Buss

Small Dimension FUSES

Fuseholders, Blocks,

and

Accessories

McGRAW EDISON

Buss

Contents by Section

1-How to Use This Bulletin	2
2-Product Indexes	3
2-1 Fuses By Symbol 2-2 Fuses By Electrical Characteristics 2-3 Fuses By Physical Characteristics 2-4 Fuseholders 2-5 Fuse Blocks	3 4 6 6
3-Fuseology	7
4-Fuses and Fuse Devices	9
4-1 Ferrule (By Size) 4-2 Lead-In and Pin 1 4-3 Varying Case Size 1 4-4 ATC Automotive 1 4-5 Pin Indicating 1 4-6 Special Fuses and Devices 1 Low Voltage Limiters 1 Communication Fuses 1 Direct Solder Type 1 Fuse & Holder Combinations 1 Stud Mounted 1 4-7 Semiconductor 1 4-8 Heat Limiters 1 4-9 Time-Current Characteristic Curves 2	13 14 15 15 16 17 18 19
5-Fuseholders 2	23
5-1 Panel Mounted General Types	25
6-Fuse Blocks	!9
6-1 General Types (By Size) 6-2 For Pin Indicating Fuses and Devices 6-3 For High E Instrument Type Fuses 6-4 For Types ANN and ANL Fuses 6-5 For Semiconductor Fuses 6-6 For Type SC Fuses	34 34 34 35
7-Fuse Clips	36

New Buss Products

Type MSL Single-Element, Spiral-Wound, Time-Delay	Page 37
PC Board (5mm × 20mm & 1/4" × 11/4")	page 38
Panel-Mounted (5mm × 20mm & 1/4" × 11/4")	page 39
Series 8000 (¼" × 1¼")	page 28
	PC Board (5mm × 20mm & ¼" × 1¼") Panel-Mounted (5mm × 20mm & ¼" × 1¼") Series 8000

How to Use this Bulletin

Locating and/or Selecting a Product

This Bulletin is organized so you can usually locate the product that meets your requirements by simply scanning the pages of the applicable Section. However, the following guide data may prove helpful.

You Know	Refer To
Product Symbol or Designation	"Index by Product Symbol" If that of another mfg., see BUSS Bulletin SF-2, "Cross Reference".
	If a military designation, see BUSS Bulletin "MIL".
Specific Electrical Requirements	"Fuse Index by Electrical Characteristics"
	"Fuseology" Section
Specific Mechanical Requirements	"Fuse Index by Physical Size"
Fuse Blocks or Holders	"Fuse Block Index" or "Fuseholder Index"
Can't Find	Contact your Bussmann Representative or Factory

Ordering Information (Catalog Numbers)

Almost all BUSS fuses and other component devices have a basic, designating symbol such as: "AGX". A complete catalog number consists of the "symbol" suffixed by the desired current rating in amperes. Thus, "AGX 25" is the specific catalog number for the AGX fuse with a 25 ampere rating.

Voltage Ratings

The given voltage of a fuse is the "maximum" voltage at which the fuse can be operated. A fuse can be operated at this maximum or any voltage less than maximum.

Dimensions

All dimensions shown are average. When dimensional tolerances are required for specification purposes, request blueprint. When tooling up for mounting holders, request latest blueprint.

Weights

Weights shown are approximate, and include weight of components in carton but not the shipping box.

UL Listina

Where Underwriters' Laboratories listing is shown, the fuse meets the requirements of one of the following standards: Fuses for supplementary protection in U.L. Standard No. 198.6, U.L. Standard 198.2, or the component is Recognized under the U.L. Component Program.

Military Specifications

Most BUSS Fuses and accessories are also available to meet the requirements of military specifications. For additional information, request BUSS Form MIL.

Index By Product Symbol

Sym-	Page	-	Page	_	Page	-	Page	-	Page
ool Eugag		bol KAW		bol-		<u>bol</u> HN		2839	
<u>Fuses</u> ABC	10	KAW	19 19	HAF-B	<u>27</u> 27	HPC	°HPF	2839 2841	3
ABS		KAZ	19	HAG-A HAG-B	27	HPC-C	HPF	2841	
ABU	°BAF,	KBC	19	HC HC	17	HPC-C		2891	3:
•	BAN	KLM	°KTK	HDH-A	27		HPF-C	2892	3:
\CF		KTK	11	HDH-B	27	HPC-D	25	2893	3
CH		KTK-R	11	HDI-A	27	HPC-K	°HPF	2894	3:
CK	18	KTQ	10	HDI-B	27	HPC-L		2895	3
CL	18	LKB		HDJ-A	27	HPD	24	2896	3
CO		LKC	16	HDJ-B	27	HPF	24	2897	3
CT	*	MBB	°AGC	HEB	27	HPF-C	24	2898	3
\FJ	18	МВО	*	HEC	27	HPF-L	25	2899	3
\FS	18	MBW	°AGC	HEG	27	HPF-EI	$\overline{}$	2917	3
\FX	18	MDA	10	HEH	27	HPF-FF		2918	3
\GA	9	MDC		HEJ	27	HPF-J.		2919	3
\GC	10	MDF		HET	27	HPF-RI		2920	3
GS	*	MDL	10	HEX	27	HPG	24	2960	3
\GU	11	MDM; N	ADR .	HFA	27	HPL-B	24	2961	3
\GW	9	MDQ	10	HFA-HH	27	HPM	24	2962	3
AGX	9	MDV	12	HGA	26	HPS	24	2963	3
NL	15	MDX	10		26	HPS-EI		2964	3
NN	19	MGB	10	HGB	26	HPS-FI		2965	3
ATC	14	MIC	14		26	HPS-J.		2966	3
3AF	11	MIN	14		26	HPS-L	24	2967	3
BAN	11	MIS	15		27	HPS-R		2968	3
BS	10	МЈВ	°AGX		27	HRE	26	3411	1
<u> </u>	17	MJW	°AGX		27	HRF	26	3433	
BP	18	MKB	9	HHI-B	27	HRG	26	3569	
MO1	12	MS		HHJ-A	27	HRH	26	3578	
NA.	14	MTH	10		27	HRI	26	3723	3
FNM	11	N	17	HIF-A	27	HRJ	26	3742	3
NQ	11	sc	13		27	HRK	27	3743	3
NW	11	SFE	13		27	HTA	23	3792	3
WP	18	TFA	19		27	HTA-D		3823	3
GBA	14	TFC	19		25	HTA-H		3828	2
BB	10	TFL	19		23	HTA-O		3833	3
GDA	9	WER	15			HWA	12		3
GFA	12	WKH	19			HWG	16	3839	3
GJU	°GMA	WKJ	19			Fuse		3845	
GJV	12	WKK	19		25	Bloc		3959	
GKB	16	WKL	19		25	2087	35		
GLD	14	WKU	19		25	2088	35		
GLH	10	WQL	19		25	2089	35		3
GLN	12	WTK	19		°HKP	_	35		
GLQ	17	WWE	19		23	2091	35		
GLR	17	WWX	19			2092	35	_	
GLX	12	WWZ	19				35		
GMA	9		°AGA				35		
SMF	17			HKR		2095		4393	
GMQ	17			HKT		2245		4396	
GMT		3AG		HKU	25	_		4399	
GMW	12			HKX		2430		4405	
GRF	17			HLD	25			4406	
HBO	18			HLD-H		2499		4407	
HSK		4AB		HLD-OC				4408	
HVA		4AG		HLQ	17			4421	
HVB	13			HLR	17			4439	
HVJ	13			HLT	16			4512	
HVL		5AG		HME	26		31		
HVR		7AG		HMF		2807		4520	
HVT		8AG		HMG	26		33	4525	
HVU		35 Seri		нмн		2809	33	4528	
HVX	13			нмі	26			4529	- (
HVW	13	Fuse-		нмј		2811		4530	;
KAA	19		ders	нмм	23		33		;
KAB	19	AF	12	HMR	23	2837	34	4574	3
KAC		HAF-A		HMS		2838	34		

"Refer to these units. *Older style device; not recommended for new design.

Fuse Index by Electrical Characteristics

Time-Delay Fuses — Slow Blowing

(Single Element Types For Circuits With Large Inrush Currents. For Larger Time Delay, See Dual-Element Fuses).

Volts	Ampere	Ampere Dimensions		Description	Sym-	Page
	Range	Inches	mm		bol	
500V	31/2 to 30	¹³ / ₃₂ x 1 ¹ / ₂	10.3 x 38.1	Fibre/ferrule; for motor control tranf's.	FNQ	11
300V	5 to 61/4			For HLR Holder	GMF	17
		_	_	For HLQ size	GMQ	17
				rejection holder		
	6 to 60	¹³ / ₃₂ D	10.3D	Melamine/ferrule;	SC	
		(Various Le	engths)	For branch circuits		13
250V	5 to 20	1/4 X 11/4	6.6 x 31.8	Ceramic/ferrule	MDA	10
	12 to 30	13/ ₃₂ x 11/ ₂	10.3 x 38.1	Melamine/ferrule for	FNW	11
				Control Circuits		
125V	7 to 10		_	For HLR holder	GRF	17
	25 to 30	1/4 × 11/4	6.6 x 31.8	Ceramic/ferrule	MDA	10

Dual-Element, Time-Delay Fuses — Slow Blowing,

(Two Elements: one for Short Circuits; one for Overload and Large Inrush Currents).

Volts	ts Ampere Dimensions		ns	Description	Sym-	Page
	Range	Inches	mm		boi	
500V	1/10 to 32/10	13/ ₃₂ x 11/ ₂	10.3 x 38.1	Tube/ferrule	FNQ	11
300V	1/100 to 4	_		For HLQ holder (size	GMQ	
				rejection)		17
		_		For HLR holder	GMF	17
250V	1/ ₁₀₀ to 11/ ₄	_		For HN holder	N	17
	1/ ₁₀₀ to 1	1/4 x 11/4	6.6 x 31.8	Glass/ferrule	MDL	10
				Glass/radial lead	MDV	12
	1/10 to 8/10	13/ ₃₂ x 11/ ₂	10.3 x 38.1	Fibre/ferrule;	FNA	14
				indicating		
	1/10 to 10			Fibre/ferrule	FNM	11
	11/4 to 2	1/4 X 11/4	6.6 x 31.8	Glass/ferrule	MDX	10
	1/ ₁₀₀ to 4			Ceramic/ferrule	MDA	10
125V	11/8 to 28/10			Glass/ferrule	MDL	10
	11/8 to 7			Glass/radial lead	MDV	10
	13/10 to 7	_		For HN holder	N	17
	1 to 15	_		Fibre/axial studs	ACK	18
		13/ ₃₂ x 11/ ₂	10.3 x 38.1	Fibre/ferrule Indicat-	FNA	
				ing pin		14
	21/2 to 7	1/4 to 11/4	6.6 x 31.8	Glass/ferrule	MDX	10
	12 to 15	13/ ₃₂ x 1 1/ ₂	10.3 x 38.1	Fibre/ferrule	FNM	11
	20 to 60	_	_	Fibre/axial studs	ACK	18
	30 to 120				ACL	18
32V	3 to 30	1/4 x 11/4	6.6 x 31.8	Glass/ferrule	MDL	10
	20 to 30	13/ ₃₂ x 11/ ₂	10.3 x 38.1	Fibre/ferrule;	FNA	14
				indicating		
				Fibre/ferrule	FNM	11
	20 to 150	13/ ₁₆ D	20.6D	Fibre/radial studs	HSK	18

Limiters — Low Voltage and Heat

Volts	Ampere Range	Inches	Description	Sym- bol	Page
32V	35 to 500		Low voltage for S.C. protection (battery power sources)	ANL	15
Various	15 to 30	Various	Heat Limiters: element and leaf types		

Devices for Indicating Only (Not for Circuit Protection)

Volts	Ampere Range	mpere Dimensions		Description	Sym-	Page
		Inches	mm		bol	
600V		¹³ / ₃₂ x 2 10.3 x 50	10.3 x 50.8	Melamine/ferrule; pin indicating; for use with 50A and larger fuses	KAZ	15

Non-Time Delay Fuses — Fast Acting

(For Overload And Short Circuit Protection In Primarily Resistive Load Circuits.

Volts	Ampere	Dimensions	5	Description	Sym-	Page
	Range	Inches	mm		bol	
1 kv to	$\frac{1}{16}$ to 5	Various	_	Fibre/ferrule; for	HV-	13
10 kv				high E instru-		
600V	1/ ₁₀ to 30	13/ ₃₂ x 1 ¹ / ₂	10.3 x 38.1	ments Melamine/ferrule;	KTK	11
000 4	/10 10 00	132 × 1 /2	10.5 x 56.1	200,000 A.I.C.	KIK	.,
	$\frac{1}{10}$ to 20			KTK with rejection	KTK-R	11
				feature		
	1/10 to 30			Military, KTK	KLM	11
	4/ ₁₀ to 5	13/ ₃₂ x 13/ ₈	10.3 x 34.9	Fibre/ferrule	BBS	10
	2 to 5			Mel./ferrule for	KTQ	10
				gas vapor fixtures		
	1 to 12	¹³ / ₃₂ x 2	10.3 x 50.8	Fibre/ferrule; indi-	MIS	15
2001/	1/ to 0	067 417/	0.000.1	cating pin	70	40
300V	1/10 to 8	.267 x 1 ¹⁷ / ₆₄	6.8 x 32.1	Glass/ferrule; indi-	70	16
				cating pin for tele- communications		
				or limited space		
	1/8 to 10			For HLQ holder	GLQ	17
	½ to 15			For HLR holder	GLR	17
	1 to 5	13/ ₃₂ x 15/ ₁₆	10.3 x 33.3	Mel./ferrule;	SC	13
	,,,,,	102 11 1 110		100,000A.I.C.		
	1 to 10	.267 x 1 ¹⁷ / ₆₄	6.8 x 32.1	Glass/ferrule; indi-	GKB	16
				cating pin; for tele-		
				communication or		
				limited space		
250V	1/ ₅₀₀ to 2	¹/₄ x 1	6.4 x 25.4	Glass/ferrule	AGX	9
	1/500 to 3	1/4 x 11/4	6.4 x 31.8	Glass/ferrule	AGC	10
	1/32 to 10	_		For HC holder	C	17
	1/ ₁₆ Or 1/ ₈	1/4 × 11/4	6.4 x 31.8	Glass/ferrule; low	MGB	10
		1/4	0.405.4	resistance	MAKE	
	1/ ₁₆ to 7	1/ ₄ x 1 1/ ₄ x 1 ¹ / ₄	6.4 x 25.4 6.4 x 31.8	Glass/radial lead	MKB GJV	9 12
	¹ / ₄ to 20	74 X 174	0.4 X 31.0	Ceramic/ferrule	ABC	10
	4 to 6			Glass/ferrule	MTH	10
	¹ / ₄ to 35	9/ ₁₆ D	14.3D	Fibre/Axial studs	AFJ	18
	1 to 4	13/32 X 11/2	10.3 x 38.1	Glass/ferrule	AGU	11
	1/8 to 10	_	5 x 20		GMA	9
	1 to 15	13/ ₃₂ x 11/ ₂	10.3 x 38.1	Laminated/ferrule	BAF	11
				Fibre/ferrule; indi-	MIC	14
				cating pin		
					MIN	14
	1 to 30	13/ ₃₂ x 11/ ₂	10.3 x 38.1	Fibre/ferrule	BAN	11
	2 to 60	13/ ₁₆ D	_20.6D	Axial studs	AFS	18
160	40 to 200	11/ ₁₆ D	27.0D	"Crasshammer":	AFX	18
or	1/4 to 5	_	_	"Grasshopper";	35	15
90V				flat body; spring indicating		
125V	¹⁵ / ₁₀₀ to 5	.145 x .300	3.7 x 7.6	Glass/radial lead	GLX	12
1257	1/ ₂₀₀ to 4/ ₁₀	. 145 X .300	3.7 X 7.0	Giass/radial lead	GLN	12
	¹ / ₂₀₀ to 5			Glass/axial lead	GFA	12
	/200 10 0	.270 x .250	6.9 x 6.4	Pin type for HWA	GMW	12
		.270 X .200	0.5 X 0.4	base	Cities	
	1/4 to 4	3/16 X 5/8	4.8 x 15.9	Axial lead for small	LKB	16
				components		
	3/4 to 5	1/4 to 11/4	6.4 x 31.8	Fibre/ferrule; indi-	GBA	14
				cating pin	GLD	14
	1/ ₁₆ to 11/ ₂	1/4 X 5/8	6.4 x 15.9	Glass/ferrule	AGA	9
	3 to 5	1/4 X 1	6.4 x 25.4		AGX	9
	5 to 8	³ / ₁₆ x ⁵ / ₈	4.8 x 15.9	Flat; axial for small	LKC	16
	¹⁸ / ₁₀₀ to 10			components	GMT	16
	7100 10 10			For HLT holder; indicating for tele-	GIVI I	16
				communications		
	7 to 10	1/4 x 11/4	6.4 x 31.8	Glass/ferrule	GLH	10
	20 to 30	13/ ₃₂ x 1 ¹ / ₂	10.3 x 38.1	Laminated/ferrule	BAF	11
	••			Fibre/ferrule; indi-	MIN	14
				cating pin		
			~~.			
	25 to 30	1/4 x 11/4	6.4 x 31.8	Ceramic/ferrule	ABC	10

Volts	Ampere	mpere Dimensions		Description	Sym-	Page
	Range	Inches	mm		bol	
32V 2 2 4 5 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1/4 to 10	_		Flatbody; slotted	WER	15
	21/2 to 30	1/4 X 7/8	6.4 x 22.2		AGW	9
	4 to 30	1/4 x 11/4	6.4 x 31.8	Glass/ferrule	AGC	10
		1/4 D	6.4D		SFE	13
	5 to 30	13/ ₃₂ x 11/ ₂	10.3 x 38.1		AGU	11
	6 to 15	1/4 x 11/4	6.4 x 31.8	Fibre/ferrule; indicating pin	GBA	14
	6 to 30	-			GLD	14
	7 to 15	.145 x .300	3.7 x 7.6	Glass/axial lead	GFA	12
					GLN	12
	8 to 30	1/4 X 1	6.4 x 25.4	Glass/ferrule	AGX	9
	8 to 150	13/ ₁₆ D	20.6D	Radial studs	НВО	18
	20 to 30	¹³ / ₃₂ x 1 ¹ / ₂	10.3 x 38.1	Fibre/ferrule; indi- cating pin	MIC	14

Very Fast Acting Fuses

(For Protection of Semiconductors and Other Low Withstand Components; Have High Degree of Current Limiting and High Interrupting Rating)

Volts	Ampere	Dimensions	Dimensions		Sym-	Page
	Range	Inches	mm		bol	
700V	15 to 30	⁹ / ₁₆ x 2	14.3 x 50.8	Ceramic/ferrule	FBP	18
					FWP	18
600V	1 to 30	9/16D	14.3D	Melamine/studs	KAC	19
		¹³ / ₁₆ x 5	4.8 x 127	Melamine/ferrule	KBC	19
250V	1/2 to 30	9/ ₁₆ x 2	14.3 x 50.8	Melamine/ferrule	KAB	19
					KAX	19
130V	1/2 to 30	13/ ₃₂ x 1 ¹ / ₂	10.3 x 38.1	Melamine/ferrule	KAA	19
					KAW	19
	10 to 800	_		Flatbody; slotted	ANN	19
				terminals		
60V	1 to 30	1/4 x 11/4	6.4 x 31.8	Ceramic/ferrule	GBB	10

Fuse Index By Physical Size

Ferrule Types

(Common Fuseholder or Block Mounting)

Dimension	าร	Tube	Sym-	Туре	Page
Inches	mm		bol		
	5 x 20	Glass	GMA	Non-Delay	9
1/4 X 5/8	6.4 x 15.9		AGA		9
1/4 X 7/8	6.4 x 22.2		AGW		9
¹ / ₄ x 1	6.4 x 25.4		AGX,		9
			MKB		9
1/4 X 11/4	6.4 x 31.8		AGC,		10
			GLH		10
1/4 × 11/4	6.4 x 31.8	Ceramic	ABC	Non-Delay	10
			GBB	Very Fast	10
		Glass	MGB,	Non-Delay	10
			MTH		10
		Ceramic	MDA	Dual-element or	10
				Time-delay	
		Glass	MDL,	Dual-element	10
			MDX		10
			TFA	Heat Limiter	19
13/ ₃₂ x 13/ ₈	10.3 x 34.9	Fibre	BBS,	Non-delay	10
			KTQ		10
13/ ₃₂ x 11/ ₂	10.3 x 38.1	Glass	AGU		11
		Laminated/Fibre	BAF,		11
			BAN		11
		Melamine	KTK,		11
			KTK-R		11
			KAA,	Very Fast	19
			KAW		19
		Fibre/Melamine	FNQ,	Dual-element or	11
			FNW	Time-delay	11
		Fibre	FNM	Dual-element	11

Dimensions		Tube	Sym-	Туре	Page
Inches	mm		bol		_
⁹ / ₁₆ x 2	14.3 x 50.8	Ceramic	FBP,	Very Fast	18
			FWP	•	18
		Melamine	KAB,	-	19
			KAX		19
¹³ / ₁₆ x 5	20.6 x 127	Melamine	KBC	-	19

Pigtail or Pin Types

Dimensions		Tube Mounting		Sym-	Туре	Page
Inches	mm			bol		
.145 x .300	3.7 x 7.6	Glass	Lead-in/Solder	GFA,	Non-delay	12
				GLN,		12
				GLX		12
1/4 X 11/4	6.4 x 31.8			GJV		12
				MDV	Dual-element	12
				TFL,	Heat Limiter	19
				TFS		
.270 x .250	6.9 x 6.6	Ceramic	Pin/Base	GMW	Non-delay	12
5/8 X 3/16	15.9 x 4.8	Phenolic	Lead-in/Solder	LKB,	Non-delay	16
				LKC		16

Varying-Size Types (For Replacement Protection)

Dimensions	mm	Tube	Sym- bol	Туре	Page
Fuse/Holder		Glass	GLQ,	Non-delay	17
			GLR		17
Fuse/Holder		Glass	GMF,	Dual-element	- 17
			GMQ,		17
			GRF		17
1/4D	6.4D	Glass	SFE	Non-delay	13
13/32 to 21/4D	10.3 to 57.2D	Melamine	SC	Time-delay	13
13/32 to 13/16D	10.3 to 20.6D	Fibre	HV Series	Non-delay	13
Bolted Terminals		Melamine	KAC	Very Fast	19

* Special Connection/Construction Types

(For Telecommunication, Computer, Aircraft And Other Equipment With Special Space Requirements).

Construction	Connection/ Mounting	Туре	Symbol	Page
Flat, Open Link	Slotted Screws	Non-delay	WER	15
Flat	Slotted/4164 Holder	Non-delay Limiter	ANL	15
Tubular	Slotted/Stud Mounted	Non-delay	AFJ, AFS, AFX, HBO	18
		Dual-element	ACK, ACL, HSK	18
	HC Holder	Non-delay	C	17
_	HN Holder	Dual-element	N	17
.267" x 1 ⁵³ / ₆₄ "	Ferrule/HWG	Non-delay	GKB	16
Glass Tube (6.8mm x 46.4mm)	Holder		Series 70	16
Special	Special HLT Holder	Non-delay	GMT	16
Vary/Flat (Grasshopper)	Slotted/Screws	Non-delay	Series 35	15
Leaf	Spade/Screws	Heat Limiter	WKJ, WKK, WKH, WTK, WQL	19
	Hole/Screws	Heat Limiter	WKL, WWX, WWZ	19

^{*}Types ANL and WER are visual indicating; Series 70 and Type GKB are pin indicating; Type GMT and Series 35 are spring indicating.

Indicating Types

(Visual Indication Or Contact For Closing a Separate Alert Circuit. Fibre Tube: Ferrule).

ons	Indicating/	Туре	Sym-	Page
mm	Mounting		bol	
6.6 x 31.8	Silver Pin/HKA	Non-Delay	GLD	14
	Holder; Signal Block	_		
	Red Pin/HLD Holder	Non-Delay	GBA	14
10.3 x 38.1	Red Pin/HPC-C Holder	Non-Delay	MIN	14
	Silver Pin/HPF-C	Non-Delay	MIC	14
	Holder; Signal Block			
	Silver Pin/HPF-C	Dual-element	FNA	14
	Holder; Signal Block			
10.3 x 50.8	Pin/Signal Block	_	KAZ	15
	Pin/Signal Block	Non-Delay	MIS	15
	mm 6.6 x 31.8 10.3 x 38.1	mm Mounting 6.6 x 31.8 Silver Pin/HKA Holder; Signal Block Red Pin/HLD Holder 10.3 x 38.1 Red Pin/HPC-C Holder Silver Pin/HPF-C Holder; Signal Block Silver Pin/HPF-C Holder; Signal Block 10.3 x 50.8 Pin/Signal Block	mm Mounting 6.6 x 31.8 Silver Pin/HKA Holder; Signal Block Red Pin/HLD Holder Non-Delay Non-Delay 10.3 x 38.1 Red Pin/HPC-C Holder Silver Pin/HPF-C Holder; Signal Block Silver Pin/HPF-C Holder; Signal Block Non-Delay Dual-element Dual-element 10.3 x 50.8 Pin/Signal Block —	mm Mounting bol 6.6 x 31.8 Silver Pin/HKA Holder; Signal Block Red Pin/HLD Holder Non-Delay GLD 10.3 x 38.1 Red Pin/HLD Holder Silver Pin/HPF-C Holder; Signal Block Silver Pin/HPF-C Holder; Signal Block Non-Delay MIN 10.3 x 50.8 Pin/Signal Block Dual-element FNA 10.3 x 50.8 Pin/Signal Block — KAZ

Fuse			Fusehold				
Size	Size Symbol		Symbol Amps Volts		Volts	Features	Page
Panel Mo	unted	Тур	es, Lamp	Indicati	ng		
13/ ₃₂ " x 11/ ₂ " (10.3mm x 39.1mm)	BAN	FNM KAA	1	30	90 to 500	Neon/Clear	26

^{*}Holders with flatsided knob; all other lamp indicating type have octagonal knobs. $\dagger 1/_{10}$ amp to 10 amp.

Panel Mounted or In-The-Line Type Assembly (Includes SFE

Fuses and Wire Lead Loop)

Fuse		Fusehol	der		
Size	Symbol	Symbol	Amps	Volts	Page
1/4" x 5/8"	SFE4, AGA	HMF,	15	32	26
(6.4 x 15.9)		HRF			26
1/4" X 3/4"	SFE6	HMG,			26
(6.4 x 19.0)		HRG			26
1/4" x 7/8"	SFE71/2, AGW	HME,			26
(6.4 x 22.2)		HRE			26
1/4" x 1	SFE9, AGX, MKB	нмн,			26
(6.4 x 25.4)		HRH			26
1/4" X 11/16"	SFE14	HMI,			26
(6.4 x 29.4)		HRI			26
1/4" × 11/4"	SFE20, ABC, AGC,	HMJ,			26
(6.4 x 31.8)	GBB, GLH, MDA, MDL, MDX, MGB, MTH	HRJ			26

Panel Mounted Types, Lamp Indicating In-The-Line Universal Type

1/4" X 5/8"	ABC, AGA, AGC, AGW,
thru 11/4"	AGX, GBB, GLH, MDA,
(6.4 x 15.9	MDL, MDX, MGB, MKB,
thru 31.8)	MTH, SFE4, SFE6,
•	SFE71/2, SFE9, SFE14,
	SEE20

*Note-millimeters shown in ()'s.

		SFE20				
	In-The-Line	e Waterproof Type	·			
	1/4" x 11/4"	ABC, AGC, GBB, GLH,	HFA,	20	250	27
	(6.4 x 31.8)	MDA, MDL, MDX, MGB,	HFA-HH			27
		MTH, SFE20				
	In-The-Line	e Waterproof Type (Tr	ons)			
	13/32" x 11/2"	AGU, BAF, BAN, FNM,	HEB,	30	600	27
	(10.3 x 38.1)	FNQ, KAA, KAW, KLM,	HET			27
		KTK	HEX			27
	13/32" X 15/8"	SC30	HEC		300	27
1	(10.3 x 41.3)					
	13/32" X 15/16"	SCO to SC15	HEG	15	300	27
	(10.3 x 33.3)					
	13/32" x 113/32"	SC20	HEH	20	300	27
	(10.3 x 35.7)					
	13/32" x 21/4"	SC35 to SC60	HEJ	60	300	27
	(10.3 x 57.2)	HVW1/2 to HVW6		6	1200	

Panel Mounted Or In-The-Line Type With Wire Contacts Only

Same basic holder as above but without lead wires and fuses. Available with various size wire contacts and metal or phenolic holding ears.

6

Notes on Mechanical Aspects of Small Dimension Fuses and Devices

Construction: The most common construction is the tubular body with ferrule terminals; they can be mounted in holders or blocks for easy access. Most of the other types accommodate applications with more space limitations.

Physical Size: The most common physical sizes in the United States are the 1 /₄ x 1 /₄ (6.6mm x 31.8mm) and the 1 /₃/₂ x 1 /₂ (10.3mm x 38.1mm) (the latter often called "midget fuse"). Dimensions are listed as the diameter of the ferrule and the overall length. Other sizes can accommodate space limitations or control interchangeability.

Tubular Material: Glass, Fibre (includes laminated and bakelite), melamine and ceramic are typical materials used, and are listed primarily for differentiation of types. Glass, of course, provides an inherent visual indication of the fuse condition. (The materials are chosen to meet the electrical characteristics).

Fuse Block Index

Fuse or D	evice	Block Numbers	Page	
Size	Symbol			
For Comm	non Ferrule Type Fuse	s and Devices		
1/4" x 1"	AGX, MKB	2698, 3828, 3992, 4393,	29	
(6.6mm x		4399, 4520		
25.4mm)				
1/4" x 11/4"	ABC, AGC, GBB, GLH,	2245, 2430, 2499, 2480,	30~31	
(6.6mm x	MBO, MDA, MDL, MDX,	2799, 2839, 2841, 3823,		
31.8mm)	MGB, MTH, TFA, GLD,	3833, 3998, 4161-FR,		
	GBA	4396, 4405, 4406, 4407,		
		4408, 4512, 4574		
¹³ / ₃₂ " x 1 ³ / ₈ "	BBS, KTQ	3845	32	
(10.3mm x				
34.9mm)				
13/32" x 11/2"		2807, 2808, 2809, 2810,	33	
(10.3mm x		2811, 2812, 3742, 3743,		
38.1mm)	0 to 30, KLM, KTK,	3792, 3835, 4421, 4439,		
	FNA, MIC, MIN	4515, 4525		
	ocks for Pin-Indicating	g Fuses and Devices		
13/32" x 11/2"	FNA, MIC, MIN	3839	34	
(10.3mm x				
38.1mm)				
13/ ₃₂ " x 2"	KAZ, MIS	2778, 2788-3	34	
(10.3mm x		2837, 2838		
50.8mm)				
For Spec		nstruction Fuses and Devic	es	
	ACK	2653, 4228, 3411, 2322,	18	
		3569, 3578		
	ACL	4228, 3433	18	
	AFJ, AFX, AFX, HBO,	4228, 3411, 2322, 4202,	18	
	HSK	4202	_	
	ANL, ANN	4164	34	
	HV-	4528, 4529, 4530, 2960,	34	
		4528, 4529, 4530, 2960		
For Semi	conductor Fuses (0 to			
	KAB or KAX	4386, 4287, 3959	35	
	KAA or KAW	4515, 4525, 4535	35	
For Type	SC Fuses			
	SC1 to SC60	(See detail data)		

Fuseholder Index

Fuse		Fusehold	ier			
Size	Symbol	Symbol	Amps	Volts	Features	Page
Panel Mou	nted (Ge					
¹/₄ ″ x 1 ″		НЈМ	30	125	Bayonet Knob	
(6.4mm x						23
25.4mm)	AGX,	HJM-CC			Bayonet Knob	
	MKB				(Short)	23
		HJM-00	00	050	Snap-Lock	23
1/4" X 11/4"		HMS	30	250	RF Shielded	23
	ABC	HKP-CC	30	250	Bayonet Knob	23
(6.4mm x	GBB	HKP-CC			Bayonet Knob (Short)	23
31.8mm)	MDA	HKP-00	15		Snap-Lock	23
	MDX	HMM	13		Slot Knob	23
	MTH	HMR	30		RF Shielded	23
	AGC	HTA	15		Space Saver	23
	GLH	HTA-DD	.5		3/16 Quick Connect	23
	MDL.	HTA-HH			1/4" Quick Connect	23
	MGB	HTA-00			Snap-Lock	23
¹³ / ₃₂ " x 1 ⁵ / ₁₆ "	SC1	HPF-EE	15	300	Bayonet Knob	24
(10.3mm x	to 15	HPS-EE	.0	000	Screw Knob	24
33.3mm)						
13/32" x 13/8"	BBS	HPS-L	5	600	Bayonet Knob	24
(10.3mm x	KTQ				y	
34.9mm)	_					
13/ ₃₂ " x 113/ ₃₂ "	SC20	HPF-JJ	20	300	Bayonet Knob	24
(10.3mm x		HPS-JJ			Screw Knob	24
35.7mm)						
13/ ₃₂ " x 11/ ₂ "	AGU	HPF	30	600	Screw Knob	24
(10.3mm x	BAN	HPC-D			Waterproof	25 .
38.1mm)	FNQ					
•	KAW	HPD			Short; 1/2" KO	24
	BAF	HPG			1/2" KO	24
	FNM	HPL-B			Solder Type	24
	KAA	HPM			Quick-Connect	24
	KTK	HPS			Bayonet Knob	24
	KTK-R	HPS-RR	20		Bayonet Knob	24
13/ ₃₂ " x 15/ ₈ "	SC21	HPF-RR	30	300	Screw Knob	24
(10.3 x 41.3)	to 30	HPS-FF			Bayonet Knob	24
Panel Mou	nted Witl	n Transpar	ent Kno	bs for Pi	in-Indicating Fus	es
1/4" x 11/4"	GBA	HLD	15	250	Bayonet Knob	25
(6.4mm x	³/4" to 15					
31.8mm)	GLD	HLD-HH			Quick-Connect	25
	3/4" to 15	HLD-00			Snap-Lock	23
13/ ₃₂ " x 11/ ₂ "	†FNA	HPF-C	15	250	Screw Knob	25
(10.3 x 39.1)	MIC					
	MIN					
Panel Mou	nted Typ	es, Lamp I	ndicati	ng		
1/4" x 1"	AGX	HJL	20	90 to	Neon/Clear	
(6.4 x 25.4)	MKB			250	•	25
1/4" x 1 1/4"	ARC	HGA	30	90 to	Neon/Clear	
(6.4mm x	ABC GBB			250		26
31.8mm)	MDA	*HGA-C			Neon/Clear	26
	MDX	*HGB-C			Incand/Clear	26
	MTH	HKL	20		Neon/Clear	25
	AGC	*HKL-X		00: 55	Neon/Clear	25
	GLH	HKR	20	22 to 33	Incand/Amber	25
	MDL	HKT		13 to 22	Incand/Amber	25
	MGB	HKU		4 to 6	Incand/Red	25
		*HKX		22 to 33	Incand/Amber	25
	GLD	HKA		125	Neon/Amber	25
		HKA-W	20	00.4-	Noon/Olaar	25
		HGB	30	90 to	Neon/Clear	26
				250		

Fuseology

Introduction

A fuse is an overcurrent protective device used to protect equipment. It derives its name from the verb "fuse," meaning "to melt." A fuse is a current-responsive device, and it is placed in series with the electrical circuit it is intended to protect. When the current in the circuit exceeds its rated value, the current-carrying element in the fuse melts and opens the circuit. Although the function of the fuse is elementary, a thorough understanding of fuse characteristics and circuit overcurrent condition is necessary to specify the appropriate fuse.

Fuses have been in existence almost from the inception of electricity. Ever since their early existence, fuses have been found to be the most effective and reliable overcurrent protective device. Their simple operating principle and no need for maintenance mean dependable protection. And as time progresses newer and better fuses continually evolve due to advances in technology.

Need for Overcurrent Protection

The opening of a fuse signifies that something is wrong with the circuit and should be corrected before the current is turned back on. The problem can be a defective or worn-out component, an accident, or a natural cause. When a problem exists and the fuse is called upon to open, the device should isolate only the faulty circuit from other unaffected circuits and it should respond in time to protect unaffected components in the faulty circuit. To properly protect a circuit, three considerations are necessary in the selection of a fuse:

- **1.** During normal circuit operation, the fuse should not open unnecessarily.
- 2. The fuse must protect itself and the circuit components over the full range of overcurrent conditions—from overload to short-circuit
- 3. Only the nearest fuse on the line-side of the fault should open.

History of Fuses

The earliest fuse was no more than a bare wire stretched between two studs. The wire had a smaller cross-sectional area than the conductor it was protecting and hence, would melt out first. Some "open-link" types exist today, but are limited only to circuits with very low short-circuit energy release. After changing from copper to other lower temperature metals, tubes or enclosures were developed to contain the fusing metal. The enclosed fuse made possible the adding of a filler material to help quench the arc

Many very low power applications, such as in automotive and electronic use, do not require the filler. The use of a glass enclosure gives the added advantage of seeing when a fuse is open. An early system of "AG" sizes, from "Automotive Glass" Fuses, was developed. Because this nomenclature persists today, a cross-reference is given in the **Fuse Index by Symbol** on page 3. The "5AG" size is sometimes referred to as "midget" fuses; this term is also cross-referenced for those familiar with it.

In addition to the many older designed fuses still available today, many new modern fuses are being developed to meet the new demands. The "small dimension" fuse is no longer only for electronic and automotive applications; many are now used in control

circuits, branch circuits, supplementary protection and some applications for power and lighting.

Electrical Operation of a Fuse

There are two conditions to consider: normal circuit conditions and overcurrent circuit conditions. During normal circuit conditions, the fuse must carry the normal load current of the circuit; therefore, the current rating and the fusing characteristic in the momentary overload region must be considered to avoid unnecessary fuse opening. During overcurrent circuit conditions, the fuse must interrupt the overcurrent, limit the energy let-thru, and withstand the voltage across the fuse during arcing and after it opens. Therefore the voltage rating, interrupting rating, and the fusing characteristic over the full range must be considered for proper fuse selection and to protect the components in the faulty circuit.

Current Rating

The current rating of a fuse is a nominal value expressed in amperes (rms) and is established by the manufacturer as a value of current to which the fuse is rated based on a controlled set of test conditions set forth in Underwriters' Laboratories Standards or by other procedures. The current rating is always on the fuse.

Voltage Rating

The voltage rating is not a measure of its ability to withstand a specified voltage while carrying current. Rather, the voltage rating is the ability of the fuse to quickly extinguish the arc after the fuse element has melted and to prevent the system open-circuit voltage from restriking across the open fuse element. Because of the manner in which the voltage rating is applied, it is a maximum rms voltage value and expressed in **volts, or less.** For example, a 300 volt fuse will safely clear 300, 250, 125 or any value under 300 system volts across the open fuse element.

Overload Fusing Characteristics

The overload fusing characteristic is the relationship of the value of current through the fuse and the time required for the fuse to open or clear. The overload fusing characteristic can range widely in speed depending upon the fusible link material, construction of the fusible elements, and other design parameters.

For ease in selection, the fuses in this publication have been broadly classified into four major overload fusing characteristics.

- 1. Time-delay fuse (slow blowing). As used in this publication, means the fuse has a built-in delay in the overload region. Time delay slows down the opening time in the overload region. Time-delay fuses are widely used for general purpose circuits and especially suitable for loads with surge or starting currents.
- 2. Dual-element, time-delay fuse (slow blowing). These fuses have two separate fusible elements in series within the fuse case. This feature enables these types to have a very long time-delay in the overload region. Widely used for general purpose circuits and especially well suited for loads with starting inrush currents such as motors, solenoids, and transformers.
- **3. Non-time-delay (or non delay).** These types have little intentional delay in the overload region. Typically used where fast speed of response is needed or where time-delay is unnecessary. Often sized for short-circuit protection only.
- **4. Very fast-acting fuse.** These types of fuses have little or no intentional delay in the overload region, and are extremely current-limiting. Typically used for protection of semiconductor devices.

8

Small Dimension Fuses, Fuseholders, Fuse Blocks, and Accessories

5. Limiters. There are two types of limiters presented in this publication. Limiters for short-circuit protection are distinguished from fuses by their intended purpose of providing only short-circuit protection for a component or circuit. Short-circuit limiters are not designed to provide overload protection. Heat limiters are for opening an electrical circuit when surrounding temperatures attain hazardous levels. Heat limiters are not intended for overcurrent protection.

For either time-delay fuses or dual-element, time-delay fuses, the amount of time-delay that can be achieved is determined by the mass of heat sink built-in which is increasingly restrictive as the fuse size diminishes.

Selecting a Fuse

- **1. Current Rating.** The ampere rating of fuse selected is dependent upon:
 - a. Degree of protection desired.
 - 1. Overload and short-circuit protection. Generally, select fuse ampere rating at 125% of the full load amperes.
 - 2. Short-circuit protection only. Select fuse ampere rating at 150% to 300% of equipment or circuit rating.
 - **b.** Ambient temperature affects the current carrying capacity of fuses. Refer to page 20 for fuse ampere rerating for ambient temperature effects.
- 2. **Voltage Rating.** For general circuit protection, the voltage rating of the fuse should be equal to, or greater than the voltage of the circuit in which the fuse is applied.
- **3. Time Current Characteristics.** The fuse time current characteristic should be compatible with the time-current characteristic of the load and the time current characteristic of the circuit components to be protected.
 - **a.** Select a dual-element, time-delay or time-delay fuse where high inrush or starting loads are present as with motors, solenoids, or control transformers. (Usually sized at 125% of full load amperes.)
 - **b.** Select non-time-delay fuses for resistive currents or other currents where no transients or surges are encountered. (Usually sized at 125% of full load amperes.)
 - **c.** Select a limiter or non-time-delay fuse where short-circuit protection only is required. (Usually sized at 150% to 300% of circuit ampere rating.)
 - **d.** Select very fast-acting fuses to protect very low energy withstand components, such as semi-conductors.
 - **e.** Test the selected fuse in the intended circuit under all normal circuit conditions that may include transient, inrush, or any other non-steady-state currents.

U.L. Test Requirements

Fuses marked as being "UL Listed" (Underwriters Laboratories Listed) in this bulletin are tested to the requirements of that organization. Tests consist of both ampere rating and short circuit tests.

The ampere rating tests are conducted at 110, 135 and 200% of rated current.

The fuse must carry 110% of its ampere rating until temperatures measured on its tube and terminals level off and do not continue to rise. This usually takes between 1½ and 4 hours. These temperatures are not allowed to exceed a 50°C rise. The tests are performed in a circuit specified in Underwriters Laboratories Standards UL 198.6 and 198.2.

In addition, the fuses must open at 135% of rated current within one hour, and open at 200% of rated current within 2 minutes. If the fuse is designated as "dual-element" or "time-delay," the fuse has an additional requirement to open in not less than 12 seconds at 200% of rated current.

The short circuit tests are performed at the rated voltage of a fuse which can be 125, 250, 300, 500 or 600 volts. The available short circuit current is 10,000 amperes AC, with the exception of some 250 volt fuses. 250 volt fuses can have short circuit ratings of 10,000 amperes or can adhere to the following schedule:

Ampere Rating of Fuse	Short Circuit Current	
0 to 1	35	
1.1 to 3.5	100	
3.6 to 10	200	
10.1 to 15	750	
15.1 to 30	1500	

Some fuses are shown as being "UL Recognized under the Components Program." This UL recognition is different from the above described listing in that the fuse has certain characteristics which are different from those described in UL 198.6. In this case, Underwriters Laboratories and the manufacturer agree on a test program designed to measure these characteristics and satisfy the requirements of the UL Safety Requirements. In some cases, the fuse may be designed to carry currents other than 110% of rated current or it may open at currents other than at 135% of rated current. Also, the short circuit rating might be different from those shown above.

Ferrule Fuses

0.197" x 0.769" (5mm x 20mm)

- For miniture circuits in foreign equipment.
- Non-Time-Delay Type GMA.
- Glass tube (visual indicating).
- Type GJU now called GMA.

GMA		GMA		GMA	
Amps	Voits	Amps	Volts	Amps	Voits
1/32		6/10		3	
1/20		7/10		1/2	
1/16		3/4		4	250
1/10		8/10		5	
1/8	050	1	050	6	
² / ₁₀	250	12/10	250	7	
1/4		16/10		8	125
3/10		11/2		10	123
4/10		2		15	
1/2		21/2			

Carton quantity: 5. Shelf package: 100. Shipping wt. per 100: 0.69 lbs. (313g).

Test	Test Specifications					
Load	Opening Time					
100%	4 Hours (min.)					
200%	10 Seconds (max.)					

5mm × 20mm $(0.205'' \times 0.787'')$

- •Types GDA, GDB and GDC are 250 volt miniature fuses for foreign equipment. Meet IEC* specification 127; covered by SEMKO 104 approval and CEE 4 certification.
- •Types GDA and GDB—quick-acting; Type GDC-time-lag for circuits with surge

currents.
(*Except GDA 315mA and 400mA.)

Symbol	Туре	*I.R.	IEC 127 Sheet	Ampere Ratings
GDA	Quick-	1500A	1	50mA-6.3A
GDB	Acting	†35A	2	32mA-10A
GDC	Time-	†35A	3	32mA-6.3A

*I.R.—Interrupting rating (breaking capacity) at 250 volts. †Interrupting rating is 35A or ten times current rating of fuse whichever is larger.

Ampere Ratings

Milliamperes: 32, and 40, (GDB and GDC only); 50, 63, 80, 100, 125, 160, 200, 250, 315, 400, 500, 630, and 800. *Amperes*: 1, 1.25, 1.6, 2, 2.5, 3.15, 4, 5 and 6.3. (8A and 10A, GDB only-not covered by SEMKO approval and IEC specifications).

1/4" x 5/8" (6.35mm x 15.9mm)

- · For mounting in in-the-line holders HMF, HRF, HAF, HIF, and HRK or 1/4" clips.
- Non-Time-Delay, Type AGA.
- · For electronic and small appliance circuits.
- Glass tube (visual indicating).
- Formerly called 1AG.

AGA		AGA		AGA	
Amps	Volts	Amps	Volts	Amps	Volts
* 1/16	-	* 1	125	7	
* 1/10		* 11/2	125	71/2	
* 1/ ₈	-	2		10	
* 1/4	405	2 1/2		15	32
* 3/ ₈	125	† 3	32	20	
* 1/2		5		25	
* ^{6/} 10		6		30	
* 3/4					

- *U.L. Listed.
- †U.L. Recognized under Components Program.

Carton quantity: 5. Shelf package: 100. Shipping wt. per 100: 0.73 lbs. (331g).

Test Specifications

Load	Opening Time	
110%	4 Hours (min.)	
135%	1 Hour (max.)	

 $^{1}/_{4}^{"} \times ^{7}/_{8}^{"}$ (6.35mm x 22.2mm)

- For electronic and small appliance circuits.
- Non-Time-Delay, Type AGW.
- Glass tube (visual indicating).
- Formerly called 7AG.
- Mounting: In-the-line holders HME, HRE. HDH, HHH, and HRK. Clips-1/4"

AGW		AGW		AGW	
Amps	Volts	Amps	Volts	Amps	Volts
1/2		4		15	
1		5		20	
11/2	-00	6	00	25	32
2	32	71/2	32	30	32
21/2		10			
3					

Carton quantity: 5. Shelf package: 100. Shipping wt. per 100: 0.80 lbs. (363g).

Test Specifications

Load	Opening Time	
110%	4 Hours (min.)	
135%	1 Hour (max.)	

(6.35mm x 25.4mm)

- For instruments, electronic and small appliance circuits.
- Use Type MKB when low resistance is desired
- Non-Time-Delay, Types AGX and MKB.
- Glass tube (visual indicating).
- Formerly called 8AG.
- Types MJB and MJW now called AGX.
- Mounting: Panel-Mounted Holders— HJM, HJM-CC, HJM-00; HMS; HJL. In-the-Line Holders-HMI, HRI, HDI, HHJ. HRK.

Fuse Blocks and Clips (1/4").

• U.L. Listed (except AGX25 & 30, and

Amps	Volts	*Resistan	*Resistance in Ohms		
		† Cold	†† Hot		
AGX					
1/500		1750.0	2450.0		
1/200		95.0	450.0		
1/100		150.0	350.0		
1/64		125.0	300.0		
1/32		32.0	130.0		
¹ / ₁₆		22.0	88.0		
1/10		10.0	40.0		
1/8		6.7	25.0		
³ / ₁₆		3.8	15.0		
-/ 10	250	3.1	13.5		
1/4	250	2.3	12.0		
³ / ₁₀		2.1	8.4		
3/8		1.5	5.6		
4/10		.8	3.6		
1/2		.75	3.3		
3/4		.26	.70		
1		.16	.30		
11/4		.13	.22		
11/2		.096	0.16		
2		0.07	0.11		
21/2 3	125	_	_		
4 5 6 7					
6 / 8 10					
8 10 15 20	32	_	_		
25 30					
MKB					
1/16	050	5	9.0		
1/8	250	1.0	4.0		

†At 10% rated current. ††100% rated current. *Approx. Carton quantity: 5. Shelf package: 100. Shipping wt. per 100: 0.76 lbs. (345g).

Test Specifications					
Fuse		Load	Opening Time		
	(1) 4- 504)		4 Hours (min.)		
AGX	(1/500 to 50A)	135%	1 Hour (max.)		
AGX	(1/500 to 2A)	200%	5 Seconds (max.)		

- For instruments, electronic and small appliance circuits, use Non-Time-Delay Types AGC, GLH, MGB, MTH (glass), and ABC (ceramic).
- For circuits with high inrush currents, use **Dual-Element Types MDL, MDX, MDQ** (glass) and MDA (ceramic).
- For protection of solid-state devices such as SCR's, use Very Fast-Acting Type GBB. Also see Rectifier Fuses.
- Common size in U.S.
- Formerly 3AG (glass) and 3AB (ceramic).
- Time-current curves for AGC, GLH, MTH, ABC, MDL, MDX, and MDA at back of section.
- Mounting: Panel Holders; In-the-Line Holders; Blocks, and Clips (1/4").

Test Specifications

Fuse	Load	Opening Time
GBB		4 Hours (min.)
	110%	4 Hours (min.)
All types	135%	1 Hour (max.)
AGC (1/500 to 2A)	200%	5 Seconds (max.)

Carton quantity: 5. Shelf package: 100

Shipping wt. per 100:

AGC, MGB, MTH, GLH-...91 lbs. (413g). MDL, MDQ, MDX—.93 lbs. (421g).

MDA—.97 lbs. (440g). **ABC**—1.0 lb. (454g).

(Data continued in next column.)

Non-Ti	me Del	lay		Dual-Element
AGC		ABC		MDL
Amps	Volts	Amps	Volts	Amps Volts
* 1/500		* 2		4
* ^{1/} 200	-	* 2 1/ ₂		5
* ¹ /100		* 3		61/4
* 1/32	-	* <u>4</u>		7
* 1/20	-	* 5		† <u>7¹/₂</u>
* 1/16	-	* 6	250	† 8
* 1/ ₁₀ * 1/ ₈	-	* 8 * 10		† 9 32 † 10
* 15/ ₁₀₀	-	* 12		† 12
* 175/ ₁₀₀₀	-	* 15		15
* ³ / ₁₆	_	† 20		20
* ² / ₁₀	-	† 25	- 125	† 25 † 30
* 1/4	_	30		MDQ
* 3/10	_	Very Fa	st-Act.	
* 3/8		GBB		*3,*3 ² / ₁₀ 250
* ^{4/} 10	250	† <u>1/4</u>		^4, ^5, ^6
* 45/ ₁₀₀ * 1/ ₂	-	† 1 + 41 /-		*61/4, *7
* ^{6/} 10		† <u>11/4</u> † <u>2</u>		MDX
* 3/ ₄	-	† 3		* 11/4
* ^{8/} 10	-	† 4		* 11/2
* 1		5		* 16/10
* 11/ ₄		† 6		* 18/10
* 11/2		† 7		* 2
* 16/ ₁₀	-	† 8		* 21/2
* 1 ³ / ₄ * 1 ⁸ / ₁₀		† 9	60	* 3 * 3 ² / ₁₀
* 1%10 * 2	-	† <u>10</u> † 12		* 4 125
* 21/4	-	† 12		* 5
* 21/ ₂		20		* 6 1/ ₄
* 3	-	† 25		* 7
3 2/ ₁₀		† 30		MDA
† 4	-	Dual-E	lement	
† <u>5</u>	-	MDL		1/32
† <u>6</u>		* ¹ / ₁₀₀		† <u>¹/₁6</u>
				4.41
:	-	* 1/32		† ½10
7		* 1/16		† 1/ ₁₀ † 1/ ₈
7 7 ¹ / ₂	• •	* 1/16 * 1/10		† 1/ ₁₀ † 1/ ₈ † 15/ ₁₀₀
† 7 † 7 ½ † 8	- - - 32	* 1/16 * 1/10 * 1/8 * 15/100		† 1/ ₁₀ † 1/ ₈ † 15/ ₁₀₀ † 175/ ₁₀₀₀
† 7 † 7 ½ † 8 † 9	32	* 1/16 * 1/10 * 1/8 * 15/100 * 175/1000		$ \begin{array}{c} $
† 7 † 7½ † 8 † 9 † 10	- 32	* 1/16 * 1/10 * 1/8 * 15/100 * 175/1000 * 3/16		† ½ 1/10 † ½ 1/8 † 15/100 † 175/1000 † 3/16 † 2/10 † 1/4
† 7 † 7½ † 8 † 9 † 10 † 12	- 32 -	* 1/16 * 1/10 * 1/8 * 15/100 * 175/1000 * 3/16 * 2/10		$ \begin{array}{c} $
† 7	32	* 1/16 * 1/10 * 1/8 * 15/100 * 175/1000 * 3/16 * 2/10 * 1/0	250	$ \begin{array}{c c} $
† 7 † 7½ † 8 † 9 † 10 † 12 † 15 † 20	32	* 1/16 * 1/10 * 1/8 * 15/100 * 175/1000 * 3/16 * 2/10 * 1/4 * 3/10	250	$ \begin{array}{c} $
† 7	32	* 1/16 * 1/10 * 1/8 * 15/100 * 175/1000 * 3/16 * 2/10 * 1/4 * 3/10 * 3/8	250	$ \begin{array}{c} $
† 7	32	* 1/16 * 1/10 * 1/8 * 15/100 * 175/1000 * 3/16 * 2/10 * 1/4 * 3/10 * 3/8 * 4/10	250	† \frac{1}{10} † \frac{1}{1/8} † \frac{15}{100} † \frac{15}{100} † \frac{175}{100} † \frac{3}{16} † \frac{2}{10} † \frac{1}{3}/10 † \frac{3}{1}/6 † \frac{4}{10} † \frac{1}{12} † \frac{5}{10} † \frac{6}{10} † \frac{1}{9}/10 † \frac{1}{9}/2 † \frac{6}{9}/10
† 15 † 20 † 25 † 30 GLH	32	* 1/16 * 1/10 * 1/8 * 15/100 * 175/1000 * 3/16 * 2/10 * 1/2 * 3/10 * 3/8 * 4/10 * 1/2	250	$ \begin{array}{c} $
† 7	-	* 1/16 * 1/10 * 1/8 * 15/100 * 175/1000 * 3/16 * 2/10 * 1/2 * 3/10 * 3/10 * 3/10 * 3/10 * 3/10 * 4/10 * 6/10	250	$\begin{array}{c} \frac{1}{1/_{10}} \\ \frac{1}{1/_{8}} \\ \frac{1}{15/_{100}} \\ \\ \frac{175/_{1000}}{3/_{16}} \\ \frac{2}{10} \\ \frac{1}{10} \\ \frac{1}$
† 7 † 7½ † 8 † 9 † 10 † 12 † 15 † 20 † 25 † 30 GLH * 7 * 8	32	* 1/16 * 1/10 * 1/10 * 1/8 * 15/100 * 3/16 * 2/10 * 1/4 * 3/10 * 3/10 * 3/10 * 1/2 * 4/10 * 1/2 * 6/10 * 7/10	250	† 1/10 † 1/10 † 15/100 † 15/100 † 3/16 † 2/10 † 1/2 † 3/10 † 3/10 † 3/10 † 4/10 † 1/2 † 5/10 † 5/
† 7 † 7½ † 8 † 9 † 10 † 12 † 15 † 20 † 25 † 30 GLH * 7 * 8 * 10	-	* 1/16 * 1/10 * 1/10 * 1/8 * 15/100 * 3/16 * 2/10 * 1/4 * 3/10 * 3/16 * 2/10 * 1/4 * 3/10 * 3/16 * 3/10 * 3/16 * 3/10 * 3/10 * 3/10 * 3/10 * 3/10 * 3/10 * 3/10 * 3/10 * 3/10 * 3/10 * 3/10 * 3/10 * 3/10	250	$\begin{array}{c} +\frac{1}{1_{10}} \\ +\frac{1}{1_{8}} \\ +\frac{1}{1_{9100}} \\ +\frac{1}{1_{9100}} \\ +\frac{3}{1_{10}} \\ +\frac{2}{1_{10}} \\ +\frac{1}{1_{4}} \\ +\frac{3}{1_{10}} \\ +\frac{3}{1_{10}} \\ +\frac{4}{1_{10}} \\ +\frac{1}{1_{2}} \\ +\frac{6}{1_{10}} \\ +\frac{3}{1_{4}} \\ +\frac{1}{1_{4}} \\ \end{array}$
† 7 † 7½ † 8 † 9 † 10 † 12 † 15 † 20 † 25 † 30 GLH * 7 * 8	125	* 1/16 * 1/10 * 1/18 * 1/10 * 1/18 * 15/100 * 175/1000 * 3/16 * 2/10 * 1/4 * 3/10 * 3/8 * 4/10 * 1/2 * 6/10 * 7/10 * 3/4 * 8/10 * 1/10	250	$\begin{array}{c} 1 \frac{1}{1_{10}} \\ 1 \frac{1}{1_{8}} \\ 1 \frac{1}{1_{9100}} \\ 1 \frac{1}{1_{9100}} \\ 1 \frac{3}{1_{16}} \\ 1 \frac{2}{1_{10}} \\ 1 \frac{3}{1_{10}} \\ 1 \frac{4}{1_{10}} \\ 1 \frac{1}{1_{2}} \\ 1 \frac{8}{1_{10}} \\ 1 \frac{1}{1_{4}} \\ 1 \frac{1}{1_{4}} \\ 1 \frac{1}{1_{12}} \\ 1 \frac{1}{1_{910}} \\ 1 \frac{1}{1_{10}} $
† 7	-	* 1/16 * 1/10 * 1/10 * 1/10 * 1/10 * 1/10 * 15/100 * 175/1000 * 3/16 * 2/10 * 1/4 * 3/10 * 3/10 * 3/4 * 4/10 * 1/2 * 6/10 * 7/10 * 3/4 * 8/10 * 1 * 1 1 * 1 2/10	250	$\begin{array}{c} 1 \frac{1}{1_{10}} \\ 1 \frac{1}{1_{8}} \\ 1 \frac{1}{1_{100}} \\ 1 \frac{1}{1_{100}} \\ 1 \frac{1}{1_{100}} \\ 1 \frac{1}{1_{100}} \\ 1 \frac{3}{1_{10}} \\ 1 \frac{4}{1_{10}} \\ 1 \frac{4}{1_{10}} \\ 1 \frac{3}{1_{10}} \\ 1 \frac{3}{1_{10}$
† 7 † 7½ † 8 † 9 † 10 † 12 † 15 † 20 † 25 † 30 GLH * 7 * 8 * 10 MGB	125	* 1/16 * 1/10 * 1/10 * 1/18 * 15/100 * 175/1000 * 3/16 * 2/10 * 1/4 * 3/10 * 3/10 * 4/10 * 1/2 * 6/10 * 7/10 * 3/4 * 8/10 * 1 * 12/10 * 11/4	250	$\begin{array}{c} 1 \frac{1}{1_{10}} \\ 1 \frac{1}{1_{8}} \\ 1 \frac{1}{1_{100}} \\ 1 \frac{1}{1_{100}} \\ 1 \frac{1}{1_{100}} \\ 1 \frac{3}{1_{16}} \\ 1 \frac{3}{1_{10}} \\ 1 \frac{3}{1_{10}} \\ 1 \frac{3}{1_{10}} \\ 1 \frac{1}{1_{10}} \\ 1 \frac{1}{1_{10}} \\ 1 \frac{6}{1_{10}} \\ 1 \frac{8}{1_{10}} \\ 1 \frac{8}{1_{10}} \\ 1 \frac{1}{1_{10}} \\ 1 \frac{1}{1_{10}}$
† 7	125	* 1/16 * 1/10 * 1/18 * 1/10 * 1/8 * 15/100 * 175/1000 * 3/16 * 2/10 * 1/4 * 3/10 * 3/8 * 4/10 * 1/2 * 6/10 * 7/10 * 3/4 * 8/10 * 1 * 12/10 * 11/4 * 11/2 * 11/4 * 11/2	250	$\begin{array}{c} 1 \frac{1}{1_{10}} \\ 1 \frac{1}{ _{8} } \\ 1 \frac{1}{ _{100}} \\ 1 \frac{1}{ _{100}} \\ 1 \frac{1}{ _{100}} \\ 1 \frac{3}{ _{16}} \\ 1 \frac{2}{ _{10}} \\ 1 \frac{3}{ _{10}} \\ 1 \frac{3}{ _{10}} \\ 1 \frac{3}{ _{10}} \\ 1 \frac{4}{ _{10}} \\ 1 \frac{1}{ _{1/2}} \\ 1 \frac{1}{ _{1/2}} \\ 1 \frac{1}{ _{1/2}} \\ 1 \frac{1}{ _{10}} \\ 1 \frac{1}{ _{$
† 7	125	* 1/16 * 1/10 * 1/10 * 1/10 * 1/10 * 1/10 * 1/10 * 1/10 * 3/16 * 2/10 * 1/4 * 3/10 * 3/10 * 3/10 * 3/10 * 3/10 * 1/10 * 6/10 * 7/10 * 3/4 * 8/10 * 1 * 1 1/10 * 1/10		$\begin{array}{c} 1 \frac{1}{1_{10}} \\ 1 \frac{1}{1_{8}} \\ 1 \frac{1}{1_{100}} \\ 1 \frac{1}{1_{100}} \\ 1 \frac{1}{1_{100}} \\ 1 \frac{3}{1_{16}} \\ 1 \frac{2}{1_{10}} \\ 1 \frac{3}{1_{10}} \\ 1 \frac{3}{1_{10}} \\ 1 \frac{3}{1_{10}} \\ 1 \frac{4}{1_{10}} \\ 1 \frac{4}{1_{10}} \\ 1 \frac{6}{1_{10}} \\ 1 \frac{6}{1_{10}} \\ 1 \frac{8}{1_{10}} \\ 1 \frac{1}{1_{1/2}} \\ $
† 7	125	* 1/16 * 1/10 * 1/10 * 1/10 * 1/10 * 1/10 * 1/10 * 3/15 * 2/10 * 1/4 * 3/10 * 3/8 * 4/10 * 1/2 * 6/10 * 3/4 * 8/10 * 1/10	250	$\begin{array}{c} 1 \frac{1}{1_{10}} \\ 1 \frac{1}{1_{10}} \\ 1 \frac{1}{1_{100}} \\ 1 \frac{1}{1_{100}} \\ 1 \frac{1}{1_{100}} \\ 1 \frac{1}{1_{100}} \\ 1 \frac{3}{1_{16}} \\ 1 \frac{3}{1_{10}} \\ 1 \frac{3}{1_{10}} \\ 1 \frac{3}{1_{10}} \\ 1 \frac{4}{1_{10}} \\ 1 \frac{1}{1_{2}} \\ 1 \frac{3}{1_{10}} \\ 1 \frac{1}{1_{10}} \\ 1 \frac{1}{1_{10}$
† 7	125	* 1/16 * 1/10 * 1/8 * 15/100 * 175/1000 * 3/16 * 2/10 * 1/4 * 3/10 * 3/8 * 4/10 * 1/2 * 6/10 * 3/4 * 8/10 * 1/2 * 1/2 * 1/10 * 2		$\begin{array}{c} 1 \frac{1}{1_{10}} \\ 1 \frac{1}{1_{8}} \\ 1 \frac{1}{1_{9100}} \\ 1 \frac{1}{175_{1000}} \\ 1 \frac{3}{16} \\ 1 \frac{3}{16} \\ 1 \frac{3}{10} \\ 1 \frac{3}{10} \\ 1 \frac{3}{10} \\ 1 \frac{3}{10} \\ 1 \frac{4}{10} \\ 1 \frac{1}{1_{2}} \\ 1 \frac{8}{10} \\ 1 \frac{1}{1_{4}} \\ 1 \frac{1}{1_{4}} \\ 1 \frac{1}{1_{4}} \\ 1 \frac{1}{1_{2}} \\ 1 \frac{1}{1_{910}} \\ 1 \frac{1}{2} \\ 1 \frac{1}{1_{910}} \\ 1 \frac{1}{2} \\ 1 \frac{1}{1_{10}} \\ 1 \frac{1}{2} \\ 1 \frac{1}{1_{10}} \\ 1 \frac{1}{2} \\ 1 \frac{1}{1_{10}} $
† 7	125	* 1/16 * 1/10 * 1/10 * 1/10 * 1/10 * 1/10 * 15/100 * 175/1000 * 3/16 * 2/10 * 1/4 * 3/10 * 3/10 * 3/4 * 4/10 * 1/2 * 6/10 * 7/10 * 3/4 * 8/10 * 11/2 * 11/2 * 16/10 * 18/10 * 2 * 21/4		$ \begin{array}{c c} & 1 \frac{1}{1_{10}} \\ & 1 \frac{1}{1_{8}} \\ & 1 \frac{1}{1_{91000}} \\ & 1 \frac{1}{1_{91000}} \\ & 1 \frac{3}{1_{10}} \\ & 1 \frac{4}{1_{10}} \\ & 1 \frac{1}{1_{2}} \\ & 1 \frac{8}{1_{10}} \\ & 1 \frac{1}{1_{2}} \\ & 1$
† 7	125	* 1/16 * 1/10 * 1/10 * 1/10 * 1/10 * 1/10 * 1/10 * 175/1000 * 3/16 * 2/10 * 1/14 * 3/10 * 3/10 * 3/10 * 3/10 * 3/4 * 4/10 * 1/2 * 6/10 * 7/10 * 3/4 * 8/10 * 1 * 1 1/2 * 16/10 * 11/4 * 11/2 * 16/10 * 2 * 2 1/4 * 2 1/2		$\begin{array}{c} 1 \frac{1}{1_{10}} \\ 1 \frac{1}{1_{8}} \\ 1 \frac{1}{1_{9100}} \\ 1 \frac{1}{175_{1000}} \\ 1 \frac{3}{16} \\ 1 \frac{3}{16} \\ 1 \frac{3}{10} \\ 1 \frac{3}{10} \\ 1 \frac{3}{10} \\ 1 \frac{3}{10} \\ 1 \frac{4}{10} \\ 1 \frac{1}{1_{2}} \\ 1 \frac{8}{10} \\ 1 \frac{1}{1_{4}} \\ 1 \frac{1}{1_{4}} \\ 1 \frac{1}{1_{4}} \\ 1 \frac{1}{1_{2}} \\ 1 \frac{1}{1_{910}} \\ 1 \frac{1}{2} \\ 1 \frac{1}{1_{910}} \\ 1 \frac{1}{2} \\ 1 \frac{1}{1_{10}} \\ 1 \frac{1}{2} \\ 1 \frac{1}{1_{10}} \\ 1 \frac{1}{2} \\ 1 \frac{1}{1_{10}} $
† 7	125	* 1/16 * 1/10 * 1/10 * 1/10 * 1/10 * 1/10 * 15/100 * 175/1000 * 3/16 * 2/10 * 1/4 * 3/10 * 3/10 * 3/4 * 4/10 * 1/2 * 6/10 * 7/10 * 3/4 * 8/10 * 11/2 * 11/2 * 16/10 * 18/10 * 2 * 21/4		$ \begin{array}{c} 1 \frac{1}{1_{10}} \\ 1 \frac{1}{1_{8}} \\ 1 \frac{1}{1_{100}} \\ 1 \frac{1}{1_{100}} \\ 1 \frac{1}{1_{100}} \\ 1 \frac{3}{1_{16}} \\ 1 \frac{3}{1_{10}} \\ 1 \frac{3}{1_{10}} \\ 1 \frac{3}{1_{10}} \\ 1 \frac{3}{1_{10}} \\ 1 \frac{4}{1_{10}} \\ 1 \frac{6}{1_{10}} \\ 1 \frac{6}{1_{10}} \\ 1 \frac{1}{1_{2}} \\ 1 \frac{28}{1_{10}} \\ 1 \frac{3}{3} \\ 1 \frac{3^{2}_{10}}{1_{2}} \\ 1 \frac{4}{1_{20}} \\ 1 \frac{1}{1_{20}} \\ 1 \frac{1}{1_{20}}$
† 7	125	* 1/16 * 1/10 * 1/10 * 1/18 * 15/100 * 1/15 * 15/100 * 3/16 * 2/10 * 1/4 * 3/10 * 1/2 * 6/10 * 1/10 * 3/4 * 8/10 * 1/2 * 11/10		$ \begin{array}{c} 1 \frac{1}{1_{10}} \\ 1 \frac{1}{ _{8} } \\ 1 \frac{1}{ _{100}} \\ 1 \frac{1}{ _{100}} \\ 1 \frac{1}{ _{100}} \\ 1 \frac{3}{ _{10}} \\ 1 \frac{4}{ _{10}} \\ 1 \frac{4}{ _{10}} \\ 1 \frac{6}{ _{10}} \\ 1 \frac{8}{ _{10}} \\ 1 \frac{1}{ _{10}} \\ 1 \frac{2}{ _{10}} \\ 1 \frac{2}{ _{10}} \\ 1 \frac{3}{ _{10$
† 7	125	* 1/16 * 1/10 *		$ \begin{array}{c} 1 \frac{1}{1/10} \\ 1 \frac{1}{1/8} \\ 1 \frac{15}{100} \\ 1 \frac{15}{100} \\ 1 \frac{15}{100} \\ 1 \frac{1}{100} \\ 1 \frac{1}{10} \\ $
† 7	125	* 1/16 * 1/10 * 1/10 * 1/18 * 15/100 * 175/1000 * 3/16 * 2/10 * 1/4 * 3/10 * 1/2 * 6/10 * 1/2 * 6/10 * 1/10 * 3/4 * 8/10 * 1 12/10 * 11/4 * 11/2 * 16/10 * 18/10 * 2 * 2 1/4 * 2 1/2 * 28/10 3 32/10	125	$ \begin{array}{c} 1 \frac{1}{1_{10}} \\ 1 \frac{1}{1_{8}} \\ 1 \frac{1}{1_{100}} \\ 1 \frac{1}{1_{100}} \\ 1 \frac{1}{1_{100}} \\ 1 \frac{3}{1_{10}} \\ 1 \frac{1}{1_{10}} \\ 1 \frac{2^{1}}{1_{10}} \\ 1 \frac{2^{1}}{1_{10}} \\ 1 \frac{2^{1}}{1_{10}} \\ 1 \frac{3^{2}}{1_{10}} \\ 1 \frac{3^{2}}{$

[CSA Listed: AGC's; MTH's; MDL's (except 32V);

and MDX (125V)].

13/₃₂" **x 1**3/₈" (10.3mm x 34.9mm)

- For control, gaseous vapor fixture, and electronic circuits.
- Type KTQ has slightly more delay than BBS to override transient currents where needed.
- Mounting: Panel Holders HPC-L and HPS-L. Block 3845.
- Clips (13/32").

 Type **BBS** U.L. Listed.

Non-Time-Delay						
BBS	BBS					
Amps	Volts	Amps	Volts			
2/10		3				
4/10		4	600			
3/4		5				
3/ ₄ 8/ ₁₀		KTQ				
1	600	2				
11/2		3	600			
16/10		4	000			
18/10		5				
2						

Test Specifications

Load	Opening Time	
110%	Indefinitely	
135%	1 Hour (max.)	

Dual-Element

¹³/₃₂" **x 1**¹/₂" (10.3mm x 38.1mm)

Non-Time-Delay Types

- Glass—AGU (formerly 5AG).
- Laminated—BAF.
- Fibre—BAN (formerly 5AB).
- LIMITRON fast-acting KTK-R

types have an interrupting rating of 200,000 amperes (ac) and current-limiting characteristics. KTK-R's are U.L. Class CC with rejection feature.

- · For control circuits, gaseous vapor fixture circuits, or circuits having high fault current capacity, use Type KTK LIMITRON fast-acting fuses. (100,000A interrupting rating).
- For branch circuit fusing (1 to 20 ampere current rating), use Type KTK-R fuses. (The HPS-RR fuseholder for KTK-R's rejects fuses with lower interrupting rating).
- The military version (MIL-F-15160) of Type KTK is Type KLM (KLM's have a dc rating of 500 volts or less).
- For more information on KTK-R fuse, request Bulletin LKTR.

Dual-Element FUSETRONS

• For circuits with high inrush currents use Type FNM (formerly called 5AB).

Time-Delay Types (TRONS)

• For motor control transformers and other circuits with inrush currents, use Types FNQ and FNW (interrupting rating of 10,000 amperes, ac).

Mounting

Panelholders-HPC, HPD, HPC-D, HPG, HPL-B. HPM, and HPS.

Panelholder, lamp indicating-HGC. In-the-line fuseholders-HEB and HEX. Fuseblocks and clips (13/32).

Test Specifications

Load Opening Time

110% 4 Hour (min.) 135% 1 Hour (max.)

Carton quantity: 10. Shelf package: 100.

Shipping wt. per 100:

BAF-1.3 lbs. (590g).

BAN-1.4 lbs. (635g).

FNQ, FNM-1.5 lbs. (680g).

AGU, KLM-1.8-lbs. (816g).

e-Dela			Dual-El	emen
	KTK, KI	.M	FNM	
Volts	Amps	Volts	Amps	Volts
			* 32/10	
250				
250				
				050
				250
	5		*_61/4	
	6		* 7	
	7		* 8	
32	8	600	* 9	
	9		* 10	
		•	_	
				125
		dc)		
				00
				32
	<u> 25</u>			
	30		FNQ	
			* 1/10	
	KTK-R		* 1/ ₈	
	* 1/10		* 15/100	
050			* 3/4E	
250	± 2/		* 2/	
	+1/		* 1/-	
	+ 3/4		+ 3/	
	* 3/10		* 3/10	
			* 4/10	
	* 3/4		* 1/2	
	* 1		* ^{6/} 10	
	* 11/2		* 8/10	500
			* 1	
	* 21/2			
125	+ 2	600		
123		000		
	* <u>5</u>			
	* 6		* <u>21/4</u>	
	* 7		* 21/2	
			* 32/10	
			Time-F	Voley
				relay
			FNQ	_
	* <u>20 & 30</u>	<u> </u>		
250	Dual-Ele	ement	* 4 ¹ / ₂	
	FNM		* 5	
	* 1/10		* 56/10	•
	* 15/ ₂₀₀			
	+ 2/		* 61/-	
	710			
	* 3/10		_	
	* 4/10			500
	* 1/ ₂			
	* 6/10		* 10	
	* 8/10		* 12	
LM		250		•
				•
			_	
	77/10			
600	* 16/ ₁₀		* 30	
000	* 18/10		FNW	
(KI KA			* 12	
(KLM	* 2			
500V	* 21/A		* 15	
•	* 21/4		* 15 * 20	250
500V	* 21/4 * 21/2		* 20	250
500V	* 21/4			250
	250	250 250 250 250 250 250 250 250	Volts Amps Volts	Volts Amps Volts X X X X X X X X X

Non-Time-Delay

FNM 0A-10A (250V); FNM 12A-15A (125V);

FNQ 0A-15A (500V).

Time current curves for FNQ, FNM, KTK, KLM, BAF, and BAN at end of this section.

Lead-In or Pin Type

0.145" x **0.300**" Axial or Radial Leads (3.7mm x 7.6mm)

- Non-Time-Delay TRON fuses.
- Sub-miniature size for protection of subminiature devices.
- Tinned wire leads solder into circuit.
- Withstand high shock and vibration.
- 50 ampere interrupting rating.
- · Color-coded ampere rating.
- Glass tubing permits visual indication of element
- Axial leads (1½") can feed thru wire forming machine.
- Radial leads spaced for easy assembly on printed circuit chassis.

Rating	s	Test	Spec.		Color	r Code
Amps	Volts		GLN	GLX	One End	Other End
*GFA, G	LN					
1/200		Α	Α		Red	Blk
1/100		Α	Α		Red	Orn
1/64		Α	Α		Red	Grn
1/32	- - 125	Α	Α		Red	Brn
1/20	. 125	Α	Α		Yel	Yel
1/16	-	Α	Α		Brn	Brn
1/10	-	Α	Α		Red	Red
1/8		Α	Α		Orn	Orn
	LN, GL					
15/100		В	Α	В	Red	Yel
² / ₁₀		В	Α	В	Red	Blu
1/4	125	В	Α	В	Red	Pur
3/10		Α	A	В	Grn	Grn
4/10	· 	Α	Α	В	Blu	Blu
*GFA, G	LX					
1/2		В		В	Orn	Grn
6/10		В		В	Orn	Blu
3/4		В		В	Orn	Pur
1		В		В	Yel	Grn
11/2	- - 125	В		В	Yel	Pur
2	120	В		В	Grn	Blu
21/2		В		В	Grn	Brn
3		В		В	Blu	Pur
4	•	В		В	Pur	Brn
5	·	В		В	Brn	Blk
GFA, G	LN					
7	<u>-</u>	Α	Α		Pur	Grn
8		Α	Α		Grn	Blk
10	32	Α	Α		Yel	Brn
12		Α	Α		Blk	Blu
15	·	Α	Α		Bik	Pur

*GFA 0 to 5 amps; U.L. Recognized under Component Program.

Unit Wt.: 0.33 grams (approx.) Shipping Wt. per 100: 116 lbs. (52.6 gm)

1/4" x 11/4" Radial Leads (6.35mm x 31.8mm)

- For electronic and small appliance circuits use **Non-Time-Delay,** Type **GJV.**
- For circuits with high inrush currents, use FUSETRON **Dual-Element**, Type **MDV**.
- Glass tubing permits visual indication of element.
- Radial leads 11/4", **GJV**; 11/2", **MDV** (minimum lengths), are #20 tinned wire for circuit connection.
- U.L. Listed and CSA Listed.

No Time-Delay		Dual-El	ement	nt Dual-Elemer	
GJV		MDV		MDV	
Amps	Volts	Amps	Volts	Amps	Volts
1/16		1/100		11/4	
1/8		1/32	_	11/2	_
1/4		1/16	_	16/10	
3/10		1/10	_	18/10	_
/в		1/8	_	2	
1/2		15/100	_	21/4	_
3/4		¹⁷⁵ / ₁₀₀₀	_	21/2	125
1	250	3/16	250	28/ ₁₀	-
11/2		2/10	-	3	_
		1/4	_	3 ² / ₁₀	_
2		3/10	_	4	_
3		3/8	_	5	_
4	•	4/10	_	61/4	-
5		1/2	_	7	-
6		6/10			_
1 ³ / ₄ 2 3 4 5 6		3/4	_		_
8& †10		8/10	-		

Also see Type **TFL** and **TFS** Heat Limiters.

†Not U.L. Listed.

Test Specifications

Load	Opening Time	
110%	4 hours (min.)	
135%	1 hour (max.)	
Metallho	ox: atv. 5: shelf nackage: atv	100

Metal box: qty. 5; shelf package: qty. 100. Shipping Wt. per 100: **GJV**—0.9 lb. (408.2 gm) **MDV**—1.1 lb.(499.0 gm)

Test Specifications			Wire	Lead Size
Load Opening Time		No.	Fuse	
	"A"	"B"		
100%	4 hours (min.)		GLN, GLX, GFA
150%	_	*10 sec.	24	(1/200 to 5A)
200%	*10 sec.	_	40	GFA (7 to 12A)
Maxim	um time.		18	GLN (7 to 15A)
			16	GFA (15A)

0.270" **x 0.25**" **Pin** (6.9mm x 6.35mm)

- Sub-miniature pin-base fuses for limited space applications.
- Fuses solder direct into circuit or can be inserted into an **HWA** fuseholder for panel mounting (holder can also be soldered direct into circuit).
- Fuses are Non-Time-Delay type.
- Transparent window in fuses permits visual indication of element.
- Interrupting rating of 35 amperes.
- Military version of Type **GMW** fuse is designated Type **FM01**.
- Military version of Type **HWA** fuseholder is designated Type **FHN42W.**
- Water-proof knob (Type **AF**) available for holder.

*GMW and FM01		*GMW and FM01	
Amps	Voits	Amps	Volts
1/200		1/2	
1/100		6/10	
1/64		3/4	
1/64		1	
1/16	125	11/2	125
1/10	12.0	2	123
² / ₁₀		3	
¹ / ₄ ³ / ₁₀		4	
3/10		5	
4/10			

*GMW 0 to 5 amps; U.L. Recognized under the Components Program.

Carton quantity: 10

Shipping Wt. per 100:

Fuses—0.20 lbs. (90.7 gm) Fuseholders—0.44 lbs. (199.6 gm)

Fuseholders—0.44 lbs. (199.6 gm) Type **AF** Knob—0.25 lbs. (113.4 gm)

Load	Opening Time	
100%	4 hours (min.)	
200%	10 sec. (max.)	

13

Small Dimension Fuses, Fuseholders, Fuse Blocks, and Accessories

Ferrule Fuses, Varying Case Size

1/4" x Length Tabulated (6.35mm x Length Tabulated)

- For automotive circuits, **Non-Time-Delay SFE** Type.
- Visual indicating glass tubing.
- Made to SAE specifications.
- III Listed.
- Physical size varies with electrical rating of fuse to prevent over-fusing.
- For mounting in panel and in-the-line holder, and 1/4" clips.

SFE					
Amps	nps Volts Le			Ship.	Wt. per 100
•		Inches	mm	Lbs.	Grams
4		5/8	15.9	.73	331
6		3/4	19.0	.75	340
71/2		7/8	22.2	.80	363
9	32	7/8	22.2	.80	363
14		11/16	27.0	.82	372
20		11/4	31.7	.87	395
30		17/16	36.5	1.60	726

Carton quantity: 5. Shelf package: 100.

Test Specifications

Load	Opening Time		
110%	4 Hours (min.)		
135%	1 Hour (max.)		
		_	

13/₃₂" x Length Tabulated (10.3mm x Length Tabulated)

- For branch circuits and supplementary protection, Time-Delay SC (6 to 60 amp).
- One to 5 amp SC's are Non-Delay Type.
- Interrupting rating of 100,000A.
- High degree of current-limitation.
- Physical size varies with electrical rating of fuse to prevent over-fusing.
- UL Class G (U.L. Listed).
- For mounting in blocks, panels and in-the-line holders, and ¹³/₃₂" clips.
- For more information request Bulletin SCS.

SC						
Amps	Volts	Lengt		Ship. per 1	00	Cart. Qty.
				Lbs.	Gm	
1/2						
1/2 1 2 3 4 5 6 8						
2						
3						
4	300	15/16	33.3	11/2	680	4
5	500	1 /16	00.0	1 12	000	-
6						
8						
10						
15						
20	300	113/32	35.7	1%10	726	4
25	300	15/8	41.2	2	907	4
30		1.78	41.2			
35						
40						
45	300	21/4	57.1	33/4	1701	2
50						
60						
					_	

Test Specifications

Load	Opening Time	
110%	4 hours (min.)	
135%	1 Hour (max.)	

13/₃₂" and 13/₁₆" x Length (10.3mm and 20.6mm x Length) For High Voltage Circuits

- Non-Time-Delay fuses for high voltage instruments and circuits.
- Physical size varies with electrical rating of fuse to prevent over-fusing.
- Use HVA, HVB, HVJ and HVL for circuits up to 20kw dc or 30 KVA ac. For higher interrupting capacity, use HVR, HVT, HVU, HVW and HVX.

HVA (1	000 V	ilte)				
Amps		Dia.	Leng In.	th	*WI	:./100 . Kg
3/8	1					
1/2	11/2	13/32"	3	76.1	2	0.91
3/4	2					
HVB (2	2500 V	olts)				
1/2	11/2					
3/4	2	13/32"	41/2	114.2	3	1.36
1						
	000 Va	its)				
1/16	3/4					
1/8	1					
1/4	11/2	13/16"	5	126.9	9	4.08
³ /8	2					
1/2						
	0,000	Volts)				
1/16	3/4					
1/8	1					
1/4	11/2	13/16"	10	253.8	15	6.80
3/8	2					
1/2		10.5		- WW		
		its) (m	ax. 5.0	C. KVA-5	00)	
1/2	3	-				
1 1/	4	13/32"	3	76.1	3	1.36
1½ 2	5					
	1500 V-	14-1/-	av 6 4	C. KVA-1	2501	
1/2	3	irs) (iii	ax. 3.1	J. R VA-1	2301	
1	4					
11/2	5	13/32"	41/2	114.2	4	1.81
2						
	5000 V	its) (m	ax. S.	C. KVA-2	500)	
1/2	3	, (
1	4	13/16"	5	126.9	19	8.62
2	5	. /10	•			0.02
		olts) (m	ax. S.	C. KVA-5	000)	
1/2	3					
1	4	13/32"	21/4	57.1	2	0.91
2	5					
	0,000 \	/olts) (max. S	.C. KVA	12,00	00)
1/2	3	-				
1	4	- ¹³ /16"	10	253.8	36	16.33
11/2	5	7/16	10	∠33.8	30	10.33
2						

*Shipping.

Opening Time

4 Hours (min.)

1 Hour (max.)

HVR, HVT, HVU, HVW, HVX

Load

100%

150%

Carton quantity: 10.

110%

135%

Test Specifications

HVA,HVB, HVJ, HVL,

Load Opening Time

4 Hours (min.)

1 Hour (max.)

Buss ATC Fuses for Automotive Use

Buss ATC Fuses For Automotive Use

- For mounting in especially designed fuseblocks for automobiles and trucks.
- Non-Time-Delay Type.
- Totally enclosed fuse link confines arc.
- Transparent for visual inspection of element.

ATC	
Amps	Volts
3	
<u>3</u>	
71/2	
10	32
15 20	JE
20	
25	
^^	

Test Specifications				
Load	Opening Time			
110%	4 Hours (min.)			
135%	.75 to 1800 Seconds			
200%	.15 to 5 Seconds			
350%	.08 Seconds (min.)			

Ferrule Fuses, Pin Indicating

- Non-Time-Delay fuses for electronic circuits where a fuse opening must be quickly apparent. • GBA Type have red pin for easy visual indica-
- tion of open fuse. • GLD Type have Albaloy-plated pin for positive signal activation.
- Time current curves on back pages.
- Mounting: Fuseblocks—1/4" x 11/4" for visual

Panel Holders-HLD (15A. max.) for visual indicating. HKA (15A. max.) for lamp indicating.

GBA,	GBA, GLD		LD	GBA, GLD	
Amps	Volts	Amps	Volts	Amps	Volts
* 1/2		* 4	105	15	
* 3/4	_	* 5	125	GLD	
* 1	- - 125	6		† 20	
* 11/2	- 125	8		† 25	32
* 2	_	10		† 30	
* 3	_	12			

UL Listed. †Dual tube construction. CSA Listed: GLD 0A-4A

Carton quantity: 5. Shelf package: 100.

Shipping wt. per 100: 1/2A to 15A-...86 lbs. (390 g).

20A to 30A-1.75 lbs. (794 g).

Test Specifications

Load	Opening Time
110%	4 Hours (min.)
135%	1 Hour (max.)
1/4" (6.4mm)	1 ¹⁷ / ₆₄ " (not blown)

- 1⁷/₁₆" (blown)

13/32" x 11/2" (10.3mm x 38.1mm)

• For electronic circuits in which a fuse opening must be identified quickly, use Non-Time-

Delay MIC and MIN Types.

- For electronic circuits with high inrush currents, use FUSETRON **Dual-Element FNA** Type. (Time current curve for FNA at end of section).
- MIN Type have red pin for easily seen visual indication of open fuse.
- MIC and FNA Types have silver-plated pin for "positive" signal activation.
- FNA Type in ampere sizes larger than 10 amperes have dual tube construction.
- Mounting: Fuseblocks—13/32" x 11/2". Panel Holders-HPC-C, **HPC-CK** for visual indication.

Signal Blocks-3839 for signal activation.

	Non-Time		Dual-E	lement	Dual-E	Dual-Element		
L.	Delay							
•	MIC, M	IN	FNA		FNA			
l	Amps	Volts	Amps	Volts	Amps	Voits		
	1		* 4/10	,	3 ² / ₁₀			
Γ	2		* 1/2	250	31/2			
	2 3 5	250	* 6/10		4			
Г	5	250	* 8/10		41/2			
	10		* 1		5			
ľ	15		* 11/8	•	56/10			
ľ	20		* 11/4	•	6	125		
Ľ	25	32	* 14/10	•	61/4			
ľ	30	*	* 11/2	•	7			
ľ	Dual-E	lement	* 1 6/ ₁₀	125	8			
ľ	FNA		* 18/10	125	10			
*	1/10		* 2	†*	12			
*	15/100		* 2 1/ ₄	†*	15			
*	² /10	250	* 21/2	†	20			
*	1/4		* 2 ⁸ / ₁₀	t	25	32		
*	3/10		* 3	ŧ	30			

- ◆Type MIC U.L. Listed (up to 15 amps). *U.L. Listed. [CSA Listed FNA 0-%10 amps (250 V); 0-10A (125 V)] †Dual tube construction.
- Carton quantity:

Single tube types: 10. Dual tube types: 5.

Shipping Wt. per 100:

Single tube types: 1.5 lbs. (650 g). Dual tube types: 3.0 lbs. (1.36 kg).

Test Specifications

icat opecinications			
Load	Opening Time		
110%	Indefinitely		
135%	1 Hour (max.)		

13/₃₂" x 2" (10.3mm x 50.8mm) **Type KAZ actuator.** (Is not a fuse).

- Connects in parallel with fuses having a rating of 50 amperes or larger.
- The KAZ is a Non-Time-Delay component.
 Opens at 10A or more.
- When used with Buss signal blocks, actuates a miniature switch which closes a signal circuit should fuse open. Device also gives a direct visual indication of an open fuse by ejected (spring actuated) end pin.
- Interrupting rating of 200,000A.
- Mounts in Buss signal blocks 2778, 2778-2 thru
 -5, 2837, and 2838.
- U.L. Listed as "fuse accessory."
- For more data, request Bulletin KAFS.
- Rated 600V ac.

Carton quantity: 10.

13/₃₂" x 2" (10.3mm x 50.8mm) Pin Indicating Non-Time-Delay Fuses, Type MIS.

- Can be used as fuses, or in parallel with larger fuses to indicate opening of the larger fuses.
- Interrupting rating of 200,000 amperes.
- Mount in all signal blocks with miniature signal switches (referenced above for use with KAZ actuating devices).

MIS		MIS		
Amps	Volts	Amps	Volts	
1		6		
2	600 ac	8	600 ac	
3	(250 dc)	10	(250 dc)	
4	, ,	12	,	

Test Specifications

Fuse	Load	Opening Time
MIS	110%	4 Hours (min.)
MIS 1 to MIS 5	150%	6 Minutes (max.)
MIS 6 to MIS 12	150%	12 Minutes (max.)

Special Fuses andDevices

Low Voltage Limiters

- Isolates faults in equipment systems such as lift trucks and other battery operated systems.
- Are **Non-Time-Delay** components. Silver-plated copper link.
- Link element visible thru mica window.
- Slot width 11/32" (8.7mm); distance between slot centers 27/16" (62mm).
- See time-current curve at end of section.

ANL.		ANL		ANL	
Amps	Volts	Amps	Volts	Amps	Volts
35		130		275	
40		150		300	
50	00	175	00	325	
60	32	200	32	350	32
80		225		400	
100		250		500	

Carton quantity: 10.

Type WER Telecommunication Fuses

- For mounting with #10 screws.
- Non-Time-Delay type.
- Visible link element.
- U.L. recognized under the components program.

WER		WER		WER	
Amps	Voits	Amps	Volts	Amps	Voits
1/4		11/3		4	
1/ ₄ 1/ ₂ 3/ ₄	00	2	00	5	00
3/4	32	3	32	8	32
1		31/2		10	

Carton quantity: 20.

Shipping wt. per 100: 25 lbs. (113.4 g).

Test Specifications

Load	Opening Time		
100%	4 Hours (min.)		
135%	1 Hour (max.)		
200%	1 Minute (max.)		

Grasshopper Telecommunication Fuses

- Non-Time-Delay fuses especially intended for telecommunications circuits.
- Indicator spring actuation gives visual indication of opening of fuse or actuates contact alert circuit.
- Color coded to insure proper replacement.

Fuse	Amps	Volts	Fuse	Amps	Volts
35A	1 1/3		35J	1/2	
35B	1 ¹ / ₃		35K	1 1/3	
35 B	2	-	35L	2	•
35C	2		35M	3	160
35D	1 1/3	90	35N	5	
35E	3		35P	3/4	
35F	1/2		35R	18/100	90
35G	3	-	35\$	1/4	160
35H	5		35T	65/100	90

Test Specifications

i est specifications				
Fuse	Load	Opening Time (Seconds— max.)		
35E,H,N	133%	300		
35A,B11/3,D,F,J,P,R,S		90		
35B2,C,K,L	150%	180		
35G,M	_	300		
35T	170%	180		

Physical Data

Fuse	Color	Dim	ensions		Mtg.
	Code	A*	В	С	Scr.
35A	Wh	.200			#10
35B	Wh	.150	42/ "	443/ //	#6
35B	Orn	.150	1 ³ / ₁₆ "	1 ⁴³ /64"	#6
35C	Orn	.200	(30.2mm)	(42.511111)	#10
35 D	Wh	.150	1 ¹ / ₈ " (28.6 mm)	1 ⁵ / ₈ " (41.3mm)	#6
35E	Wh	.150	1 ¹ / ₂ " (38.1mm)	1 ⁶³ / ₆₄ " (50.4mm)	#6
35F	Red	.200			#10
35G	Blu	.150			#6
35H	Grn	.150			#6
35J	Red	.200			#10
35K	Wh	.200			#10
35L	Orn	.200	424 #	4404 #	#10
35M	Blu	.150	1 ³ / ₁₆ "	1 ⁴³ / ₆₄ " (42.5mm)	#6
35N	Grn	.150	(30.211111)	(42.511111)	#6
35P	Tan	.200			#10
35R	Yel	.200			#10
35 S	Pink	.200			#10
35T	Tan	.200			#10

*0.200" (5.1mm); 0.150" (3.8mm)

Types LKB and LKC

Solder Direct into Circuit

- Types **LKB** and **LKC** small component fuses for soldering directly to circuit.
- Ideal for small motors, appliances, coils of solenoids and non-energy limiting transformers, Class 2, or other low energy circuits.
- Non-Delay Fuse.
- · Visual indication of link element.
- Because of possible confined space and high ambient temperature where mounted, the fuse should be tested in the product to determine current size.
- U.L. recognized under the components program.

LKB		LKB		LKB	
Amps	Volts	Amps	Volts	Amps	Volts
1/4		1		3	
1/ ₄ 3/ ₁₀		11/4		3 ² / ₁₀	125
4/10		11/2		4	
1/2	125	2	125	LKC	
1/ ₂ 6/ ₁₀ 3/ ₄		21/4		5	105
3/4		21/2		8	125
7/		621			

Test Specifications

. oo. opou					
Fuse	Load	Opening Time			
LKB, LKC	100%	4 Hours (min.)			
LKB 1/4 thru 11/2	160%	20 Seconds (max.)			
LKB 2 thru 4	160%	1 Minute (max.)			

Carton quantity: 100. Shipping wt.: 3/4 oz. (21.3g).

LKC 5 Leads — #24 Copper, Tinned LKC 8 Leads — #20 Copper, Tinned

Mounting Hole

Type 70 Indicating Fuse and HWG Panelholder Combination for Telecommunications...

- For telecommunications. **Non-Time-Delay** Fuses.
- Pin indicating and alert circuit activating. Pin projects thru front center hole of fuse holder should fuse open.
- Color-coded pin for ampere size identification.
- Glass tube permits visual check of fuse element
- Type **HWG** fuseholder has metal shoulder plate, tapped for two screws for mounting from front or back of panel; 1/16" maximum panel thickness when mounted from rear. Metal strap is tapped for cantilever mounting from rear. Two #3-48 zinc-plated mounting screws are furnished with each holder.
- Terminals may be soldered or wire wrapped.

Туре	Amps	Volts	Color Code
70P	1/10		Grey & Wh
70R	¹⁵ / ₁₀₀		Red & Wh
70E	18/100		Yel
70X	2/10		Blk
70F	1/4	300	Vio
70K	1/4		Vio & Wh
70G	1/2		Red
70H	3/4		Brn
GKB	1		Pink
70A	11/3		Wh
70B	2		Orn
70C	3		Blu
70J	31/2		Blk & Wh
70D	5		Grn
71A	6		Grn & Wh
70M	8		Tan & Wh
GKB	10		Pur & Yel
Holder			
HWG	15	300	

Carton quantity: 10.

Type 70

Shipping wt. per 100: 1 lb. (454g).

Test Specifications

Fuse	Load	Opening Time		
All except 70R	100%	1 hour (min.)		
70E,F,G,H,A,B,	150%	0 to 90 Seconds		
C,J,D,M,GKB 10				
70X,K,GKB 1	150%	90 to 300 Seconds		
70P	200%	5 Minutes (max.)		
70R	100%	1 Hour (min.) at 170°F		
/UK	0.4A	5 Minutes (max.) at 80°F		

Fuse and Panel Holder Combination.

Type GMT Indicating Fuses for Multiple Panel Mounting in Limited Space.

- Type **GMT** indicating fuse mounts in **HLT** holder.
- For telecommunications, computer or control circuits. **Non-Delay** Type.
- Visual spring indicating and alarm circuit activating.
- Color-coded flag for ampere size identification.
- **HLT** holder can be panel mounted as small as 1/4"(6.35mm) horizontal and $1^{15}/_{32}$ " (4.92 mm) vertical.
- Open fuses are readily replaced without use of insulating tools. When mounted on minimum centers, removal of fuse can be made by a wire hook.
- For mounting on printed circuit boards, request additional information.
- Fuse and holder UL recognized under Component Program.

GMT, HLT			GMT	, HLT	
A m p s	Volts	Color Code	A m p s	Volts	Color Code
18/100		Yel	3		Blu
1/4		Vio	31/2		Wh &
1/2		Red			Blu
65/100		Blk	4		Wh &
3/4	125 ac	Brn		125 ac	Brn
1	60 dc	Grey	5	60 dc	Grn
11/3		Wh	71/2		Blk &
11/2		Wh &			Wh
		Yėl	10		Red &
2		Orn			Wh

Carton quantity: 100.

Shipping wt. per 100: GMT: 0.33 lbs (150g).

HLT: 3/4 lbs. (340g).

Test Specifications

Types C and N Fuses-and-Holder **Combination With "Over Sizing** Rejection" Feature

- · Oversize fuse rejection. Ears on fuse mate only with fuseholder that corresponds in ampere rating. Slot in holder matches ears on fuse.
- For resistive circuits, use Non-Time-Delay Type C fuse.
- For circuits with high inrush currents use **FUSETRON Dual-Element Time-Delay** Type N fuse.
- Install fuseholders by simply pushing into panel (.043" to .062" thick) until snap-in steel clip engages edge of hole in panel. (These holders can also be furnished to mount in .030" to .042" thick panel by specifying #4909 clip when ordering holder).
- Caution: Panel mount behind insulator and interlock to protect personnel from electrically "live" fuse and fuseholder.
- Fuses are U.L. Listed.
- Holders are U.L. recognized under the Components Program.

Fast-A	Fast-Acting			Dual-Element			
C			N				
Amps	Volts	Holder*	Amps	Voits	Holder*		
1/32			1/16				
1/16			1/10				
1/8	250	HC 3/10	15/100	250	HN ³ / ₁₀		
13/16	230		2/10	230	,		
1/4		(For 1/32 to 1/10A Fuses)	1/4		(For 1/16 to 3/10A Fuses)		
3/10	•	/10A Fuses)	3/10		710A FUSES)		
3/8	050	HC 1/2	4/10	050	HN 1/2		
1/2	250	(3/8-1/2A)	1/2	250	(1/10-1/2A)		
3/4	250	HC 3/4	6/10				
1	050	HC 1/4	7/10	050	HN 3/4		
11/4	250	(1-11/4A)	3/4	250	(⁷ ⁄10-¾ A)		
11/2		HC 11/4	8/10				
13/4	250	(1½-1¾A)	1	250	·HN 11/4		
2	050	HC 21/2	11/4		(%10-11/4A)		
2 1/2	250	(2-2½A)	11/2				
3		HC 31/2	16/10	125	HN 13/4 (11/2-13/4A)		
31/2	250	(3-3½A)	13/4		(172-17474)		
4		HC 5	2		HN 21/2		
5	250	(4-5A)	21/2	125	(2-21/2A)		
6		HC 7	28/10		-		
7	250	(6-7A)	3				
8		HC 10	32/10	125	HN 3½ (2½0-3½A)		
10	250	(8-10A)	31/2		(2710-372A)		
Dual-E	lemen	nt			HN 5		
N		·•	<u>4</u>	125	(4-5A)		
1/100		HN 3/10	6		HN 7		
1/32	250	(½100-½32A)	7	125	(6-7A)		

*Voltage rating of holder-250V.

Carton quantity: fuses-5; holders-10.

Shipping wt. per 100:

Fuses: Type C, 0 to 31/2 amps-0.5 lbs. (227g)

3.6 to 10 amps-0.6 lbs. (272g)

Type N, 0 to 11/4 amps-0.5 lbs (227g) 1/3 to 10 amps-0.6 lbs. (272g)

Fuseholders: 1.5 lbs. (680g)

(Data continued in next column.)

In-The-Line Fuse and Holder Combination

- Integral one-piece fuse and insulating knob.
- Type GMF, GRF, and GMQ fuses are **FUSETRON Dual-Element Time-Delay**
- For fluorescent fixtures, single-size Type GLR, GMF and GRF mount in single-size holder Type HLR.
- Varying size Type GLQ and GMQ fuses mount into Type **HLQ** size rejection holder to prevent
- These in-the-line fuses can be panel mounted when ordered with separate clip. Specify panel mounting clip #6374 for .043" to .062" thick panel and #4909 for .030" to .042" thick panel. Snap-in steel clip is inserted in mounting hole before holder is pushed into place.
- HLR and HLQ holder leads consist of 6" of insulated No. 18 solid copper wire.
- All fuses are U.L. Listed and CSA Listed.
- All holders are U.L. Recognized under Components Program and CSA Listed.

(Data continued in next column.)

Test Specifications

		 	
Load	Opening Time		
110%	4 Hours (min.)		
135%	1 Hour (max.)		

Non-De	elay		Dual-E	ement
GLR			GMF	
Amps	Volts	Holder	Amps	Volts
1/2			1/2	
1			^{6/} 10	
11/2			8/10	
16/10			1	
2			11/4	
21/2			16/10	000
3			2	300
4			21/2	
5	300	HLR (15A)	28/10	
6		(15A)	3	
7			32/10	
8			4	
9			GMQ	
10			1/2	300
12			6/10	
15			8/10	
GLQ			1	300
1/2	300	HLQ 1/2	11/4	
1			16/10	
11/2	300	HLQ	2	
16/10		1 6/ ₁₀	21/2	
2		HLQ	28/ ₁₀	300
21/2	300	3 ² / ₁₀	3	
3		J-710	3 ² / ₁₀	
4	300	HLQ5	4	300
5 6 7	300		Time-I	Delay
6			GMQ	
	300	HLQ8	5	300
8			61/4	300
9	300	HLQ10	GMF	
10			5	300

Amps	Volts	Holde
1/2		
6/10		
8/10		
1		
11/4		
16/10	200	
2	300	HLR (15A)
21/2		(15A)
28/10		
3		
32/10		
4		
GMQ		
1/2	300	HLQ 1/
6/10		
8/10		HLQ
1	300	16/ ₁₀
11/4		■ 710
16/10		_
2		
21/2		HLQ
2 8/ ₁₀	300	3 ² / ₁₀
3		,,
3 ² / ₁₀		
4	300	HLQ5
Time-I	Jelay	
GMQ 5		шаг
	300	HLQ5
61/4	300	HLQ8
GMF 5		
	300	HLR
61/4 GRF		
7	105	MI E
8	125	HLR
10		
nolders-		

Carton quantity: fuses-5

Shipping wt. per 100: GLR

GMF, GRF, GMQ-1.4 lbs (635g)

HLR, HLQ-3.13 lbs. (1.42kg)

Test Specifications

Load	Opening Time	
110%	4 Hours (min.)	
135%	1 Hour (max.)	

Mounting Hole

Stud Mounted Fuses

- For resistive, low transient circuits use Non-Time-Delay AFJ, AFS, AFX, and HBO Types.
- For high inrush circuits use FUSETRON **Dual-Element ACK, ACL,** and **HSK** Types.
- For mounting in blocks (see table below).

lon-Tin	ne-Dela	y		Dual-El	lemen
AFJ		НВО		ACK	
Amps	Volts	Amps	Volts	Amps	Volts
1/4		8		75	
1		10		80	
11/3		12		90	
2		15		100	
3		20		120	
5	050	25		140	
10	250	30		150	125
15		35		160	
20		40	32	175	
25		50		200	
30		60		225	
35		70		250	
AFS		75		300	
2		80		ACL	
3	250	100		30	
5		125		35	
10		150		40	
15		Dual-E	lement	50	
20		ACK		60	125
25	200	1			
30		2		80	
35		3		100	
40		5			
50		6		HSK	
60		10		20	
AFX		15		30	
40		20	125	40	
50		25		50	
60		30		60	32
70		35		70	02
75		40		80	
80	250	50		100	
100		60		125	
120		70		150	
125					
150					
200					

Dimensions a	nd Fus	ebloc	ks		
Fuse	Inche	s	mm		
Symbol	Slot	Dia	Slot	Dia.	Block
	†C-C	_	†C-C	_	No.
AFJ	21/2	9/16	63.5	14.3	4228
AFS	3	13/16	76.2	20.6	3411
AFX	31/2	11/16	88.9	27.0	2322
НВО	1	13/16	25.4	20.6	4202
ACK 1-15	21/4	9/16	57.1	14.3	2653
ACK 20-30	21/2	9/16	85.7	14.3	4228
ACK 35-60	3	13/16	76.2	20.6	3411
ACL 30-60	21/2	9/16	63.5	14.3	4228
ACL 70-120	23/4	13/16	69.9	20.6	3433
ACK 70-120	31/2	11/16	88.9	27.0	2322
ACK 140-200	3 ⁵ / ₈	11/16	92.1	27.0	3569
ACK 225-300	37/8	11/16	98.4	27.0	3578
HSK	1	13/16	25.4	20.6	4202

+Center-to-Center

Note: All fuses have a slot width of ¹⁷/₆₄" (6.75 mm) except ACK 140-200 and ACK 225-300. The slot width of the latter is ⁵/₁₆" (7.94 mm).

Test Specifications

Load	Opening Time
110%	4 Hours (min.)
135%	1 Hour (max.)
125%	2 Hours (max.)
200%	90 to 480 Seconds
200%	100 Seconds*
300%	35 Seconds*
500%	13 Seconds*
200%	60 Seconds*
300%	20 Seconds*
500%	7 Seconds*
	110% 135% 125% 200% 200% 300% 500% 200% 300%

*Approximately

Semiconductor Fuses

%₁₆" **x 2**" (14.3mm x 50.8mm)

- Very Fast-Acting fuses to protect diodes, SCR's, and other semiconductors.
- Extremely low I2t and Ip let-thru values very current-limiting.
- 200,000 amperes interrupting rating.
- FBP and FWP fuses have same electrical characteristics. 0-30 amp ratings FBP and FWP have same dimensions, but for higher amp ratings the dimensions are different.
- For mounting, see Bulletin SCF.
- U.L. recognized under the Components Program.
- For specifications, larger sizes and additional information, request Bulletin **SCF.**

FBP, FWP				
Amps	Volts			
15	(Other units are available in 1A to			
20	700	1000A sizes: 200V, 250V, 500V, and		
25	700			
30		700V.)		

Shipping carton: 10. Shipping wt. per 100: 9 oz. (255g).

TRON Rectifier Types

- Very Fast-Acting fuses to protect semiconductor rectifiers, SCR's, thyristors, and solid state devices.
- High degree of restriction of let-thru current.
- For mounting, see fuseholder and fuseblock indexes for 1/4" x 11/4" (6.35mm x 31.8mm) and 13/32" x 11/2" (10.3mm x 38.1mm) dimensions. For 13/32" x 11/2", also see fuseblocks 4514, 4525, and 4536.
- Request Bulletin **TRFS** for additional information and larger sizes.

(Data continued on following page.)

(Data continued in next column.)

19

Small Dimension Fuses, Fuseholders, Fuse Blocks, and Accessories

*	GBB		KAB, K	AX	KAW	
	Amps	Volts	Amps	Volts	Amps	Volts
	1/4		1/2		1	
-	1		1		2	
-	1/4		2		3	
	2		3		4	
-	3		4		5	
-	4		5		6	
-	5		6		7	
	6		7		8	130
•	7	60	8	250	9	
-	8		9		10	
-	9		10		12	
	10	•	12		15	
	12	.	15		20	
	15	•	171/2		25	
	20		20		30	
	25	•	25		KBC	
	30	•	30		1	
	KAA		KAC		2	
	1/2		1		3	
	1	•	2		4	
	2	•	3		5	
	3		4		6	
	4		5		7	
	5		6		8	600
	6		7		9	000
	7	130	8	600	10	
	8	- 100	9	000	12	
	9	_	10		15	
	10	_	12		171/2	
	12	_	15		20	
	15	_	171/2		25	
	20	_	20		30	
	25	_	25			
	30		30			

* U.L. recognized under the Components Program. Carton quantity:

GBB---5

KAA, KAB, KAC, KAW, KAX, KBC-10

Shipping wt. per 100: **GBB**—1 lb. (453g)

KAA-13/4 lbs. (794g)

KAB-31/2 lbs. (1588g)

KAC-43/4 lbs. (2155g)

KAW—13/4 lbs. (794g)

KAX-31/2 lbs (1588g)

KBC-13 lbs. (5897g)

Test Specifications

Load	Opening Time	
100%	4 Hours (min.)	
120% to 180%	1000 Seconds (max.)	
250%	1 Second (max.)	

Type ANN for Stud Mounting in Block

- Type **ANN** is very fast-acting fuse for protection of semiconductor devices.
- · Visual indication of link element.
- Mica window slot width ¹¹/₃₂" (8.7mm), distance between slot centers 2⁷/₁₆" (61.9mm).
- Mount in block 4164.

ANN		ANN		ANN		
Amps	Volts	Amps	Volts	Amps	Volts	
10		125		325		
35		150		350		
40		175		400		
50	130	200	130	475	130	
60	130	225	130	50	130	
80		250		600		
90		275		700		
100		300		800		

Carton quantity: 10.

Buss Heat Limiters

Element and Leaf Types

- For the protection of heating type appliances or other electrical apparatus when overheating would cause a fire hazard. (Limiters are not fuses.)
- High accuracy and consistency.
- Mounting: 1/4" x 11/4" ferrule types—see fuse-holder index.
 Pigtail Types—solder.
 Spade Types—No. 8 studs.
 Hole Types—No. 10 studs.

Element Types

- Have a maximum current rating 4A or 15A.
- Limiters of 4A at 480V available in opening temperatures of 175°, 200°, 250°, 285°, 350°, or 360°F (79°, 93°, 121°, 141°, 177°, 182°C).

Leaf Types

- Limiters of 15A at 240V ac or less; available in opening temperatures of 165°, 175°, 190°, 200°, 225°, 250°, 260°, 270°, 285°, 310°, 340°, 360°, 410°, 440°, or 460° F (74°, 79°, 88°, 93°, 107°, 121°, 127°, 132°, 141°, 154°, 171°, 182°, 210°, 227°, 236° C).
- For resistive loads of 30A at 600V ac or less; **WU** leaf types available in opening temperatures up to 490°F (254°C).

Note: See Bulletin PRO-1 for additional information on limiters.

Typic	Typical Element Types			
Sym- Ter-		bs	Ambient Tempera	
bol	minal	Amps	Holding F°/C°	† Opening F°/C°
TFA TFC	*Ferrule	15	200°/93°	200°/121°
TFC	~ Ferrule		235°/113°	285°/141°
TFL	*Radial	15	235°/113°	285°/141°

	Pigtail		200 / 110		
Typica	al Leaf	Тур	es		
WKJ	Spade		150°/66°	200°/93°	
WKK	(Side)	15	200°/93°	250°/121°	
WKH	(Side)		235°/113°	285°/141°	
WKL	Hole	15	310°/154°	360°/182°	
WKU	(Side)	15	235°/113°	285°/141°	
WQL	Spade	30	360°/182°	410°/210°	
WTK	(Side)	30	235°/113°	285°/141°	
WWE	Spade (End)	30	150°/66°	200°/93°	
WWX	Hole	30	200°/93°	250°/121°	
WWZ	(Side)	-50	260°/127°	310°/154°	

*¼" x 1¼" † With No Current Carton quantity: 10

Fuse Time-Current Characteristic Curves * and Temperature Effects

*Average Total Clearing Time

Effects of Ambient Temperatures

The operating characteristics of fuses are based on a nominal ambient temperature level. Higher ambients will, to some extent, reduce the current carrying compacity and the fuse opening time. Conversely, lower ambients result in a somewhat increased current carrying capacity and opening time.

As indicated in the Fusetron graph below, for example, an ambient of 100°F (40°C) reduces the current carrying capacity of this type of fuse by 5%.

The graphs below show the effects of ambient temperatures for Fusetron and "Non-Time-Delay" fuses.

Effects of Ambient Temperature on the Operating Characteristics of Fusetron Dual-Element Fuses. Nominal Fuse Ratings Based on Ambient Temperatures in the Range of 70°F (21.0°C) thru 80°F (26.7°C). Change in Opening Time Occurs with Loads of 500% (or less) of the Nominal Current Rating of the Fuse.

Effects of Ambient Temperatures on the Operating Characteristics of Non-Time-Delay Fuses. The Single Curve Reflects the Effects of Ambient Temperature on both the Current Carrying Capacity and Opening Time Relative to Ratings Based on a Nominal 75.2°F (24°C) Ambient.

Type ABC Fuses, \(^{1}/_{4}\)'' \times 1\(^{1}/_{4}\)'' (6.4mm x 31.8mm)

Type AGC Fuses, \(^1/_4" \times 1^1/_4" \) (6.4mm x 31.8mm)

CURRENT IN AMPERES

Type ANL Limiters

Type BAF, BAN Fuses, $^{13}/_{32}$ " x $^{11}/_{2}$ " (10.3mm x 38.1mm)

CURRENT IN AMPERES

Fusetron FNA Dual-Element, Indicating Fuses, $^{13}/_{32}$ " x $^{11}/_{2}$ " (10.3mm x 38.1mm)

Type FNQ Time-Delay Fuses, 13/32" x 11/2" (10.3mm x 38.1mm)

Fusetron MDX, and MDQ Dual-Element Fuses, ¼" x 1¼" (6.4mm x 31.8)

Type MTH Fuses, 1/4" x 11/4" (6.4mm x 31.8mm)

Fusetron FNQ Dual-Element Fuses,

13/₃₂" x 11/₂" (10.3mm x 38.1mm)

AMPERE RATINGS TIME IN SECONDS

CURRENT IN AMPERES

2 84 288

Type GBA, GLD Indicating Fuses, 1/4" x 11/4"

200

40 30

20

.04 .02 .01

TIME IN SECONDS

(6.4mm x 31.8mm)

CURRENT IN AMPERES

CURRENT IN AMPERES

2 84 885

Type GLH Fuses, 1/4" x 11/4" (6.4mm x 31.8mm)

AMPERE RATINGS

13/32" x 11/2" (10.3mm x 38.1mm)

CURRENT IN AMPERES

AMPERE RATINGS

Type MDA Time-Delay Fuses,

1/4" x 11/4" (6.4mm x 31.8mm).

CURRENT IN AMPERES

Fusetron MDL, MDV Dual-Element

Fuses, 1/4" x 11/4" (6.4mm x 31.8mm)

CURRENT IN AMPERES

300

200

40 30

TIME IN SECONDS

.04 .03

.02

Fusetron FNM Dual-Element Fuses.

13/32" x 11/2" (10.3mm x 38.1mm)

CURRENT IN AMPERES

Fuseholders—Panel Mounted (General Types)

Space Saver for $\frac{1}{4}$ " x $\frac{1}{4}$ " Fuses (6.4mm x 31.8mm)

- Extremely compact.
- 1/2" mounting hole.
- Extend only 1" behind panel.
- U.L. Recognized under the Components Program.
- CSA Listed.

Symbol	Amps	Volts	Features
HTA			Bayonet Type; easy grip
піа			knob
HMM HTA-DD			Screw Type; screw driver
			slotted knob
	15	250	Bayonet Type; 3/16"
	15	230	(4.8mm) quick-connect
			terminals
	НТА-НН		Bayonet Type; 1/4"
нта-нн			(6.4mm) quick-connect
			terminals

Note: When tooling up for mounting, get latest Bussmann drawing.

HTA

Snap-Lock for 1/4" x 11/4" and 1" Fuses (6.4mm x 31.8mm and 25.4mm)

- Can easily be pre-wired and quickly snapped into place from rear of panel.
- Mounts in ½" holes or knock outs of electrical hoxes
- For panels 0.025" to 0.85" thick (0.64mm to 21.6mm).
- U.L. Recognized under Components Program.

(Data continued in next column.)

Symbol	Amps	Volts	Features	
*HTA-00	15	250	For 1/4" x 11/4" fuses; a	
*HIA-00	15 250	15 250	space saver	space saver
HLD-00	15	250	Visual indicating for 1/4"	
HED-OO	15		x 11/4" GBA fuses	
*HKP-00	30	250	Standard, for 1/4" x 11/4"	
* HJM-00	5	125	fuses	

*CSA Listed.

Note: When tooling up for mounting, get latest Bussmann drawing.

(See Mounting Arrangement A, end of Section)

RFI Shielded for 1/4" x 1" and 11/4" Fuses

(16.4mm x 25.4 and 31.8mm)

- Prevents radio frequency interference.
- Provide both shielding and grounding.
- Type **FHN 55W** is military version of Type **HMR.** Meets MIL-F-19207/36.

Symbol	Amps	Volts	Fuse		
HMR	30	250	250 1/2	1/4" x 11/4"	
HMS	30	230	1⁄4" x 1"		

Note: When tooling up for mounting, get latest Bussmann drawing.

(See Mounting Arrangement A, end of Section)

Standard for 1/4" x 11/4" Fuses with Bayonet Type Knobs (6.4mm x 31.8mm)

- Bayonet type knob.
- . Spring pressure contact.
- Vibration resistant.
- For panels up to 5/16" (7.9mm) thick.
- Locking keys available [specify $^{1}/_{16}$ " (1.6mm) for panels up to $^{1}/_{8}$ " (3.2mm) thick; $^{1}/_{8}$ " for panels in excess of $^{1}/_{8}$ "].
- Military version of HKP is FHN 26G1; HJM is FHN 31G1.

Symbol	Amps	Volts	Features
*HKP			For 1/4" x 11/4" fuses;
" HKP	30		high amps
HKP-CC	30	250	[-CC, 3/32" (2.4mm)
HKP-CC			shorter behind panel]
*HKP-HH	15	-	Quick connect terminals
*HJM	5		For 1/4" x 1" fuses;
			high amps
HJM-CC	_	125	[-CC, ³ / ₃₂ " (2.4mm)
	5		shorter behind panel]
нјм-нн			Quick connect terminals

*U.L. Recognized under the Components Program. Notes: HKP (30A) and HKP-HH (15A) CSA Listed;

HJM and HJM-HH at 5A, 125V.

When tooling up for mounting, get latest Bussmann drawing.

Carton quantity: 10

Shipping wt. per 100: 3.25 lbs. (1.47kg)

HK

(See Mounting Arrangement A. end of Section)

HJ

(See Mounting Arrangement A, end of Section)

HPF Series—Standard For ¹³/₃₂" (10.3mm) Diameter Fuses by Various Lengths

- One piece side terminal and threaded insert eliminates two-piece solder fabrication.
- Combination ¹/₄" quick-connect/solder terminals for increased flexibility. (Straight end)
- Screw type knob.
- HPF-RR has U.L. Class CC rejection feature.
- U.L. Recognized under The Components Program.
- HPF Series functionally replaces HPC Series.

Symbol	Amps	Volts	Fuse
HPF	30	600	11/2" (38.1mm)
HPF-L	5	000	13/8" (34.9mm)
HPF-EE	15		SC 0 to 15, 15/16" (33.3mm)
HPF-JJ	20	300	SC 20; 113/32" (35.7mm)
HPF-FF	30		SC 25 & 30; 15/8" (41.3mm)
HPF-RR	30	600	KTK-R

Carton quantity: 10 Shipping wt. per 100: 63/4 lbs. (3.06kg)

(See Mounting Arrangement C, end of Section)

Standard for $^{13}\!/_{\!32}$ "D x $^{13}\!/_{\!8}$ " and $^{11}\!/_{\!2}$ " Fuses and Type SC and KTK-R Fuses

(10.3mmD x 34.5mm and 38.1mm)

- Quick-connect terminals (1/4" wide) (6.4mm wide).
- Terminals can be used as solder type. (Holders with standard solder type terminals available).
- Bayonet type knob.

(Data continued in next column.)

Symbol	Amps	Volts	Fuse
HPS-L	5	600	13/8"
HPS	30	600	11/2"
HPS-EE	15		SC 0 to 15 (15/16")
HPS-JJ	20	300	SC 20 (1 ¹³ / ₃₂ ")
HPS-FF	30		SC25 & 30 (1%")
HPS-RR	20	600	KTK-R

- * U.L. Recognized under the Components Program.
- † U.L. Recognized under the Components Program as suitable for branch circuit protection.

Notes: HPS CSA Listed at 25A.

When tooling up for mounting, get latest Bussmann drawing.

(See Mounting Arrangement C, end of Section)

Standard for ^{13}/_{32}" x 1^{1}/_{2}" Fuses (10.3mm x 38.1mm)

- For supplementary protection (transformers, relays, ballasts, solenoids, small motors, etc.).
- Mounts in 1/2"(12.7mm) knock-out with lock nut.
- Screw type knob.

Symbol	Amps	Volts	Terminals		
HPL-B	30	600	Solder type		
HPM	30	000	1/4" quick-connect	•	

U.L. Recognized under the Components Program. CSA Listed.

Note: When tooling up for mounting, get latest Bussmann drawing.

Carton Quantity: 50 Shipping wt. per 100:

(See Mounting Arrangement B, end of Section)

*O-ring seal is incorporated in panel flange.

Standard for ^{13}/_{32}" x 1^{1}/_{2}" Fuses (10.3mm x 38.1mm)

- Combination quick-connect terminals, 1/4" (6.4mm).
- Mount in ½" (12.7mm) knock-outs with lock nut.
- For supplementary protection of transformers, relays, ballasts, and small motors.
- U.L. Recognized under the Components Program,
- Bayonet type knob.

Symbol	Amps	Voits	Features
HPG			
HPD	30	600	Quick-connect side terminal (¼"); short rear solder terminal. (Length ³/16" shorter than HPG).

(See Mounting Arrangement B, end of Section)

Waterproof for $^{13}/_{32}$ " x $^{11}/_2$ " **Fuses** (10.3mm x 38.1mm)

- "O" ring in flange for underwater waterproofing.
- For panels up to 1/4" (6.4mm) thick.
- Military version designated FHN23W.
- U.L. Recognized under the Components Program.

(Data continued on following page.)

25

Symbol	Amps	Volts	Features	
HPC-D	30	600	Waterproof	

Note: When tooling up for mounting, get latest Bussmann drawing.

Carton quantity: 10

Shipping wt. per 100: 7.5 lbs (3.40kg).

(See Mounting Arrangement C, end of Section)

Fuseholders—Panel Mounted (Indicating Types)

For Pin-Indicating Fuses (1/4" x 11/4") (6.4mm x 31.8mm)

- Bayonet type transparent knob to permit visual indication of opened pin indicating fuses.
- Locking keys available for drilled holes.

Symbol	Amps	Volts	Features
*HLD	-		Solder terminals
HLD-HH	15	250	With quick-connect ter- minals

*U.L. Recognized under the Components Program. Note: When tooling up for mounting, get the latest Bussmann drawing.

Carton quantity: 10. Shipping wt. per 100:

(See Mounting Arrangement A, end of Section)

For Pin-Indicating Fuses ($^{13}/_{32}$ " x $^{11}/_{2}$ ") (10.3mm x 38.1mm)

- Transparent screw type knob for visual indication.
- One piece side terminal and threaded insert. Eliminates two-piece solder fabrication.
- Combination 1/4" quick-connect/solder terminals for increased flexibility.
- Straight end terminal.
- U.L. Recognized under The Components Program.
- Replaces HPC-C and HPC-CK.

Symbol	Amps	Volts	Fuse
HPF-C	15	250	Transparent Knob

Carton quantity: 10

Shipping wt. per 100: 63/4 lbs. (3.06kg).

(See Mounting Arrangement C, end of Section)

Lamp Indicating Type for $\frac{1}{4}$ "D x 1" and $\frac{1}{4}$ " Fuses

(6.4mmD x 25.4mm and 31.8mm)

- HJL for ¼" x 1" fuses.
- **HK** for ¼" x 1¼" fuses.
- For panels up to 3/16" 4.8mm) thick.
- Bayonet type knob.
- Vibration resistant.
- Military versions available such as FHL17G1 and FHL18G1-1 thru -9.
- Drip-proof types also available.
- Knobs are octagonal (Oct) or flat-sided (F-S).

(Data continued in next column.)

Complete I	A	Lamp			Knob	
Symbol	Amps	Volts	Type	Color	Type	
HJL	20	90			Oct	
HKL	45	to	Neon	Clear	Oct	
HKL-X	15	250			F-S	
HKR		22 to 30	In-	Amber	Oct	
НКТ	20	13 to 22	can-	Arribei	Oct	
HKU	20	4 to 6	des-	Red	Oct	
HKX		22 to 33	cent	Amber	F-S	

*U.L. Recognized under the Components Program and CSA Listed.

Note: When tooling up for mounting, get latest Bussmann drawing.

Carton quantity: 10

Shipping wt per 100: 5.125 lbs (2.32kg).

(See Mounting Arrangement D, end of Section)

Lamp Indicating Type with Signal Activation for 1/4" x 11/4" GLD 3/4 to 5A Fuses

(6.4mm x 31.8mm)

- Provides external signal indication when fuse opens.
- For panels up to 1/2" (2.7mm) thick.
- Amber knob.

Symbol	Amps	Volts	Features
HKA		<u> </u>	_
HKA-W	5	125	With "O" ring for drip proofing.

Bulb Resistance: 700 ohms at 24V; 500 ohms at 10V.

Note: When tooling up for mounting, get latest Bussmann drawing.

Carton quantity: 10.

Shipping wt. per 100: 5.25 lbs. (2.38kg).

(See Mounting Arrangement D, end of Section)

HKA

*External signal circuit must have sufficient impedance to limit lamp voltage to 10-24 volts AC or DC.

Wiring Diagram

Lamp Indicating Type for $\frac{1}{4}$ " x $1\frac{1}{4}$ " and 13/32" x 11/2" Fuses

(6.4mm x 31.8mm and 10.3mm x 38.1mm)

- · Fuses mount in fuse clips of a fuse carrier.
- Threaded stud terminals with tooth lock washers and hex nuts
- · Clear transparent, bayonet knobs for maximum visibility of indicating light.
- Neon lamp.
- For panels up to 1/8" (3.2mm) thick.
- · Drip proof.
- · Military versions available made to

MIL-F-19207

HGA-C designated **FHL 10U.** HGB-C designated FHL 11U. **HGC** designated **FHL** 12U.

•	Current	rating—30	amps.

Symbol	Lamp	Ohms	No. of	Fuse	*Knob
	Volts		Poles	Size"	Type
HGA	90		2		Oct
HGA-C		1001/	2		F-S
HGB	to	120K	1	1/4 x 11/4	Oct
HGB-C	250		1		F-S
HGC	90 to 500	330K	1	¹³ / ₃₂ x 1 ¹ / ₂	Oct

*"Oct" (Octagonal); "F-S" (Flat-Sided).

Note: When tooling up for mounting, get latest Bussmann drawing.

Carton quantity: 10.

Shipping wt. per 100:

HGA, HGA-C-30.5 lbs.(14.29kg) **HGB, HGB-C**—20.5 lbs.(9.30kg)

HGC-30 lb.(13.61kg)

(Data continued in next column.)

Fuseholders, Panel Mounted or In-The-Line

For Mounting Type SFE and 1/4"D x 11/4", 11/16", 7/8", 3/4" Fuses

(6.4mmD x 31.8mm, 27.0mm, 22.2mm, 19.5mm)

- Maximum current rating 20 amps; voltage rating 32 volts.
- Bayonet type knob.
- Holders can be mounted in panels up to 5/16" (7.9mm) thick with the BUSS No. 9969 spring
- Holders available as complete assembly consisting of in-the-line holder with #14 insulated wire, 8" or 19" (203,2mm or 482,6mm) length. installed fuse (Type SFE), and BUSS No. 9969 spring nut.
- · Available also as in-the-line fuse holder only, with lead wire contacts. (Panel mounting spring nut, No. 9969, must be ordered as a separate item). Series HH and HI holders have metal holding ears on knob. Series HD and HA holders have phenolic holding ears on knob.

Complete Assembly With Fuse and Wire Lead

Wire	Symbols		
Length	*Ass'y	Fuse	† Holder
	HRJ	SFE 20	HHJ
	HRI	SFE 14	нні
19″	HRH	SFE 9	ннн
(#14	HRE	SFE 71/2	ннн
Wire)	HRG	SFE 6	HIG
	HRF	SFE 4	HIF
_	НМЈ	SFE 20	HDJ
	нмі	SFE 14	HDI
8"	нмн	SFE 9	HDH
(#14	HME	SFE 71/2	HDH
Wire)	HMG	SFE 6	HAG
	HMF	SFE 4	HAF

*Catalog number for ordering complete holder assembly

†See next page for complete catalog number.

27

Solid/Stranded

Fuseholder and Wire Contacts Only

Wire Size Conta	Fuse	
#18 to #20	#14 to #16	Lgth.
Pheno Metal lic Ears Ears		_
HDJ-A HHJ-A	HDJ-B HHJ-B	11/4"
HDI-A HHI-A	HDI-B HHI-B	1 ¹ / ₁₆ "
HDH-A HHH-A	HDH-B HHH-E	7/8"
HAG-A HIG-A	HAG-B HIG-B	3/4"
HAF-A HIF-A	HAF-B HIF-B	5/8"

Carton quantity: 10

Shipping Wt. per 100:

HDJ-, DHI-, HDH-: 2.3 lbs. (1.04kg).

HAG-, HAF-: 1.8 lbs. (0.82kg).

HHJ-, HHI-, HHH-: 2.5 lbs. (1.13kg).

HIG-, HIF-: 2.0 lbs. (0.91kg).

HRJ, HRK, HRH, HRE: 7.2 lbs. (3.27kg).

HRG, HRF: 6.6 lbs. (2.99kg).

HMJ, HMI, HMH, HME: 5.4 lbs. (2.45kg).

HMG, HMF: 5.0 lbs. (2.27kg).

Fuseholders— In-the-line

Universal for \frac{1}{4}"D x \frac{5}{8}" to \frac{1}{4}" Fuses (6.4mmD x 15.9mm to 31.8mm)

- Accepts fuses of different lengths via the use of different size springs.
- Furnished with three springs.
- Holders includes 8" (203mm) wire lead staked and soldered to holder contacts.

Symbol	Amps	Volts	
HRK	15	32	

Carton quantity: 10

Weight per carton: 0.5 lbs. (227g).

Waterproof for 1/4" x 11/4" Fuses (6.4mm x 31.8mm)

- · Waterproof for exposed locations.
- Accepts #16 to #12 copper wire.

Symbol	Amps	Volts	Terminals	
HFA	-00	050	Crimp	
HFA-HH	20	250	Quick-connect	

Carton quantity: **HFA**—50 **HFA-HH**—5

Waterproof Tron Fuseholders for $^{13}/_{32}$ " x $1^{1}/_{2}$ ", Types SC and HVW Fuses

(10.3mm x 38.1mm)

- · Watertight for exposed locations.
- Available for wide range of sizes of copper and aluminum wire and cable.
- Holders available with "break-away" receptacles and insulating boots.
- For complete data on Tron in-the-line fuseholders, see BUSS Bulletin SFH-11.
- To order fuseholders, specify symbol of holder for proper fuse size, suffix to holder symbol letter designation for the size terminal needed for "load" side wire, and thirdly, the size terminal needed for the "line" size wire.

(See table at bottom for terminal symbols). For example, the complete ordering catalog number for a fuseholder (13/32" x 11/2" fuse), with a #10 copper wire on "load" side and two #6 wires on the "line" side would be **HEB-AD.**

Symbol	Amps	Volts	Fuse Size
*HEB			
HET	30	600	13/32" x 11/2
HEX			
HEC	30		SC 25 to SC 30
*HEH	20	300	SC 20
HEG	15		SC 0 to SC 15
HEJ	60	300	SC 35 to SC 60
NEJ	6	1200	HVW 1/2 to HVW 6

- *CSA Listed HEB (30A), and HEH (15A).
- † HET is same as HEB except permanently attached solid neutral. HEX is same as HEB except is 2-pole

Terminals for HEB and HEJ Fuseholders

Crimp Type for Copper Wire					
Symbol	Wire Size	Wire Type			
A	One #14, #12, #10, or #8 Two #14 or #12	Solid/Stranded			
	One #6 or #4	Solid			
В	One #6	Stranded			
	Two #10	Solid/Stranded			
c	Two #8	Solid/Stranded			
C	One #4	Stranded			
D	Two #6	Solid/Stranded			
U	One #2	Stranded			
E	Two #4	Solid/Stranded			

Set-Screw Type for Copper Wire J One #12 to #2

K	Two #12 to #2	Solid/Stranded
Set-S	crew Type for Aluminum W	/ire
<u> </u>	One #12 to #2	Solid/Stranded
Y	Two #12 to #2	Solid/Stranded
w	Solid copper terminal	
W	for break-away receptacle	_

A, B, C, D, E, and W CSA Listed with HEB and HEH.

Panel Mounting Arrangements

Punched Hole

Drilled Hole

(6.8mm) .500"(1 .510"(1 Locking disc ¾32" (2.4mm) dia. thickness not greater than panel thickness

Mounting Hole A

Punched Hole

HFA

Mounting Hole B

Flange Rear of Panel Flange Front of Panel

Mounting Hole C

Mounting Hole D

Small Dimension Fuseblocks

 $1/4'' \times 11/4''$ —Series 8000

28 (New)

For low-cost, tight cluster mounting of ¼" x 1¼" fuses.
 Single-pole to 12 pole units ● Break-a-way design permits Fuse Block to be sub-divided with simple finger pressure.
 ● All types of terminal configurations.
 ● 300 volt rating.
 ● U.L. Recognized under Components Program.
 ● CSA listed ● A host of exclusive Buss features.
 ● Blocks are molded glass-filled, thermoplastic polyester. Clips are spring-bronze; Albaloy-plated.

A Full Line Of Terminal Configurations

Solder 0°

Quick Connect

3/16 Inch

1/4 Inch

Exclusive Features

Screw terminal models have "anti-pivot" side barriers. Prevents lead connectors from twisting to side when tightening terminal screws.

Solid Mount Clips

Patented Buss clip design does not rely on fuse for solid "no-wobble" mounting.

Totally Sealed Base

The totally sealed periphery of the Series 8000 base prevents possible shorts to the chassis by metal chips. Solid-designed side barriers offer similar short-circuit protection.

Full 1/4" base of all Buss Series 8000 fuse blocks provide a safe dielectric up to the rated voltage of 300 volts. Meets U.L. standards.

Spec. Grade Terminal Tabs

The ¼" quick-connect terminals are designed with a full 0.032" thick connector tab—no "waffles". Provides a complete gripping surface for the connectors and gives them high engagement strength. This patented design assures that connectors stay put. Large contact surface also offers highest electrical conductivity. Approved by all manufacturers of connectors.

Small Dimension Fuseblocks

1/4" × 11/4"—Series 8000

Catalog Data

Catalog Code

atalog Numbo

Terminals			*Basic	Poles
Туре	Size	Angle	Cat. No.	(Suffix)
Solder		(0°)	S-8001-	
		40°	S-8002-	_
	3/16"	(0°)	S-8101-	_
Quick-		40°	S-8102-	1-12
Connect		(0°)	S-8201-	_
	1/4"	40°	S-8202-	_
		Side	S-8203	_
Screw			S-8300-	_

Carton Quantity: 10; shelf package: 100. Bulk Carton: Single-pole and 2-pole fuse blocks—1,000;

Multiple-pole fuse blocks—3-8 pole: 200; 9-12 pole: 50.
*When ordering bulk quantities, prefix "BK/" to catalog number; i.e., "BK/S-8001-12".

Cross Reference (Standard Fuseblocks Vs. Series 8000 Fuseblocks.

13: TELLES COOC GO	CDIOOKSI
Standard Blocks (No Side Barriers)	Series 8000 Blocks
2245-1 thru -12	S-8002-1 thru -12
2430-1 thru -12	S-8202-1 thru -12
2480-1 thru -12	S-8102-1 thru -12
2799	S-8101-1
2839	S-8202-1
2841	S-8201-1
3823-1 thru -12	S-8002-1 thru -12
3833-1 thru -12	S-8301-1 thru -12
3998	S-8002-1
4405	S-8001-1
4407	S-8301-1
4408	S-8001-2
4512	S-8301-1

Current Ratings.

Series	Terminal	Amperes	
8000	Solder	25A	
8100	3/16" Quick Connect	15A	
8200	1/4" Quick Connect	20A	
8300	Screw	304	

Dimensional and Mounting Data

Single Pole

Multiple Pole

Dimensions.

No. of	Inche	s	Millime	ters
Poles		В	A	В
1	*	*	*	*
2	11/8"	5/8"	28.6	15.9
3	13/4"	11/4"	44.4	31.8
4	23/8"	17/8"	60.3	47.6
2 3 4 5 6 7	3"	21/2"	76.2	63.5
6	35%"	31/8"	92.1	79.4
7	41/4"	3¾"	108.0	95.2
8	47/8"	43/8"	123.8	111.1
9	51/2"	5"	139.7	127.0
10	61/8"	5%"	155.6	142.9
11	6¾"	61/4"	171.4	158.8
12	73/8"	67/s"	187.3	174.6
See outlir	ne drawing	js.		

Small Dimension Fuses, Fuseholders, Fuse Blocks, and Accessories (For 1/4" x 11/4" Fuses)

Fuse Blocks for 1/4" x 11/4" FUSES (6.4mm x 31.8mm)

Multiple Pole

(Rated 30 Amps, 250 Volts; Phenolic Base; Spring Bronze, Albaloy Plated Clips)

Series 3823—Solder Terminals

Cat. No.	No. of	*Base Le	ength	
_	Poles	Inches	mm	
3823-1	1	1/2"	12.7	
3823-2	2	11/8"	28.6	
3823-3	3	13/4"	44.5	
3823-4	4	23/8"	60.3	
3823-5	5	3"	76.2	
3823-6	6	35/8"	92.1	
3823-7	7	41/4"	108.0	
3823-8	8	47/8"	123.8	
3823-9	9	51/2"	139.7	
3823-10	10	61/8"	155.6	
3823-11	11	63/4"	171.5	
3823-12	12	73/8"	187.3	

^{*}Small phenolic base; base width 1%" (41.3mm).

Type 2245—Solder Terminals (Beryllium copper clips)

(Data continued in next column.)

Cat. No.	No. of Poles	† Base Le Inches	ength mm	
* 2245-1	1	1/2"	12.7	
* 2245-2	2	11/8"	28.6	
* 2245-3	3	13/4"	44.5	
2245-4	4	23/8"	60.3	
2245-5	5	3"	76.2	
2245-6	6	3%"	92.1	
2245-7	7	41/4"	108.0	
2245-8	8	47/8"	123.8	
2245-9	9	51/2"	139.7	
2245-10	10	61/8"	155.6	
2245-11	11	6¾"	171.5	
2245-12	12	73/8"	187.3	

- * CSA Listed at 15 amps, 250 volts.
- † Small phenolic base; base width 15/4" (41.3mm).

U.L. Recognized under Components Program.

Type 3833—Screw Terminals

Cat. No.	No. of	*Base Le	ength	
	Poles	Inches	mm	
3833-1	1	25/32"	19.8	
3833-2	2	111/16"	42.9	
3833-3	3	219/32"	65.9	
3833-4	4	31/2"	88.9	
3833-5	5	413/32"	111.9	
3833-6	6	55/16"	134.9	
3833-7	7	6 ⁷ / ₃₂ "	158.0	
3833-8	8	71/8"	181.0	
3833-9	9	81/32"	204.0	
3833-10	10	815/16"	227.0	_
3833-11	11	927/32"	250.0	
3833-12	12	103/4"	273.1	

*Full phenolic base: base width 23/8" (60.3mm).

U.L. Recognized under Components Program.

Type 2480—Quick Connect Terminals-3/16" (4.8mm)

Cat. No.	No. of	*Base Le	ength	
	Poles	Inches	mm	
2480-1	1	12"	12.7	
2430-1	2	11/8"	28.6	
2480-3	3	13/4"	44.5	
2480-4	4	23/s"	60.3	
2480-5	5	3"	76.2	
2480-6	6	35/8"	92.1	
2480-7	7	41/4"	108.0	
2480-8	8	41/8"	123.8	
2480-9	9	51/2"	139.7	
2480-10	10	61/8"	155.6	
2480-11	11	6¾"	171.5	
2480-12	12	73/8"	187.3	

*Small phenolic base; base width 15/8" (41.3mm).

Type 2430—Quick Connect Terminals—1/4" (6.4mm)

Cat. No.	No. of	*Base Le	ength		
	Poles	Inches	12.7		
2430-1	1	1/2"			
2430-2	2	11/8"	28.6		
2430-3	3	13/4"	44.5		
2430-4	4	23/8"	60.3		
2430-5	5	3"	76.2		
2430-6	6	35/8"	92.1		
2430-7	7	41/4"	108.0		
2430-8	8	47/8"	123.8		
2430-9	9	51/2"	139.7		
2430-10	10	61/8"	155.6		
2430-11	11	6¾"	171.5		
2430-12	12	73/8"	187.3		

^{*}Small phenolic base; base width 15/8" (41.3mm).

Small Dimension Fuses, Fuseholders, Fuse Blocks, and Accessories (For 1/4" x 11/4" Fuses)

Single Pole

(Unless Otherwise Indicated - Small Bakelite Base; Spring-Bronze, Albaloy-Plated Clips; Rated 30 Amps, 250 Volts; Base Width 1/2") (12.7mm)

No. 4574—Spare Fuse Block

No. 4405 One Piece Solder **Terminals**

No. 3998—One Piece Solder **Terminals**

No. 4406—Side Solder Terminals

No. 2799—Quick Connect **Terminals**, $\frac{3}{16}$ " (4.8mm)

No. 2841—Quick Connect **Terminals, 1/4"** (6.4mm)

No. 2839—Quick Connect Terminals, 1/4" (6.4mm) (Rated 15 Amps; U.L. Recognized under

No. 2499—Side Quick Connect **Terminals, 1/4"** (6.4mm)

(Rated 15 Amps; U.L. Recognized under Components Program)

No. 4408—Solder Terminals; 2-Pole (Base width 1") (25.4mm)

No. 4407—Screw Terminals

(For 1/4" x 1 1/4" Fuses)

No. 4512—Screw Terminals

(Full bakelite base; base width, 3/4") (19.00mm)

(For 1/4" x 11/4" Fuses)

No. 4396-Full Porcelain Base with **Side Barrier**

(Screw terminals; base width 59/64", 23.5mm; rated 15A, 250V; U.L. Recognized under the Components Program)

No. 4161—Full Porcelain Base with **Side Barriers**

(2-pole; screw terminals; base width 15/16" 33.3mm; 15A, 250V; U.L. Recognized under the Components Program)

Fuse Blocks for $^{13}/_{32}$ " x 13/8" Fuses

(10.3mm x 34.9mm)

No. 3845—Single Pole; Full Porcelain Base with Side Barrier

(Screw terminals; spring bronze albaloy plated clips; base width 15/32", 29.4mm; Rated 5A, 600V; CSA Listed).

U.L. Recognized under the Components Program.

Fuse Blocks for ¹³/₃₂" x 1 1/2" Fuses (10.3mm x 38.1mm)

Without Side Barriers (Beryllium Copper, Silver Plated Clips; Rated 30A, 250V)

Type 3835---Multiple Pole: Screw **Terminals**

Cat. No.	No. of	*Base Le	ngth	
	Poles	Inches	mm	
3835-1	1	27/32"	21.4	
3835-2	2	113/16"	46.0	
3835-3	3.	225/32"	70.6	
3835-4	4	33/4"	95.2	
3835-5	5	423/32"	119.9	_
3835-6	6	511/16"	144.5	
3835-7	7	621/32"	169.0	
3835-8	8	75/8"	193.7	
3835-9	9	819/32"	218.8	
3835-10	10	99/16"	242.9	_
3835-11	11	1017/32"	267.5	
3835-12	12	111/2"	292.1	

^{*}Full phenolic base; base width 2¾" (69.9mm).

Small Dimension Fuses, Fuseholders, Fuse Blocks, and Accessories (For 13/32" x 11/2" Fuses)

No. 4421—Single Pole; Solder **Terminals**

(Small Base; Base Width, 5%") (15.9mm)

No. 4515—Single Pole; Screw **Terminals**

(Full Bakelite Base, Base Width, 3/4") (19mm)

With Side Barriers

(Molded Phenolic Base,; Screw or Pressure Terminals; Spring Bronze, Albaloy Plated Clips; Rated 30A, 600V; U.L. Recognized under Component Program)

No.	Fuse B	ock C	at. No.	Base W	idth	
of	Versus	Term	Inches	mm		
Poles	Screw	Box	*Teeter			
1	2807	2810	2096	55/64"	21.8	
2	2808	2811	2097	15/8"	41.3	
3	2809	2812	2098	23/8"	60.3	

* Panhead teeter screw provides a secure terminal connection similar to the box type pressure terminal.

No. 2807

No. 2808

No. 2809

No. 2810

No. 2811

No. 2812

Add-On Fuse Blocks

No. 3743—Block with One Pole

(Single pole blocks lock into each other and can be added at any time. Each has end barrier. Molded phénolic base; screw terminal; beryllium copper, bright-dipped clips. Rated 30 amps, 600 volts. U.L. Recognized under Company and Program. When ordering, specify "one-pole only").

No. 3742—End Barrier Only

No. 3723—Marking Strip

9%" (23.8cm) lengths for add-on blocks.

Fuse Blocks with Porcelain Base

(With Side Barriers; Screw Terminals; Beryllium Copper, Silver-plated clips. Rated 30 Amps).

No. 3792—Single Pole, 600 Volts (Base width 15/32", 29.4mm)

(For 13/32" x 11/2" Fuses)

No. 4439—Three Pole, 250 Volts Base width $2^{15}/_{16}$ ", 74.6mm)

(For 13/32" x 11/2" Fuses)

BUSS Signal Blocks for Pin Indicating Fuses and Devices

No. 3839—Four Pole Signal-Fuse Block

(Screw terminals; beryllium copper, silverplated slips; Fuse case size, ¹³/₃₂" x 1½", 10.3mm x 38.1mm; accepts **FNA, MIC** and **MIN** units. Block rating, 30A, 250V. Base width 2¹¹/₁₆", 68.3mm)

(For 13/32" x 11/2" Fuses)

Blocks with Miniture Signaling Switches for BUSS KAZ Actuator Devices (For 13/2" x 2" Fuses)

Cat.	No.	Dimen	sions ± 1	/ ₃₂ " (0.8mm)							
No.	of	Inches	Inches/(mm's)								
	Poles	A	В	С							
	4	13/4		21/2							
2778	1	(44.5)	_	(63.5)							
		55/16	413/16	3							
2837	2	(134.9)	(122.2)	(76.2)							
0000		6 ⁵ / ₈	61/8	3							
2838	3 .	(168.3)	(155.6)	(76.2)							
0700 0	J .	53/8	47/8	3							
2788-3		(136.5)	(123.8)	(76.2)							

U.L. Recognized under Components Program.

Note: **2788-2** (2 pole) thru **2788-5** (5 pole) also available.

Fuse Blocks for High Voltage Instrument Type Fuses

For BUSS High Voltage Fuses (1000 to 10,000 Volts)

(Bakelite base; alloy plated terminals)

For	Block	* Dimen	sions								
Fuse	Cat.	Inches/(mm's)									
Sym.	No.	A	В	С	Base Width						
HVA	4528	33/4"	11/8"	3/8"	1"						
HVR		(95.3)	(28.6)	(9.5)	(25.4)						
HVB	4529	5 ¹ / ₄ "	11/8"	3/8"	1"						
HVT	4529	(133.4)	(28.6)	(9.5)	(25.4)						
HVJ	4530	61/2"	121/32"	1/2"	13/8"						
HVV	4530	(165.1)	(42.1)	(12.7)	(34.9)						
HVL	2960	117/16"	129/32"	3/4"	13/8"						
HVX	4500	(290.5)	(48.4)	(19.1)	(34.9)						

*Two mounting holes: Use #8 screws on blocks **4528** and **4529**; #10 screws on blocks **4530** and **2960**.

Fuse Blocks for ANN Fuses and ANL Limiters

No. 4164

Single pole; stud terminal; free running lock nut; molded alkyd base; metal components cadmium plated. Stud center-to-center dimensions $2^{7/16}$ " (68.3mm); base width $^{15/16}$ " (23.8mm); length $3^{13/32}$ " (86.5mm); height $1^{37/64}$ " (40.1mm)

Fuse Blocks for Rectifier Fuses

Figure 1.

Figure 2.

Tron Rectifier Fuseblocks

Fuse	Volts	Amps 🖔 Block _ Dimensions in Inches					Dimensions in Metric (mm)																
			Pog		Ë	A	В	С	*D	*E	F	G	Н	J	A	В	С	*D	*E	F	G	H	J
(AA		1/2	.1	4515	1		3/4		1/4	3/8						19.1		6.4	9.5				
or	130	to	2	4525	~	29/16	15/16	#6		5/ ₈	3/16	15/16	#8	19/16	65.1	33.3	3.5	_	- 15.9	4.8	23.8	4.2	39.7
KAW		30	3	4535	~		21/16		_	- 78						52.4	_	_	- 15.5				
KAB	_	1	1	4386	1	31/4	3/4		1/4	3/8	3/8	15/16			82.6	19.1		6.4	9.5	9.5	33.3		
OT	250	to	2	4287	. 2	31/2	2	#6		- 1	1/4	13/16	#8	21/16	88.9	50.8	3.5	_	– 25.4	6.4	30.2	4.2	52.4
KAX		30	3	3959	- 2	3./2	3	_	_		3/8	15/16			00.9	76.2		_	- 25.4	9.5	33.3		

Mounting holes are counterbored for round-head or filster-head screws. All others are countersunk for flat-head screws.

Fuse Blocks for SC Fuses

- Molded one-piece thermosetting plastic with side barriers for isolation.
- Screw type terminals are furnished with No. 10-32 pan headwire binding type screw. Terminal will take any size wire proper for the ampere rating of the fuse.
- 0 to 30 ampere solderless lug terminals takes 6 to 14 gauge wire—60 ampere solderless lug terminals take 4 to 14 gauge wire.
- "Teeter" screw terminals are a combination screw terminal with a basically flat square terminal that "teeters" to adapt the wires to the terminal. Takes 14 to 10 gauge wire.
- U.L. Listed.

Class G Dimension Fuseblocks (For Type SC Fuses)

Volts	Amps	S	Fusebloo	cks			Din	ensi	ons in	Inch	es	Dim	ensio	ns (n	nm)	
		픙	Termina	Туре		Ę	A	В	C	D	E	A	В	C	D	E
		۵.	*Teeter	Screw	Box	_										
	1	1	2087	2961	2891	1		55/64	.360	1/4			21.8	9.1	6.4	
	to	2	2090	2917	2894	_	3	15/8	.765	27/	17/32	76.2	41.3	19.4		31.0
	15	3	2093	2965	2897	2		2 ³ / ₈	1.530	27/64			60.3	38.9	10.7	
		1	2088	2962	2892	1		55/64	.360	1/4			21.8	9.1	6.4	31.0
	20	2	2091	2918	2895	_	3	15/ ₈	.765	27/64	17/32	76.2	41.3	19.4	10.7	31.0
200		3	2094	2966	2898	2		2 ³ / ₈	1.530	-1/64			60.3	38.9	10.7	
300	25	1	2089	2963	2893	1		⁵⁵ /64	.360	1/4			21.8	9.1	6.4	
	to	2	2092	2919	2896	. 2	3	15/8	.765	27/64	17/32	76.2	41.3	19.4	10.7	31.0
	30	3	2095	2967	2899	_		23/8	1.530	- 7/64			60.3	38.9	10.7	
	35	1		_	2964	1		31/32	.437	¹⁷ /64			24.6	11.1	6.7	
	to	2	_	_	2920	. 2	41/4	125/32	.830	31/	119/64	108.0	45.2	21.1	10.0	32.9
	60	3		_	2968			25/8	1.660	· 31/64			66.7	42.2	12.3	

*Teeter screw with molded base gives a terminal connection similar to a box screw, but it is somewhat more economical.

^{*} Where no dimension shown, mounting holes are on center line.

Fuse Clips

Bronze Clips provide high gripping strength and retain spring pressure under adverse conditions. Albaloy plating is highly corrosion resistant and has a high degree of conductivity.

The highest quality clip metal is beryllium copper. Gives lasting spring pressure and high conductivity.

No. 5678-14-One-Piece Clip With Terminal for 1/4" (6.4mm) Fuses

(Solder type terminals; spring bronze albaloy plated; formerly designated No.

Carton quantity: 10 Shipping wt. per 100: 0.3 lbs (135.1g).

Tron Clips (1/4", 6.4mm) for **Printed Circuit Boards**

(Twin tabs with bowed design firmly snaps into PC board to facilitate soldering—eliminates riveting and misalignment)

Cat No.	End Stops	Metal	Plating Finish
1A1119-05	- Yes	Beryllium	Silver
1A1119-10	res	Spring Bronze	Albaloy
1A1120-05	- No	Beryllium	Silver
1A1120-10	- INO	Spring Bronze	Albaloy

Carton quantity: Shipping wt. per 100:

1A1120-05

Clip Assemblies for 1/4", 9/32", 13/32" and 9/16" Fuses

(6.4mm, 7.1mm, 10.3mm and 14.3mm) (Consists of clip, brass terminal base and screws).

Fuse	Ass'y.	*Clip	Mount.	Term.
Dia.	Cat.	No.	Screw	Screw
	No.		(Steel)	(Brass)
1/4"	4431	5682-44	4-40	
(6.4mm)	4432	5682-02	1/4"	6-32
	4567	5682-44		3/ ₁₆ "
	4583	5682-02		
9/32"	4560	5674-41		
(7.1mm)	4585	5674-01		
13/32"	4561	5960-63	8-32	8-32
(10.3mm)	4586	5960-09	3/8 "	3/16"
9/16"	4208	5591-42		
(14.3mm)	4207	5591-52		

See Tron fuse clips for detail data.

Ass'y. Cat.	Dimensions Inches/(mm's)			Wt./1	Wt./100		
No.	F	G	Н	Lbs.	Gm's.		
4431	.089	.3575	.3775	1	454		
4432	(2.3)	(9.1)	(9.6)				
4567	.1325	.3575	.3775	1	454		
4583	(3.4)	(9.1)	(9.6)				
4560	.136	.4425	.445	1.6	726		
4585	(3.5)	(11.2)	(11.3)				
4561	.136	.4425	.445	1.6	726		
4586	(3.5)	(11.2)	(11.3)				
4208	.136	.5705	.510	2.7	1225		
4207	(3.5)	(5.8)	(13.0)				

Carton quantity: 10

Tron Clips for $\frac{1}{4}$, $\frac{9}{32}$, $\frac{13}{32}$, and

(6.4mm, 7.1mm, 10.3mm, and 14.3mm)

- Beryllium copper clips recommended for loads 20 amperes or higher.
 - With or without end stops.
- Spring bronze clips are albaloy plated.
- Beryllium copper clips are silver plated

Fuse End		*Metal	† Cat.	Wt./1	00
Dia.	Stop		No.	Lbs.	Gm's.
1/4"		Spg Br	5682-44		-
(6.4	Yes	Bery Cu	5682-02		
mm)		Spg Br	5682-41	0.3	136
		Bery Cu	5682-01		
_	_	Spg Br	5681-15		
9/32"	Yes	Spg Br	5674-41	0.5	227
(7.1		Bery Cu	5674-01	0.5	
mm)		Spg Br	5672-11	0.4	181
13/32"		Spg Br	5960-63	0.7	318
(10.3	Yes	Bery Cu	5960-09	0.6	272
mm)		Spg Br	5960-61	0.7	318
		Bery Cu	5960-07	0.6	272
	_	Spg Br	5956-16	0.5	227
9/16"		Spg Br	5591-42	1.4	635
(14.3	Yes	Spg Br	5591-52	1.4	635
mm)		Spg Br	5592-33	1.2	544

* Spg Br-Spring Bronze; Bery Cu-Beryllium Copper. † See dimensional data for further differentiation of clip

(with end stop) (with end stop)

Cat.	°Dime:	nsions				
No.	Inches/(mm's)					
	В	С	D	E		
	To	Con-	Hght.	Wdth.		
	End	tact	(Max)	(max)		
	Stop	(min)				
5682-44	*.130"					
5682-02	(3.30)	.250"	.430"	.335"		
5682-41	‡.104"	(6.35)	(10.92)	(8.51)		
5682-01	(2.64)					
ECO4 4E		.265"	.430"	.335"		
5681-15	†- -	(6.73)	(10.92)	(8.51)		
5674-41	*.177"	.360"	.525"	.385"		
5674-01	(4.50)	(9.14)	(13.33)	(9.78)		
5672-11		.358"	.525"	.385"		
-	† 	(9.09)	(13.33)	(9.78)		
5960-63	*.201"	.383"	.743"	.464"		
5960-09	(5.10)	(9.73)	(18.87)	(11.78)		
5960-61	‡.169"	.378"	.743"	.464"		
5960-07	(4.29)	(9.60)	(18.87)	(11.78)		
EDEC 16	4	.307"	.743"	.464"		
5956-16	†—	(7.80)	(18.87)	(11.78)		
5591-42	.252"	E00"	027"	CCC"		
5591-52	(6.40)	.500"	.937"	.666"		
5592-33	†—	(12.70)	(23.80)	(16.92)		

- * Hole in center of contact area.
- # Hole in center of clip.
- † Hole in center of both clip and contact area.
- Dimension "A"—Mounting Hole Diameters: Series 5682 and 5681, 0.1325" (3.37mm); 5674, 5672, 5960-63, 5960-09, 5956, 5591 and 5592, 0.1725" (4.38mm); 5960-61 and 5960-07, 0.196" (4.98mm).

Carton quantity: 10.

Small Dimension FusesType MSL Single-Element, Time-Delay

37 (New)

Buss MSL Spiral-Wound, Single-Element Time-Delay Fuses.

- MSL and MSV 1/4" x 11/4" fuses are spiral-wound, single-element time-delay fuses for protection of less demanding circuits that are subject to high inrush currents. When there are critical parameters of resistance, low voltage, and/or amplitude and duration of inrush currents, use Fusetron dual-element fuses MDL or MDV.
- Time-delay characteristics superior to competitive "slow-blow" type fuses (see time-current curves). At 200% load, MSL fuses provide 16-18 seconds delay.
- 250 volts AC or less.*
- MSL Series—standard tube fuse; MSV Series with radial leads (11/4"; 20 gauge).
- Standard tube fuses mount in Buss panel holders, in-line holders, blocks, or clips. Radial lead fuse solder connect.
- Interrupting rating:
 10,000A @ 125V (all)
 35A @ 250V (¼A—1A)
 100A @ 250V (1¼A—3.2A)
 200A @ 250V (4A—8A)
- . U.L. and CSA listed.

*For fuses with current ratings of 1 amp or smaller, minimum voltage is 5 volts. Characteristic of all spiral-wound fuses, the lineal increase in resistance with temperature rise incident to overcurrents prohibits their use in circuits having an applied voltage below a nominal minimum.

*Test Specifications

i est ab	rest specifications				
Load	Operating Time				
110%	4 Hours (min.)				
135%	1 Hour (max.)				
200%	†5 Seconds (min.)				
*Borll L					

†Actual time-delay, 16-18 seconds

300
200
200
400
100
100 80 60
DU TILL THE
40 30
30
20 Const-Stemont
Fuseiron Fuse)
10 2 6 2 6
o 8
₹ ₫ -1444
5 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
.6 .6
6 <u></u>
.4
-4:1111
.08
.06
.04 .03
.02 (Jacio: Solaticid, Transtottas)
. 01 68- 7 68- 186 48 7 188 18.
· 10 880
CURRENT IN AMPERES
OUTHER! IN AMI LILLS

The above graph compares the actual time/current characteristics of four different % ampere fuses together with a load curve which represents the "severe" current excursions that can be evidenced when an inductive device such as a motor, solenoid, or transformer is energized (as can be noted, in this particular instance only the Buss Type MDL, dual-element, time-delay fuse can handle the inrush current without opening).

Catalog Numbers (Symbol and Amperes)					
Std.	Radial	Std.	Radial		
	Lead		Lead		
MSL-1/4	MSV-1/4	MSL-2	MSV-2		
MSL-3/10		MSL-21/2	M\$V-21/2		
MSL-3/8	MSV-3/8	MSL-3	MSV-3		
MSL-4/10	_	MSL-3 ² / ₁₀	MSV-32/10		
MSL-1/2	MSV-1/2	MSL-4	MSV-4		
MSL-9/10	_	MSL-5	MSV-5		
MSL-3/4	_	MSL-6	_		
MSL-8/10		MSL-61/4	MSV-61/4		
MSL-1	MSV-1	MSL-7	MSV-7		
MSL-11/4		MSL-71/2	MSV-71/2		
MSL-11/2	MSV-11/2	MSL-8	MSV-8		
MSL-15/10			_		

Carton Quantity: 5 Shelf Package: 100

Bulk Packaging: 1000 per shipping carton (1000 minimum per catalog number).

*For bulk package orders, prefix "BK/" to basic catalog number (i.e. BK/MSL-1/4).

MSL and MSV time-current curves. (Contact Bussmann for data on 3.2A to 8A fuses.)

Small Dimension Fuseholders

PC Board (5mm \times 20mm & $\frac{1}{4}$ " \times 1 $\frac{1}{4}$ ")

(New)

Models For Vertical and Horizontal Mounting

There's one model that mounts on a PC board in a horizontal plane (HBH); and two models which mount in a vertical plane—one with "stability" pins (HBV) and one without (HBW). All three feature common fuse carriers that are interchangeable with their European counterparts.

Fuse Carriers For $5mm \times 20mm$ and 1/4" × 11/4" Fuses

Carriers fit all three body models. Carrier knobs are color coded for easy identification-gray for 1/4" fuses; black for 5mm fuses.

When locked, slots of horizontal holders are always parallel to PC board; always in alignment on vertical holders. Precise, uniform line-up makes them look good

"Kicked" Terminals For Optimum Wave-Soldering

Stabilizes holder, Makes for consistant high quality soldering even with wide tolerance PC board hole toolina.

Anti-Wicking **Terminals**

The bottom (line-side) terminal incorporates an exclusive closed element design. Prevents solder flux from "wicking-up" into the holder body and the resulting poor continuity between the fuse and the terminal.

5mm × 20mm

Fuseholder Body C	inly
Body Type	Cat. No.
Horizontal Mount	BK/HBH
Vertical Mount w/ Stability Pins	BK/HBV
Vertical Mount w/o Stability Pins	BK/HBW

BK/FBM

"Stabilizer" Pins on **HBV Vertical Model** Offer Added Stability

Corner pins integral to the HBV holder body give additional stability to vertical holders for wave-soldering and, at the same time, reduce any mechanical stress that might be imposed on contact pins during service. HBW model offers direct interchangeability with European models.

Specifications

10000	u r uscholaers
Electrical Ratings	UL—12A @ 250V; CSA—12A @ 250V; VDE—6.3A @ 250V; SEMIKO—6.3A @ 250V. Insulation resistance—10,000 megohm at 500 VDC. Contact resistance—less than 0.005 ohms @ 20mV. Dielectric strength—over 200 volts/mil.
Molded Material	High dielectric molded phenolic with a UL VO flammability rating.
Terminals	Copper alloy, tin plated
Fuse Carrier & Knob	Spring-loaded, bayonet type. Brass, tin-plated. Screwdriver slotted.
Mounting	"Kicked" terminals (all models) and stabilizer pins on HBV model for increased stability.
Environ- mental	Ambient temperature—(-40°C) to (+85°C).

Note: Voltage ratings of fuseholders in A.C.

Selection Chart—Printed Circuit Board Fuseholders.

*Pending Note—Carriers do not fit panel-mounted fuseholders.

Small Dimension Fuseholders

Panel-Mounted (5mm \times 20 mm & $1/4'' \times 11/4''$)

Two Front-Panel Mounting Exposures

There's a low-profile exposure plus a high-profile exposure . . . you have a choice!

Two Mounting **Options**

There's a threaded body plus a smooth holder body that permits close panel clustering, fast easy "speed-nut" mounting, and eliminates scrap from over-torqueing.

Two Basic Fuse Carriers

There's a carrier for 1/4" × 11/4" fuses and one for 5mm \times 20mm fuses. They both fit all fuseholder bodies. Carrier knobs are color-coded for easy identification (gray for 1/4" fuses, black for 5mm

Two Types of Carrier Knobs

There's one with a screwdriver slot and another with finger-grip serrations.

Specifications—Panel Mounted Fuseholders

Electrical Ratings	UL—16A @ 250V: CSA—16A @ 250V: SEMKO—6.3A @ 250V. Insulation resistance—10,000 megohm minimum at 500 VDC (per IEC No. 257). Contact resistance—less than or equal to 0.005 ohm at 1 Amp (per IEC No. 257). Dielectric strength—480 volts/mil at 0.125′ thickness (per IEC No. 257).
Molded Material	Body—black, glass-filled polyester (UL-94VO flammability rating). Knob— glass-filled polyester, gray or black. Hex nut—clear polycarbonate.
Terminals	Brass, tin plated; 3/16" quick-connect/solder type; .020" thickness.
Fuse Carrier & Knob	Spring-loaded, bayonet type. Brass, tin-plated. Finger-grip or screwdriver slotted.
Mounting	Threaded body withstands 10 lb/in. torque (maximum panel thickness 5/16"); push-on speed-nut withstands 50 pounds pull.
Environ-	Ambient temperature—(-55°C) to

lote: Voltage ratings of fuseholders in A.C.

(+85°C)

Available in bulk only

Fuseholder Be	Cat. No.	
Smooth	Low Profile	HSL
(for speed-nut)	High Profile	HSH
Threaded (for hex-nut)	Low Profile	HFL
	High Profile	HFH
Fuseholder Ca	arrier Only	
/4" × 1½"	Screwdriver Slot	FCI
74 × 174	Finger Grip	FCI-F
mm × 20mm	Screwdriver Slot	FCM
mm × 20mm	Finger Grip	FCM-F
lardware		
Vasher, Thread	led or Smooth Body	1A3321
łex-nut, Threac	ded Body	1A3322
Speed-nut, Smo	ooth Body	1 4 3 9 4 4

Mounting	Body	Fuse Size	Fuse Carrier a	end Cap Unit	*Cat. No.	Agency Listings**	Dimensions
		1/4" × 11/4"		Screwdriver Slot	HFL-I		-(07 (1.9)
	11	74 × 174		Finger Grip	HFL-IF	UL, CSA, SEMKO,	
		5mm × 20mm		Screwdriver Slot	HFL-M	and * VDE	59 (5.5) 1.59(40.5)
Hex Nut On	Low Profile	311111 × 20111111		Finger Grip	HFL-MF	*With solder terminals.	
Fhreaded Body		1/4" × 11/4"		Screwdriver Slot	HFH-I		07 _(1.9)
	700	74 × 174		Finger Grip	HFH-IF	UL, CSA, SEMKO,	1 11
	#	5mm × 20mm		Screwdriver Slot	HFH-M	and * VDE	59- (15.0)56- (14.2)1.21(30.9
	High Profile	əmm × 20mm		Finger Grip	HFH-MF	*With solder terminals.	
	1/." >	1/4" × 11/4"	1//" × 11//"	Screwdriver Slot	HSL-I		- 07 _(1.9)
				Finger Grip	HSL-IF	UL, CSA,	□
		5mm × 20mm		Screwdriver Slot	HSL-M	and SEMKO	(5.5) 1.59 (40.5)
Speed Nut On Smooth Body	Low Profile	Sinm × 20min		Finger Grip	HSL-MF		
		1/4" × 11/4"		Screwdriver Slot	нѕн-і		- 07 _(1.9)
		74 × 174		Finger Grip	HSH-IF	UL, CSA,	
		5mm × 20mm		Screwdriver Slot	нѕн-м	and SEMKO	59- (15.0) -1.21(30.9
	High Profile	Jillii ^ ZVMM		Finger Grip	HSH-MF		

*Available in standard pack or bulk pack (when ordering bulk pack, prefix "BK" to catalog number).

Panel Mount Hole Punching (Two options apply to all fuseholders)

Distributed By

CH5H Modular Systems

Phone: 64-4-9393 777

Print-Date: 06/05/21

66 Fitzherbert Street, Petone, 5012, Wellington

eMail: sales@casa.co.nz eCommerce: www.casamodularsystems.com

http://www.casa.co.nz

BarTender: Labei_100x30L_CASA.lbl

Buss

Bussmann Division McGraw-Edison Company St. Louis, Missouri 63178 314 394 2877 Telex 44 841