5½ Digit Multimeters

NI 4050, NI 4060

- 5½-digits
- 5 measurement modes
- $\pm 300 \text{ VDC/V}_{rms}$ maximum
- 200 M maximum (2 and 4-wire)
- 60 readings/s maximum

Models

- NI PCMCIA-4050
- NI PCI-4060
- NI PXI-4060

Operating Systems

Windows 2000/NT/XP

Recommended Software

- LabVIEW
- LabWindows/CVI
- Measurement Studio

Other Compatible Software

- Visual Basic
- C/C++

Driver Software (included)

• NI-DMM

Calibration Certificate Included See page 21.

Overview

The NI 4050 and NI 4060 devices are full-featured digital multimeters (DMMs). They measure accurate 5½-digit DC voltage and current, True-rms AC voltage and current, and resistance measurements. The NI PCMCIA-4050, with its size, weight, and low-power consumption, is ideal for portable measurements and data logging with handheld and notebook computers. NI 4060 DMMs are perfectly suited for use in automated production test, portable field test, and benchtop electronic test. Using NI 4060 DMMs with National Instruments switching modules, such as PXI-2501, PXI-2503, SCXI-1127, SCXI-1128, or SCXI-1129, you can measure thousands of channels, consisting of voltages, thermocouples, RTDs, thermistors, and current loops, and keep a firm control on the cost of your system.

Hardware Reading Rates

NI 4050 and NI 4060 DMMs offer multiple reading rates determined by your resolution, function, range selections, and powerline rejection. The maximum reading rate is 60 reading/s, once the initial setup time affecting the first reading is passed. Please contact your National Instruments local sales representative for more information regarding measurement performance in your specific application.

Measuring Voltages

The NI 4050 and NI 4060 DMMs have five input ranges available for measuring DC voltages – 20 mV, 200 mV, 2 V, 25 V, and 250 V. Five input ranges are available for measuring AC voltages – 20 mV $_{\rm rms}$, 200 mV $_{\rm rms}$, 2 V $_{\rm rms}$, 25 V $_{\rm rms}$, and 250 V $_{\rm rms}$. The NI 4060 DMMs measure AC voltages to the specified accuracy as long as the voltage is within 10 percent of the selected input range. In AC voltage

ranges, the NI 4050 and NI 4060 DMMs measure the AC-coupled True-rms value of a signal.

Measuring Resistance

The NI 4050 and NI 4060 DMMs have five basic input ranges for both 2 and 4-wire (NI 4060 only) resistance measurements, and an extended range for 2-wire measurements. The basic ranges are 200 $\,$, 2 k $\,$, 20 k $\,$, 200 k $\,$, and 2 M $\,$. With extended range, measurements up to 200 M $\,$ are possible. The NI 4050 and NI 4060 DMMs use a common technique to measure resistance. The method involves sending a current through the test resistor and measuring the voltage drop across the resistor. In the extended ohms range, a 1 M $\,$ resistor is added in parallel with the test resistor.

Measuring Current

For the PCMCIA-4050, use the optional CSM current-shunt accessories to measure both AC and DC current. The CSM accessories include a precision resistor that converts the current through the shunt into a voltage measurable by the PCMCIA-4050. For measuring currents up to 200 mA or 10 A, use the CSM-200mA or the CSM-10A, respectively.

The NI 4060 DMMs have built-in current measurement capability. Two input ranges exist for DC and True-rms AC current measurements – 20 mA and 200 mA. For measuring currents between 200 mA and 10 A, use the CSM-10A accessory.

Diode Testing

The NI 4050 and NI 4060 DMMs measure the forward drop (up to 2 V) across a diode. The diode is biased with 100 μA current, and the resulting voltage drop is measured. Diode measurements are made with a fixed range of 2 V.

5½ Digit Multimeters

Calibration

The NI 4050 and NI 4060 DMMs are shipped with a calibration certificate stating that the instrument was calibrated to NIST-traceable standards to the levels detailed in the specifications. These DMMs can be returned to National Instruments or a qualified metrology lab for calibration.

Cables and Probes

The NI 4060 DMMs have built-in shrouded banana jacks to prevent exposure to potentially hazardous voltages on the test probes. The DMM kits include the P-1 Probe Set – two 1 m test leads (red and black) with test probes.

The P-2 Probe Set, sold separately, includes two 1 m test leads (red and black) with shrouded banana plugs on one end and a variety of optional terminals on the other – two alligator clips (red and black) with boots, two spring hooks (red and black), and two spade connectors (red and black).

The banana-plug-to-bare-wire kit is a pair of banana-to-bare wire plugs (one red, one black) that permits you to connect your DMM to screw terminals for channel expansion using matrices or scanners. To connect your NI 4060 to SCXI scanners and matrices, special cable kits are available (SCXI-1357 and SCXI-1358). Refer to page 498 for more information on switch cabling.

The probe sets meet IEC 1010 safety requirements and permit direct probing of circuits and cables.

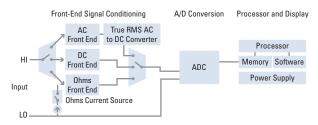


Figure 1. Fundamental DMM Architecture

Triggering for Switches (NI 4060 only)

The NI 4060 DMMs work with external multiplexer/matrix switches. In particular, the NI 4060 devices have been designed to integrate seamlessly with National Instruments switch offerings for SCXI and PXI. Two signals, Voltmeter Complete Trigger Output and Trigger Input, control the switches. Access to the signals is through two BNC connectors on the auxiliary trigger cable. On PXI, you can access the triggers through the PXI trigger bus.

Software

All National Instruments DMMs are shipped with NI-DMM driver software. NI-DMM is an IVI-compliant driver that provides access to the complete functionality of the DMM through an easy-to-use application programming interface. NI-DMM also includes the DMM Soft Front Panel (SFP). The DMM SFP is an interactive executable that provides an easy way to test input signals or debug your system. NI-DMM is optimized for use with NI LabVIEW, LabWindows/CVI, and Measurement Studio, as well as Microsoft Visual Basic and C/C++.

Ordering Information

NI PCMCIA-405077718	36-01
Includes the PCMCIA-4050 card, P4-BJ2 cable, P-1 probe set, NI-DMM, the	
DMM Soft Front Panel, and carrying case.	
NI PCI-406077755	9-01
NI PXI-406077755	4-01
Includes the NI 4060 hardware, P-1 probe set, NI-DMM, and the DMM	
Soft Front Panel.	

For information on extended warranty and value added services, see page 20.

Cables and Accessories

Cables and Accessories	
Standard probe, P-1 probe set	761000-01
Additional probe, P-2 probe set	184698-01
Banana plug to bare wire, P-3 probe set	
1 m, red and black (2 wires)	185692-01
Auxiliary trigger cable for use with external	
multiplexers 0.5 m	184931-0R5
10 A current shunt, CSM-10A	777488-02
Visit <i>ni.com</i> for a more complete list of cables and accessories.	

BUY ONLINE!

Visit ni.com/products and enter pxi4060, pci4060, or pcmcia4050.

5½ Digit Multimeters

Specifications - NI 4060 -

Specifications are guaranteed between 15 and 35 °C unless otherwise noted

DC Voltage (Accuracy % of Reading ± μV)

	24 Hour	90 Day	1 Year	Temperature Coefficient
Range	(25 °C ± 1 °C)	(25 °C ± 10 °C)	(25 °C ± 10 °C)	(% of Reading/°C + μ V/°C)
250 V1	0.0032% + 1.25 mV	0.021% + 1.25 mV	0.024% + 1.25 mV	0.0017% + 480 μV
25 V	0.0032% + 1 mV	0.021% + 1 mV	0.024% + 1 mV	0.0017% + 480 μV
2 V	0.0029% + 10 μV	0.014% + 10 μV	0.017% + 10 μV	0.0009% + 5 μV
200 mV	0.0029% + 6 μV	0.014% + 6 μV	0.017% + 6 µV	0.0009% + 1 μV
20 mV	0.0029% + 6 μV	0.014% + 6 μV	0.017% + 6 μV	0.0009% + 1 μV

¹Overrange capabilities to 300 V

Accuracy numbers are for 5½ digits with autozero on and include the effects of full-scale and zero-scale errors, temperature variation, linearity, and poise

Noise Rejection

NMRR	80 dB (10 Hz filter setting, 50/60 Hz powerline frequency ±1%)
DC ECMRR	140 dB (with a 1 kΩ imbalance in HI lead)
AC ECMR (50/60 Hz)	150 dB (with a 1 kΩ imbalance in HI lead)

Input Characteristics

DC Current (Accuracy % of Reading $\pm \mu A$)

	24 Hour	90 Day	1 Year	Temperature Coefficient
Range	(25 °C ± 1 °C)	(25 °C ± 10 °C)	(25 °C ± 10 °C)	(% of Reading/°C + μ V/°C)
20 mA ²	0.015% + 10 µA	0.039% + 10 μA	0.042% + 10 µA	0.0035%/°C + 1 μA/°C
200 mA ²	0.015% + 10 µA	0.039% + 10 μA	0.042% + 10 µA	0.0035%/°C + 1 μA/°C
10 A ²	0.11% + 1 mA	0.035% + 2 mA	0.035% + 2 mA	0.007%/°C + 0.1 mA/°C

²Requires 10 A shunt, CSM-10A

Accuracy numbers are for 5% digits with autozero on and include the effects of full-scale and zero-scale errors, temperature variation. linearity, and noise.

Input Characteristics

Input protection	Fuse F1 500 mA/250 V fast-fusin
Shunt resistor	1 Ω
B 1 1	

AC Voltage (Accuracy % of Reading ± mV)

	24 Hour	90 Day	1 Year	Temperature Coefficient
Range	(25 °C ± 1 °C)	(25 °C ± 10 °C)	(25 °C ± 10 °C)	(% of Reading/°C + μ V/°C)
250 V ³	0.6% + 250 mV	0.62% + 680 mV	0.62% + 680 mV	0.007% + 20 mV
25 V	0.16% + 30 mV	0.18% + 210 mV	0.18% + 210 mV	0.007% + 20 mV
2 V	0.28% + 3 mV	0.30% + 21 mV	0.30% + 21 mV	0.019% + 2 mV
200 mV	0.16% + 0.22 mV	0.18% + 1.20 mV	0.18% + 1.20 mV	0.007% + 0.110 mV
20 mV	0.28% + 100 µV	0.30% + 170 µV	0.30% + 170 μV	0.019% + 12 μV

3Overrange capabilities to 300 V

Accuracy numbers are for 5½ digits and include the effects of full-scale and zero-scale errors, temperature variation, linearity, and noise. Applies for sine waves ≥ 10% of input range. Accuracy may be affected by source impedance, cable capacitances, dielectric absorption, or slew rate.

Noise Rejection

Input Characteristics

Additional AC Errors

Frequency-dependent errors

Input Frequency	Additional Error (% of reading)
20 Hz - 50 Hz	2.5%
50 Hz - 100 Hz	0%
100 Hz - 20 kHz	1%
20 Hz - 25 kHz	2.5%

AC Current (Accuracy % of Reading ± mA)

	24 Hour	90 Day	1 Year	Temperature Coefficient
Range	(25 °C ± 1 °C)	(25 °C ± 10 °C)	(25 °C ± 10 °C)	(% of Reading/°C + μ V/°C)
20 mA ⁴	0.30% + 100 μA	0.32% + 170 μA	0.32% + 170 μA	0.022% + 12 μA
200 mA4	0.18% + 0.22 mA	0.20% + 1.2 mA	0.20% + 1.2 mA	0.009% + 0.110 mA
10 A4	0.3% + 22 mA	0.32% + 120 mA	0.32% + 120 mA	0.026% + 11 mA

4Requires 10 A shunt, CSM-10A

Accuracy numbers are for 5½ digits and include the effects of full-scale and zero-scale errors, temperature variation, linearity, and noise.

Input Characteristics

Input protection	Fuse F1 500 mA/250 V fast-fusing
Shunt resistor	1 Ω
Purden veltage	< 400 mV at 200 mA AC

Resistance (Accuracy % of Reading $\pm \Omega$)

Range	24 Hour (25 °C ± 1 °C)	90 Day (25 °C ± 10 °C)	1 Year (25 °C ± 10 °C)	Temperature Coefficient (% of Reading/°C + μV/°C)
Extended resistance	0.1% + 6 kΩ	0.1% + 60 kΩ	0.1% + 60 kΩ	0.0072% + 6 kΩ
$(> 2 M\Omega)$				
$2 \text{M}\Omega^5$	$0.012\% + 9 \Omega$	$0.077\% + 27 \Omega$	0.080% + 27 Ω	0.0072% + 2 Ω
200 kΩ	$0.012\% + 5 \Omega$	$0.077\% + 22 \Omega$	0.080% + 22 Ω	0.0072% + 2 Ω
20 kΩ	$0.006\% + 0.09 \Omega$	$0.024\% + 0.3 \Omega$	$0.027\% + 0.3 \Omega$	$0.0020\% + 0.02 \Omega$
2 kΩ	$0.006\% + 0.05 \Omega$	$0.024\% + 0.2 \Omega$	$0.027\% + 0.2 \Omega$	0.0020% + 0.02 Ω
200 Ω	$0.006\% + 0.05 \Omega$	$0.024\% + 0.2 \Omega$	$0.027\% + 0.2 \Omega$	$0.0020\% + 0.02 \Omega$

*With autozero on, or while scanning, and when large resistance with capacitive loads is measured, additional delay time is required. Accuracy numbers are for 4-wire resistance mode, 5% digits with autozero on and include the effects of full-scale and zero-scale errors, temperature variation, linearity, and noise.

Measurement modes

Resistance	2 or 4-wire
Extended ohms	2-wire only
Maximum lead resistance	10 Ω (200 Ω range), 1 k Ω (all other ranges)
dditional arror for 2 wire recistance	0.6.0

Diode Testing (Accuracy % of Reading ± μV)

	24 Hour	90 Day	1 Year	Temperature Coefficient
Range	(25 °C ± 1 °C)	(25 °C ± 10 °C)	(25 °C ± 10 °C)	(% of Reading/°C + μ V/°C)
2 V	0.006% + 7 μV	0.024% + 22 µV	0.027% + 22 μV	0.0020% + 2 μV

Accuracy numbers are for 5½ digits with autozero on and include the effects of full and zero-scale errors, temperature variation, linearity, and noise.

General Specifications

Settling time	Affected by source impedance and input signal changes.
Warm-up time	30 minutes for measurements accurate within specifications
Altitude	Up to 2,000 m; at higher altitudes the installation category
	must be derated.
Working voltage	300 V maximum between either input terminal and
	earth around

Power Requirement

+5 VDC	250 mA in operational mode
--------	----------------------------

Physical Dimensions

Differences				
PCI	10.8 by 17.5 cm (4.25 by 6.9 ir			
PXI	10 by 16 cm (3.9 by 6.33 in.)			

Environment

Operating temperature	0 to 55 °C
Storage temperature	-20 to 70 °C
Polotivo humidity	10 to 000/ papagandanain

Certifications and Compliances

CE Mark Compliance (€

The product meets applicable EU directives for CE Mark compliance as follows:

Safety compliance IEC1010-1 Certified, Designed for UL 3111

Low-Voltage Directive EN 61010-1, Installation Category II, Pollution Degree 2, Double Insulated, Indoor use.