

Ampelair Wind Driven, Turbo Roof Ventilators

Code	Description	
AA300MVVP	30MVVP Ventilator Alloy Roof Head & Base 300mm	S
AA600MVVP	Ventilator Alloy Roof 600mm AA600MVVP (head and base)	L
AS150	Ventilator Stainless Steel SS150 Head only	L
AS200	Ventilator Zincalume AS200 Head only	L

The Building Code of New Zealand sets out minimum ventilation requirement for industrial and commercial premises. However depending on the building use this can be less than adequate. It is generally recognised that workplace efficiency is improved when ventilation

matches the interior conditions. Extracting oppressively hot air and fumes minimises worker lethargy, loss of concentration, and consequent loss of productivity. Even in colder weather, effective air circulation improves the workplace environment, so your investment works all year.

Round Vane (RV) Industrial Range

Ampelair RV Industrial Ventilators are engineered and constructed to require very little maintenance even after years of service. With their low profile design and aluminium construction, Ampelair ventilators are designed to give optimum efficiency through the angle of the vane and the enlarged surface area. Even in cross winds the vane shape will retain its rotational strength.

- Designed for farm and light commercial Buildings
- Two sizes, 500mm & 600mm (AA600MVVP)
- Complete with variable pitch base for quick and easy to installation
- Strong, lightweight construction Alloy Construction
- Powder coat finish available to suit your roof colour.
- Dual bearing system.
- Manufactured to provide long trouble free operation in Industrial and Commercial applications

Due to a policy of continuous development, prices and specifications are subject to change without notice

Christchurch 351c Blenheim Rd		Wellington		Auckland		0800 SMOOTH (0800 766 684)	
(From 2019: 264 Ann	<mark>ex Rd)</mark> , PO Box 8358	18 Armidale	St, (PO Box 8358, Chch)	6 Stanway	PI, PO Box 12-243	www.smooth-air.co.nz	
Riccarton	03 343 6184	Petone	04 566 7969	Penrose	09 579 3257	sales@smooth-air.co.nz	

112b

15 March 2018 Technical Catalogue

Capacity Table

Extraction volume expressed in cubic metres per second. 1 cubic metre = 1000 litres

t Height		Dead is	/ సు క్రి	lators
Stac, Method	Wino Ko	lem,	500 60	0
		6	0.350 0.6	09
	6	12	0.362 0.6	30
		18	0.382 0.6	64
		6	0.419 0.7	27
	8	12	0.428 0.7	38
3.0		18	0.452 0.7	85
5.0		6	0.625 1.0	88
	12	12	0.635 1.1	05
		18	0.641 1.1	16
		6	0.772 1.3	43
	16	12	0.791 1.3	77
		18	0.808 1.4	08
	6	6	0.362 0.6	30
		12	0.420 0.7	32
		18	0.431 0.7	51
		6	0.424 0.7	38
	8	12	0.439 0.7	63
6.0		18	0.458 0.7	97
0.0	12	6	0.635 1.1	05
		12	0.655 1.1	41
		18	0.713 1.2	39
		6	0.791 1.3	77
	16	12	0.813 1.4	14
		18	0.844 1.4	67
		6	0.381 0.6	64
	6	12	0.431 0.7	51
		18	0.483 0.8	39
		6	0.452 0.7	85
	8	12	0.458 0.7	97
0.0		18	0.530 0.9	22
5.0	12	6	0.642 1.1	16
		12	0.712 1.2	39
		18	0.737 1.2	83
		6	0.808 1.4	08
	16	12	0.843 1.4	67
		18	0.855 1.4	86

The formula and capacity tables are useful guides in determining the model size and number of ventilators required. Building usage and other factors, finally determine the exact requirements for maximum efficiency and the comfort levels required. Ampelite can assist at design or specification stages in this regard.

Calculations

to decide size and number of Ventilators.

1. Determine the volume of the building

Volume of section A = 0.5 x L x W x Ha

Volume of section $B = L \times W \times Hb$

Total building volume = volume of section A + volume of section B.

Note: For factories, the combined volume A + B should be used.

Where Volume B is air-conditioned, only Volume A is used to calculate the number of ventilators required. No air should be drawn from the air-conditioned space below ceiling level.

2. Select the number of ventilators required

METRIC =	V x Ac/Hr
EX/c x 3.6	
Where:	

V = Volume of building or roof space

Ac/Hr = Air changes per hour

EX/c = Exhaust capacity of ventilator

Building Type	Recommended Air Changes per Hour
Warehouses	4 to 8
Factories & Workshops	5 to 10
Gyms, Tennis & Squash Courts	7 to 10
Assembly Halls, Garages	10 to 15
Toilets	12 to 15
Laundries	20 to 40
Stables, Piggeries & Poultry	20 to 50
Bakeries, Boiler Houses	30 to 40

Due to a policy of continuous development, prices and specifications are subject to change without notice.

 Christchurch
 351c
 Blenheim
 Rd

 (From 2019: 264 Annex
 Rd), PO Box 8358
 Riccarton
 03 343 6184

 Wellington

 18 Armidale St, (PO Box 8358, Chch)

 Petone
 04 566 7969

Auckland PO Box 8358, Chch) 6 Stanway PI, PO Box 12-243 04 566 7969 Penrose 09 579 3257 0800 SMOOTH (0800 766 684) www.smooth-air.co.nz sales@smooth-air.co.nz

15 March 2018 Technical Catalogue

See www.smooth-air.co.nz for most recent pricing

112c