5	k₩
Grid 2 dissipation			W _{g2}	0	300	96	W
Output power (P.E.P.)			w _o	0	33	33	k٧
Efficiency '			η	•	63	50	× %
Intermodulation distorti	on				· .		
3rd order		н. 1917 - Ал	d3	2	· .	-36	dØ
5th order			d5 .	S		-44	dB

II, **F**, power tetrodes

1.00

I.F. CLASS-C TELEGRAPHY OR F.M. TELEPHONY, grounded grid

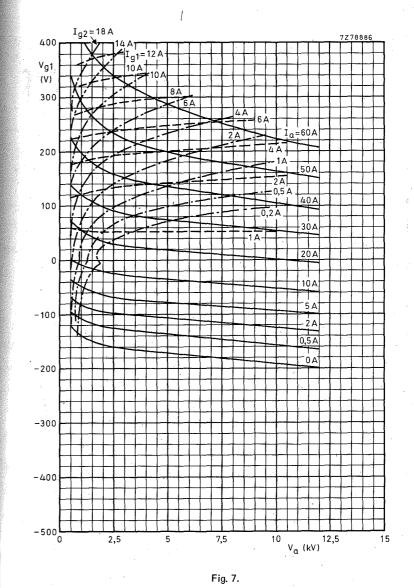
LIMITING VALUES (Absolute maximum rating system)

Fraquency		· · ·	f	up to	220	MHz
Anode voltage		 	Va	max	6	kV
Grid 2 voltage		•	V _{g2}	max	1	kV
ürld 1 voltage		· · · ·	$-V_{g1}$	max	250	V
Anode current			l _a	max	10	A
Anode input power			Wia	max	72	kW
Anode dissipation YL1010, YL101 Anode dissipation YL1012	1	а. С	W _a W _a	max max		kW kW
Grld 2 dissipation		 · · · .	W _{g2}	max	300	Ŵ
Orld 1 dissipation			W _{g1}	max	200	W
OPERATING CONDITIONS					;	
Frequency			f	• •	220	MHz
Anode voltage			Va		5,5	kV
Grid 2 voltage	· · · .		V _{g2}		800	
Grid 1 voltage			V _{g1}		200	v
Anode current			la		7	А
Grid 2 current			l _{g2}		250	mA
Grid 1 current	í.		I _{g1}		150	mA
Driver output power			Wdr		2	kW
Anode input power			Wia		38,5	kW
Anode dissipation			Wa		. 9	kW
Output power in load			Wg		25	kW *
Efficiency			η		77	%

* Feed-through power included. Measured in a circuit having an efficiency of approx. 85%.

* Adjust to give the zero signal anode current.
 ** Maximum values encountered at any level of drive voltage up to full drive referred to the amplitude of either of the two equal tones at that level.

F10


YL1010

YL1011

R.F. CLASS-C ANODE AND SCREEN GRID MODULATION (carrier conditions)

LIMITING VALUES (Absolute maximum rating system)

Frequency Anode voltage Anode input power Anode dissipation YL1010, YL1011 Anode dissipation YL1012 Anode current Grid 2 voltage Grid 2 dissipation Grid 1 voltage Grid 1 dissipation OPERATING CONDITIONS	$\begin{array}{ccccc} f & up \ to \\ V_a & max \\ W_{ia} & max \\ W_a & max \\ I_a & max \\ I_a & max \\ V_{g2} & max \\ W_{g2} & max \\ -V_{g1} & max \\ W_{g1} & max \\ \end{array}$	10,5 kv 74 kv 30 kv 45 kv 8,5 A 900 V 600 W 500 V 300 V
Anode input power Anode dissipation YL1010, YL1011 Anode dissipation YL1012 Anode current Grid 2 voltage Grid 2 dissipation Grid 1 voltage Grid 1 dissipation	$\begin{array}{cccc} W_{ia} & max \\ W_a & max \\ W_a & max \\ I_a & max \\ V_{g2} & max \\ W_{g2} & max \\ -V_{g1} & max \\ W_{g1} & max \end{array}$	74 kv 30 kv 45 kv 8,5 A 900 V 600 W 500 V 300 W
Anode dissipation YL1010, YL1011 Anode dissipation YL1012 Anode current Grid 2 voltage Grid 2 dissipation Grid 1 voltage Grid 1 dissipation	$\begin{array}{ccc} W_a & max \\ W_a & max \\ I_a & max \\ V_{g2} & max \\ W_{g2} & max \\ -V_{g1} & max \\ W_{g1} & max \end{array}$	30 kV 45 kV 8,5 A 900 V 600 W 500 V 300 W
Anode dissipation YL1012 Anode current Grid 2 voltage Grid 2 dissipation Grid 1 voltage Grid 1 dissipation	$\begin{array}{ccc} W_a & max \\ I_a & max \\ V_{g2} & max \\ W_{g2} & max \\ -V_{g1} & max \\ W_{g1} & max \end{array}$	45 kV 8,5 A 900 V 600 W 500 V 300 W
Anode dissipation YL1012 Anode current Grid 2 voltage Grid 2 dissipation Grid 1 voltage Grid 1 dissipation	I_a max V_{g2} max W_{g2} max $-V_{g1}$ max W_{g1} max	8,5 A 900 V 600 W 500 V 300 W
Grid 2 voltage Grid 2 dissipation Grid 1 voltage Grid 1 dissipation	V _{g2} max W _{g2} max -V _{g1} max W _{g1} max	900 V 600 W 500 V 300 W
Grid 2 dissipation Grid 1 voltage Grid 1 dissipation	W _{g2} max —V _{g1} max W _{g1} max	600 W 500 V 300 W
Grid 1 voltage Grid 1 dissipation	—V _{g1} max W _{g1} max	500 V 300 W
Grid 1 dissipation	W _{g1} max	. 300 W
OPERATING CONDITIONS	f e Maria	
OPERATING CONDITIONS	f · ~	A. A. 4
		- 30 M
Frequency	Va	10 k
Anode voltage	V _{g2}	800 V
Grid 2 voltage	V _{g1}	340 V
Grid 1 voltage	R _{g1}	300 (
Grid 1 resistor		6,9 A
Anode current	la	500 n
Grid 2 current	lg2	360 n
Grid 1 current	lg1	200 V
Driver output power	W _{dr}	200 v 69 k
Anode input power	W _{ia}	
Anode dissipation	Wa	14
Output power	Wo	55 1
Efficiency	η	80 %
Modulation depth	m	100 \$
	Wmod	35
Modulation power Grid 2 voltage, peak	V _{g2p}	700

YL1060

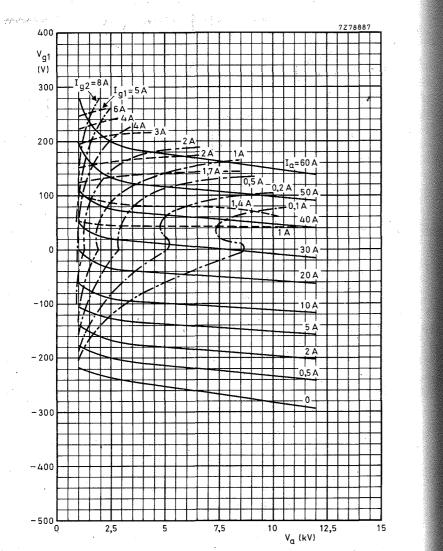


Fig. 8.

R.F. DOUBLE TETRODE

		ç	UICK R	EFERENCI	E DATA					
Passa	C telegr.				$C_{ag_2} \mod .$					
Freq. (MHz)			I.C.A.S.		C.C.S.		I.C.A.S.			
	V _a (V)	₩ ¹) (W)	Va (V)	₩/ ¹) (W)	V _a (V)	₩ _ℓ ¹) (W)	V _a (V)	W ₂ ¹) (W)		
175	900	132	1000 ·	163	750	85	800	107		

HEATING: indirect by A.C. or D.C. Cathode oxide coated

Heater voltage	Vf	=	6.3	V 12.6	5 V
Heater current	I_{f}	=	1.8	A 0.9	A
Pins			5- (1+7	7) 1-7	7

CAPACITANCES (each system, the elements of the other system being earthed)

Anode to all other elements except grid No.1	Ca	=	3.2	pF	
Grid No.1 to all other elements except anode	Cg1	=	10.5	pF	
Anode to grid No.1	Cag,	<	0.09	pF	

For internal neutralization (C_n, C_n ') please refer to the electrode connections

TYPICAL CHARACTERISTICS (each system)

Anode current		Ia	=	30	mA
Mutual conductance	• · · ·	S	=	4.5	mA/V
Amplification factor		$\mu_{g_2g_1}$	=.	8.2	

^I) Useful power in the load

F14 March 1979

F15