

Jacques Audet VE2AZX

VE2AZX@amsat.org

1

- REASONS FOR USING A BALUN

- TYPES OF BALUNS
- CHECK YOUR BALUN WITH AN SWR ANALYZER
- MESURING THE IMPEDANCE OF A NUMBER OF FERRITES
- IMPEDANCE MEASUREMENT RESULTS
- USING FERRITES ON A FEEDER AND HOUSE CONDUCTORS

BALUN = BALanced to Unbalanced - It's a transformerUsed to feed a balanced load, Ex: dipoleDecreases feeder radiationThe feed line becomes independent of the antenna:We can change its length ... move it around

Without causing SWR change.

REASONS FOR USING A BALUN ?

The feedline should run away from the dipole at right angle. The dipole should be parallel to the ground. A non symetrical antenna Ex: Windom... Will require the use of a current balun

Nov. 2006

VE2AZX

TYPES DE BALUN

VOLTAGE

- TRANSFORMER WITH WINDINGS GIVING A BALANCED OUTPUT

- IN-OUT IMPEDANCES ARE DETERMINED BY THE TURNS RATIO. A WIDE RANGE OF RATIOS IS POSSIBLE.

- OPERATES OVER A SOMEWHAT LIMITED BANDWIDTH (100 TO 1)

CURRENT

- USES TRANSMISSION LINES WOUND ON A CORE
- MAY USE A COAXIAL CABLE OR A PARALLEL WIRE LINE WITH OR WITHOUT FERRITES.
- COMMON IMPEDANCE RATIOS: 1:1 AND 4:1
- OPERATE OVER A MUCH WIDER BAND OF FREQUENCIES

1:1 VOLTAGE BALUN

- 3 IDENTICAL WINDINGS

- GENERALLY 50 : 50 ohms

VOLTAGE BALUN 4:1

- 2 IDENTICAL WINDINGS

The measured inductance at the output is $\sim 4X$ the input inductance as a result of inductance coupling.

VE2AZX

TESTING A BALUN WITH AN SWR ANALYZER

These tests verify:

- Winding inductance
- Winding distributed capacitance

Nov. 2006

CONNECTING THE LOAD RESISTANCE 50 Ω Here

50 ohms LOAD MEASURED SWR WITH A

MEASURED SWR WITH A 200 ohms LOAD

OPEN CIRCUIT TESTS WITH THE SWR ANALYZER

These tests verify:

- Winding inductance
- Winding distributed capacitance
- Quality of the winding insulation

OPEN CIRCUIT TESTS WITH THE SWR ANALYZER

OPEN CIRCUIT TESTS WITH A VNA

QUESTION: How many independent conductors at RF frequencies do we have in a coaxial cable? 1, 2, 3 ou 4 conductors?

There are 3 independent conductors:

- The center conductor
- The inner surface of the shield
- The outer surface of the shield

Note that the RF current that flows on the outer surface of the shield is <u>independent</u> of the inner shield current.

This is so because at RF frequencies, the current penetrates very little inside the conductors. This is called SKIN EFFECT.

Note also that the <u>SWR only applies to the inner shield currents (and center cond).</u> <u>The SWR is independent of the outer shield currents.</u>

SHIELDED LOAD

With a shielded load, the current stays inside the coax There is no current on the outside of the coax Adding ferrites on the outside of the coax has NO effect

UNSHIELDED LOAD

A dipole is an unshielded load

Unshielded load causes current to flow on the outer surface of the coax

UNSHIELDED LOAD

Adding a ferrite core adds resistance on the OUTSIDE of the coax.

The ferrite core has NO effect on the internal coax currents

How much Resistance is Required when Feeding a dipole with a coaxial cable?

VE2AZX

VE2AZX

Feeding a dipole with a coaxial cable

To decrease the stub current: A current balun is inserted. It adds a series impedance on the outside of the coax.

Balun Equivalent Circuit

What is the minimum value of Impedance that I can have ...

That will have little effect on the <u>gain</u> and <u>impedance</u> of the dipole antenna?

Nov. 2006

Feeding a dipole with a coaxial cable

Feeding at the center (50%): R > 1000 ohms Feeding at 33% from end: R > 10000 ohms

It's easier to feed at the center

Nov. 2006

VE2AZX

1:1 CURRENT BALUN

FERRITE IMPEDANCE

DEPENDS ON...

- MATERIAL
- LENGTH
- VOLUME OF MATERIAL
- VARIES WITH FREQUENCY

- NOTE: 1 TURN = FERRITE ON A STRAIGHT WIRE

FERRITE IMPEDANCE

- FERRITES VS IRON POWDER ... TWO DIFFERENT MATERIALS

- FERRITE: HAS A HIGH PERMEABILITY (10 to 15000) GIVING A HIGH INDUCTANCE FOR A SMALL NUMBER OF TURNS

BUT THE INDUCTANCE OBTAINED IS NOT STABLE AND Q FACTOR IS LOW

OK FOR TRANSFORMERS AND BALUNS

- IRON POWDER: LOWER PERMEABILITY ... LOWER INDUCTANCE, GIVES A STABLE, HIGH Q INDUCTANCE (EX.: VFO, FILTERS, TUNERS)

MEASUREMENT OF FERRITE IMPEDANCE

USING AN SWR ANALYZER OR A VECTOR NETWORK ANALYZER

Allow measuring separately the Resistive and Inductive Components

YIELDS 80 ohms at 10 MHz for 1 turn

- ABOVE 20 MHz THE Q FACTOR < 1 THE IMPEDANCE BECOMES RESISTIVE

- THE INDUCTANCE DECREASES AS THE FREQUENCY IS INCREASED
- THE INDUCTANCE DISAPPEARS WHEN F > 100 MHz

Nov. 2006

- THIS IMPEDANCE CURVE IS SIMILAR TO THE PREVIOUS CORE

- THIS IMPEDANCE CURVE IS SIMILAR TO THE PREVIOUS CORE

- GIVES ~ 10% IMPEDANCE OF PREVIOUS CORES (8 ohms at 10 MHz for 1 turn)

- COVERS MUCH WIDER FREQUENCY RANGE
- SHOULD USE MANY TURNS: 10 TURNS GIVE 800 ohms AT 10 MHz

VE2AZX

RECTANGULAR CLAMP-ON FERRITE

- THE INDUCTANCE DISAPPEARS ABOVE 6 MHz

Nov. 2006

4 TURNS WILL YIELD ~ 800 ohms

TESTING A FERRITE BEAD

FERRITE BEAD APPROX. 0.1 PO. LONG.

36

FREQUENCY RESPONSE MODE

- Does NOT allow measuring separately the Resistive and Inductive components
- Ease of sweeping the frequency
- Reference level = 0 dB = short in place of ferrite

RS and RL are generally 50 ohms

To calculate Zx from attenuation readings in + dB's: (assumes that Zx is resistive)

$$Zx = (RL + RS) \cdot (10^{\frac{dB}{20}} - 1)$$

Nov. 2006

VE2AZX

2 toroids 1 turn

VE2AZX

2 toroids 5 turns

Coax with 25, #43 beads 13 Jun 2005 10:39:07 СН1 S₂₁ log MAG 5 dB/ REF 0 dB 0e PBm Cor 5 dB/div 0 Impédance (Ω) **78** ∱ 216 462 900 START 1.000 000 MHz STOP 100.000 000 MHz 1 MHz 10 MHz 100 MHz

Nov. 2006

VE2AZX

#14 Wire with 50 beads #73

Excellent at HF

CHECK YOUR FERRITES WITH YOUR SWR ANALYZER FROM SWR MEASUREMENTS

CURRENT BALUN GIVING A 4:1 IMPEDANCE RATIO

NOTE: THIS 4:1 CURRENT BALUN IS SUPERIOR TO THE 4:1 VOLTAGE BALUN

CURRENT BALUN GIVING A 4:1 IMPEDANCE RATIO

CURRENT MEASUREMENTS

FERRITES MAY BE USED WITH A VOLTAGE BALUN

Nov. 2006

CURRENT BALUN MADE UP OF COAX CABLE

USING A BALUN ON A VERTICAL ANTENNA

Nov. 2006

USING FERRITES ON THE FEEDER OF VERTICAL YAGI

PREVENT INTERACTION BETWEEN COAX + MAST WITH YAGI

Ref: QEX Sept-Oct. 2006

NOTES

- USING A BALUN UNDER HIGH SWR:

- VERIFY HEATING OF THE CORE
- DECREASE THE POWER
- USE MIX 73 (µ=2500) OR 31 (µ=1500)
 FOR HIGH POWER USE MIX 43 (µ=850) See Ref. 4
- BALUN LOSSES MAY / WILL INCREASE UNDER HIGH SWR
- VOLTAGE BALUN NOT RECOMMANDED IF SWR > 5:1 UNLESS DESIGNED FOR HIGH SWR

- BALUNS NORMALLY PROVIDE A VERY LOW ATTENUATION, NORMLLY < 0.3 dB ... WHEN THE LOAD IS MATCHED

FERRITES ARE USED EVERYWHERE

THINGS TO REMEMBER...

- VOLTAGE BALUNS COVER A VERY WIDE RANGE OF IMPEDANCES
- SET EQUAL VOLTAGES AT THE OUTPUT
- GENERALLY PROVIDE NO PROTECTION AGAINST CURRENTS FLOWING ON COAX EXTERIOR
- MAY BE COMBINED WITH A CURRENT BALUN
- CURRENT BALUNS CREATE A AN IMPEDANCE ON THE OUTSIDE OF THE COAX (OR ANY CONDUCTOR)
- ALSO CALLED COMMON MODE CHOKES
- DECREASE COAX RADIATION AND PICK-UP
- STABILIZE THE ANTENNA IMPEDANCE
- GENERALLY 50:50 ohms RATIO (ALSO 50:200 POSSIBLE)

THINGS TO REMEMBER...

- DECREASE COAX RADIATION ON TRANSMIT

- AND PICK-UP ON RECEIVE

Extract from Ref. 4:

The most common reasons for using common-mode chokes are:

(1) to reduce the fraction of the RF power that is fed to your antenna from your transmitter, but then is conducted back to your shack *via* common-mode current on your feedline, causing RFI trouble in the shack or elsewhere in your house;

(2) to keep the transmitted RF power that 60-Hz power, telephone, TV, and other cables in the field of your antenna pick up, from bothering susceptible devices connected to these cables in your own and neighbors' houses

Extract from Ref. 4:

(3) to keep the RF noise that all the electronic devices in your house generate, from being conducted *via* 60-Hz power, telephone and other cables to the outer shield of your radio, and from there along your feedline(s) to your antenna(s), in common-mode.

REFERENCES

1-W1CG Low Power Balun Kit http://www.njqrp.org/balun/

2- Transmission Line Transformers, by Jerry Sevick W2FMI

3- VE2AZX Web Site (this presentation): http://www.geocities.com/ve2_azx

4- Chuck Counselman W1HIS :

http://www.yccc.org/Articles/W1HIS/CommonModeChokesW1HIS2006Apr06.pdf

5- FERRITE SUPPLIERS

Digikeyhttp://www.digikey.comFair-Ritehttp://www.fair-rite.comAimdonhttp://www.amidoncorp.comByteMarkhttp://www.cwsbytemark.com/prices/toroidal.php