
MOTOR CONTROL WITH THE
ARDUINO MEGA

The Arduino family of circuit boards is one of the core technologies that
have made the Maker Movement possible. If you're new to gadget devel
opment and you want to get your feet wet, Arduino boards are ideal
because they're so easy to use and easy to program. If you're an entre
preneur who wants to manufacture and sell a gadget, Arduino boards are
ideal because they provide high reliability at low cost.

Many hundreds of thousands of Arduino boards have been sold, and
across the wo:dd, electronic hobbyists have incorporated them into
projects. Some projects are simple hobbyist gadgets, such as remote
controlled musical instruments, but many others have become viable
products, including vehicles, household robots, and health-monitoring
systems.

The goal of this chapter is to explain how Arduino technology can be
used to control electric motors. There are three main parts:

• The Arduino Mega-Understanding the hardware and developing
software

• The Arduino Motor Shield-Understanding motor-control devices

• Motor control-Developing software to control a brushed motor,
stepper motor, and servomotor

This chapter covers a great deal of ground, and as much as I'd like to, I
can't explore any specific subject in detail. Thankfully, there are count
less Arduino resources on the Internet. In particular, I recommend the

•

Figure 9.1
The Arduino
Mega

9.1 The Arduino Mega 147

For the purposes of this chapter, the most important header signals are in the PWM group. We'll use
these to generate control signals for DC motors.

The left side of the board has a power jack, and the recommended input voltage is between 7 and
12 volts. However, I prefer to deliver power to the Mega through the USB connector. If the Mega is
connected to a PC by USB, it will draw the current it needs to operate.

In addition to delivering power, the USB connection also makes it possible to transfer programs to
the Mega. However, before we get into Arduino programming, I want to introduce the device that
executes the programs: Atmel's ATmega2560 microcontroller.

9.1.2 Microcontrollers and the ATmega2560
As shown in Figure 9.1, the center of the circuit board is occupied by a 100-pin device called the
ATmega2560. This device is a microcontroller, and in essence the entire purpose of an Arduino
board is to provide access to this device. This discussion explains what microcontrollers are and
presents the specific characteristics of the ATmega2560.

Microcontrollers
In my experience, the best way to introduce microcontrollers is to compare them with personal
computers. A PC serves a wide variety of purposes involving data processing and digital communi
cation. To serve these purposes, the PC requires multiple devices-the CPU to process data, RAM
chips to store temporary data, and the hard disk to store programs, files, and the operating system.

A microcontroller {abbreviated MCU} serves similar purposes, but all of its resources are integrated
onto a single chip. This self-containment provides a number of benefits, including low cost, low

9

148 Motor Control with the Arduino Mega

power operation, and ease of circuit design. The drawback is that the MCU's on-chip resources
aren't nearly as impressive as those you'd find in a PC.

An example will make this clear. My laptop has 8 gigabytes of RAM and its processor runs at
3 gigahertz. In contrast, the Mega's microcontroller has 8 kilobytes of RAM and processes data at
16 megahertz. This means my laptop runs nearly 200 times faster than the Mega and can store one
million times as much data.

MCUs may not be suitable for personal computing, but they're ideal for maker projects. If you're
building a simple robot or automated sensor system, the microcontroller's lack of resources won't be
an issue. Instead, you'll appreciate the low cost, and because MCUs are so self-contained, you'll find
it easy to design the circuit.

In general, gadgets with microcontrollers operate in three steps:

1. Read data from a sensor, such as a temperature sensor or a pressure sensor.

2. Process the data to judge the state of the system.

3. Use the state information to control a mechanism, such as a motor.

In Step 1, sensor data can take an infinite number of values, and for this reason, the data is referred
to as analog. Before the data can be processed, it must be converted into the ones and zeros
required by processors. This is digital data. To make this possible, most modern MCUs have mul
tiple analog-to-digital converters, or ADCs.

In Step 3, microcontrollers control mechanisms using pulse width modulation (PWM), which has
been discussed at length throughout this book. Later in this chapter, I'll show how the Mega can
use PWM to control brushed motors and servomotors.

The ATmega2560
Most Arduino boards contain Atmel MCUs, and the Mega is no exception. The Mega relies on
Atmel's ATmega2560 microcontroller to process its data, and Table 9.2 lists a number of its impor
tant characteristics.

Table 9.2 Characteristics of Atmel's ATmega2560 Microcontroller

Parameter Name Parameter Value

Clock speed 16 MHz

Flash memory

SRAM

EEPROM

Number of pins

/Ulalog cohversioh r~sbluttoti
PWM resolution

Temperature

2560;.

8 KB

4KB

100

. 10-bit

8-bit

9.2 Programming the Arduino Mega 149

In looking at these values, it's important to understand the difference between the three different
types of memory:

• Flash memory holds programs, which means the largest program that can run on the Mega is
256 KB.

• SRAM (static random access memory) stores temporary data used by the program.

• EEPROM (electrically erasable programmable read-only memory) stores settings and other
parameters.

The SRAM memory is cleared whenever power is removed. In contrast, the Flash memory and
EEPROM maintain their contents without power.

The ATmega2560 MCU has 100 pins: 11 power pins and 89 pins for input/output. Most of the
110 pins can serve multiple roles, and configuring the pins' roles is a major concern in MCU
development.

Thankfully, the Arduino framework makes pin configuration easy: 54 of the ATmega2560's 1/0 pins
are accessible through the Mega's headers, and the process of configuring their operation is almost
trivially simple.

The ATmega2560 has many incredible characteristics that have endeared it to makers across the
world, but to really appreciate this device, you need to get your hands dirty and start writing pro
grams. The next section explains how this is done.

9.2 Programming the Arduino Mega
In general, microcontroller programming isn't pleasant. You need to be aware of memory maps,
peripheral buses, interrupt vectors, and countless data/control
registers. Also, when you change to a new MCU, you practically
have to rewrite your code from scratch.

The great innovation of the Arduino framework is that it dramati
cally simplifies writing code for MCUs. If you're familiar with
the C programming language, you can come up to speed with
Arduino in minutes-and as new Arduino boards come out, you
can compile and run your programs without modification.

This section explains how to write, compile, and execute Arduino
programs, commonly called sketches. However, before you can

¬e
This chapter assumes a basic
familiarity with C program
ming. If you don't have this
background, my favorite
introductory book is C for
Dummies by Dan Gookin.

start programming, you need to get the Arduino environment up and running.

9.2.1 Preparing the Arduino Environment
The Arduino environment is a software package that consists of three components:

• USB drivers needed to communicate with Arduino boards

• A compiler that converts sketch code into executables for microcontrollers

150 Motor Control with the Arduino Mega

• An integrated development environment (IDE) for writing, editing, compiling, and uploading
sketches

The Arduino environment can be downloaded from http://arduino.cc/en/Main!Software. Two
releases are available, and it's important to understand the difference between them:

• Arduino t.O.x-This environment is stable and supports boards with 8-bit processors such as the
Arduino Mega.

• Arduino 1.5.x-This environment supports boards with 32-bit microcontrollers, such as the
Arduino Yun and the Arduino Due. At the time of this writing,

this is a beta release, and to quote the site: "You may encoun- r····
ter bugs or unexpected behaviours."

I
To program the Arduino Mega, you'll need the first option.
To download it, open http://arduino.cc/en/Main/Software in a
browser, scroll until you see the Arduino 1.0.x heading, and click
the link corresponding to your operating system.

After you've downloaded the Arduino file, you're ready to install
the application. The installation process depends on your operat
ing system:

• For Windows, the instructions are at http://arduino.cc/enl
Guide/Windows.

I

Cl note
The newer environment soft
ware (version 1.5.x) has been
in beta for a long time. Many
people are happy with it, but
I've found it to be unreliable.
This is why this chapter relies
on the Arduino Mega for
motor control instead of a
newer board.

• For Mac OS X, the instructions are at http://arduino.cc/en/Guide/MacOSX.

• For Linux, the operating instructions depend on the distribution. The list of supported distribu
tions and their instructions can be found at http://playground.arduino.cc/Leaming!Linux.

If you've completed the directions, you should have an executable that brings up the Arduino IDE.
Figure 9.2 shows what this looks like on my Windows 7 computer.

When the environment starts for the first time, it has no idea what Arduino board you're using or
how to access it. Therefore, before you start coding, you need to tell the environment about your
board. For boards connected by USB, I recommend five steps:

1. Connect the Arduino Mega to a USB cable and connect the other end of the cable to a PC.

2. Launch the Arduino environment.

3. In the main menu, go to Tools > Board and select the option Arduino Mega 2560 or Mega ADK.

4. In the main menu, go to Tools > Serial Port and select the serial port to which the Arduino Mega
is connected. The process of determining the connected serial port depends on the operating
system.

5. In the main menu, go to File > Save As and enter blink for the name of the sketch. Click Save.

After these steps are completed, the environment should look similar to that shown in Figure 9.3.

Figure 9.2
The Arduino development
environment

Figure 9.3
The fully configured environment

9.2 Programming the Arduino Mega 151

152 Motor Control with the Arduino Mega

The final step saves an empty sketch to a file called blink .ina (*.ina is the extension for Arduino
sketches). By default, this is saved in the Arduino\blink directory, which is located in the user's
documents folder. For example, on my Windows system, blink.ino is saved to the C:\Users\Matt\
My Documents\Arduino\blink directory.

9.2.2 Using the Environment
Once you've configured the environment for your board, the hard part is over. Now all you need to
do is edit code and use the buttons above the editor.

To explain how this is done, I'm going to walk through the process of compiling and uploading a
simple sketch. Listing 9.1 presents the code for blink.ino.

Listing 9.1 Ch9/blink.ino-Causing an LED to Blink
I* This sketch sets the voltage of Pin 13 high and low.

This causes the LED connected to the pin to blink. *I

II Assign a name to Pin 13

int led_pin = 13;

II At startup, configure Pin 13 to serve as output

void setup() {

pinMode(led_pin, OUTPUT);

II Repeatedly change the voltage of Pin 13

void loop() {

digitalWrite(led_pin, HIGH); II set the pin voltage

delay(1000); II delay one second

digitalWrite(led_pin, LOW); II set the pin voltage

delay(1000); II delay one second

high

low

If you'd rather not code this by hand, you can load my blink.ino sketch. Every code example in this
book is contained in an archive called mfm.zip, which can be freely downloaded from http://www.
motorsformakers.com.

After downloading the archive and extracting its contents, you'll
find blink.ino in the Ch9 directory. You can load this into the envi
ronment by going to the main menu and selecting File > Open.

After the code has been entered, the next step is to compile
it into a binary suitable for the Mega. This is accomplished by
clicking the leftmost button above the editor, which features a
check mark. If the code has errors, an error message in orange
text will identify the first error and the line of code that produced
it. If there are no errors, a "Done compiling" message will be
displayed.

¬e
If you enter the code by
hand, you'll see the number
in the lower-left corner of
the editor change as you
type. This identifies the line
number the cursor is on, and
it took me far too long to
figure that out.

9.2 Programming the Arduino Mega 153

If clicked, the button with a right-pointing arrow will recompile the sketch and upload it to the
board. If this succeeds, a "Done uploading" message will be displayed and the program will start
executing on the board. On the Arduino Mega, the LED next to Pin 13 will start blinking-one sec
ond on, one second off.

9.2.3 Arduino Programming
An Arduino program consists of statements that have the same structure and syntax as statements
in the C programming language. That is, each statement ends with a semicolon and statements can
be grouped into named blocks called functions. Arduino supports many of the basic C data types,
and for many Mega programs the only data type you'll need is the int type.

Unlike C, sketches don't have a top-level main function. Instead, every sketch can be divided into
three parts:

• Global variables-This part declares and initializes variables that can be used throughout the
sketch.

• setup<) -Contains statements to be executed when the board starts up or resets.

• loop ()-Contains statements to be repeated after the setup function finishes.

A simple example will clarify how Arduino programs work. The code in Listing 9.1 repeatedly sets
the voltage for Pin 13 high and low, delaying one second with each change. This causes the LED
connected to Pin 13 to blink.

To understand the blink sketch, you need to be familiar with the
functions provided by the Arduino framework. This discussion
doesn't cover all of them, but focuses on functions in four catego
ries: digital VO, timing, analog read, and analog write. Table 9.3

Cl note
HIGH and LOW are regular
int values. HIGH equals 1

and LOW equals 0. lists each of them with a description.

Table 9.3 Important Sketch Functions

Category Function Description

Digital VO pinMode(int pin num,
int mode_type)

digital Write
(int pin_num,
int level)

deJ:a~(:tnt.••.~i~r.·
::.:;,·· .'·i:·. ,,,·'·· .:·

delayMicroseconds
(int time)

Configures whether a pin's mode is
INPUT,OUTPUT,OriNPUT_PULLUP

····.~·~~~~·~&~~~~~;~e .. ~~e
Sets the output pin's voltage to HIGH or
LOW

WaitS a !lumber of.milliseoonds llefore
~jl~· .

Waits a number of microseconds before
completing

154 Motor Control with the Arduino Mega

micros ()

,,.·.,~at®f~t~u~:r,"··~~~~~f:i~t,::~"'~I:~~·~R1~to:;·····

$J;laleg.
wnta· ·

analogRead ()

Returns the number of microseconds
since the program started

Returns the input analog voltage

This table lists less than half of the functions available for Arduino programming. For the full list,

visit the reference site at http://arduino.cc/en/Reference/HomePage.

Digital 1/0
As discussed earlier, the Mega's pins can be divided into five groups: power, analog input, com

munication, digital, and PWM. With the exception of the power pins, every pin on the Mega can be

configured to serve one of three roles:

• INPUT-An input pin's digital voltage level (HIGH or LOW) can be read with digitalRead.

• INPUT_PULLUP-An input pin Whose default state is HIGH.

• OUTPUT-An output pin's voltage can be set with digital Write.

A pin's mode determines whether it's an input pin or an output pin. To configure this mode, the

pinMode function requires two arguments: the pin's number and the desired mode. By default,

every pin's mode is set to INPUT. The following code sets Pin 10 to behave as an OUTPUT pin:

pinMode(lO, OUTPUT);

If pinMode sets a pin in INPUT or INPUT_PULLUP mode, digitalRead returns an int corresponding

to its voltage level. For INPUT mode, digitalRead returns HIGH if connected to a voltage greater

than 3 V and LOW if connected to a voltage less than 2 V. For INPUT_PULLUP mode, digitalRead

returns HIGH by default, and returns LOW when the pin is connected to ground.

If pinMode sets a pin's mode to OUTPUT, then digitalWrite can be called to set its voltage level.

This function accepts two arguments: the pin number and the voltage level. If the second argument

is HIGH, then digi talwri te sets the pin's voltage to 5 V. If the second argument is low, the pin's

voltage is set to 0 V.

As a brief example, the following code reads the voltage level of Pin 7 and writes the voltage level

to Pin 9:

res = digita1Read(7);

digitalWrite(S, res);

9.2 Programming the Arduino Mega 155

If this code is placed inside the loop function, it will be executed repeatedly. If it's placed inside the
setup function, it will be run once per execution of the program.

Timing
The Arduino timing functions are easy to understand and use. There are four in total: Two specify
timing delays and two identify how long the program has been running.

When a program updates a pin's state, such as when digital Write changes a pin's voltage, you
may want to maintain this state for a duration of time. This is made possible by the delay and
delayMicroseconds functions.

For example, the blink application sets Pin 13's voltage from HIGH to LOW and back again. With each
change, the delay function maintains the state for 1 second. This is accomplished with the follow
ing code:

delay(lOOO);

Once delay starts, further statements won't execute until it finishes. Its argument identifies the
wait time in milliseconds. If the argument is 250, delay will prevent statements from executing for
a quarter of a second.

In many applications, a millisecond can be too long. If this is the case, you can call delayMicro

seconds. This is similar to delay, but the argument identifies the wait time in microseconds. A
microsecond is one-thousandth of a millisecond, so delayMicroseconds (500) waits for 500 micro
seconds, which equals one-half of a millisecond, which equals 0.0005 seconds.

In a sketch, the loop function executes until power is removed. This means you can't halt the loop

function or break out of it. However, if you want to execute code for a specific duration of time, you
can use the millis and micros functions. These tell you how long the program has been running,
and their return values are given in milliseconds and microseconds, respectively.

An example will show how millis is used in practice. The following code sets Pin 13 to HIGH for
the first 5 seconds, LOW for the next 5 seconds, and back to HIGH:

if (millis() < 5000)

digita1Write(13, HIGH);

else if (millis() < 10000)

digita1Write(l3, LOW);

else

digita1Write(13, HIGH);

micros allows more precise time measurement. This can be helpful when you're controlling a mech
anism or communicating with another device.

Analog Read
If you want to read data from a sensor or another analog device, Arduino provides two crucial func
tions: analogReference and analogRead.

156 Motor Control with the Arduino Mega

An analog signal can take an infinite number of values, but the Mega's pins can't read an infinite
number of values. Therefore, when writing a sketch that reads analog data, you need to know the
maximum voltage that can be read.

By default, the maximum analog voltage that can be read by the Mega is 5 V. This means the analog
inputs can only distinguish inputs between 0 V and 5 V. This maximum can be changed with the
analogReference function, whose argument can take one of four values:

• DEFAULT-The default value of 5 V.

• INTERNALl Vl-A maximum of 1.1 V.

• INTERNAL2V56-A maximum of 2.56 V.

• EXTERNAL-The maximum is set by the voltage on the AREF pin.

If the board is oriented as shown in Figure 9.1, AREF is the leftmost pin in the top header. If
analogReference is called with its argument set to EXTERNAL, the board's analog pins will read

input voltages between 0 V and the voltage on AREF. Note that AREF must be set to a voltage
between 0 V and 5 V.

Like digital Read, anal ogRe ad accepts the pin number that the voltage should be read from. Also
like digitalRead, analogRead returns an int. However, there are two major differences between
these functions:

• The int returned by analogRead ranges from 0 and 1023, where 0 represents a voltage of 0 V

and 1023 represents the maximum voltage.

• analogRead can only be called for specially configured analog input pins. As shown in Figure
9.1, the Arduino Mega has 16 analog input pins, AO-A15.

An example will make this clear. The following code reads the analog voltage on Pin A5:

analog_v = analogRead(AS);

Another point about the analog input pins is that they can be accessed by the digital I/0 functions,
digitalRead and digitalWrite. For example, the following code reads the digital voltage level

from Pin A5:

digital_v = digitalRead(A5);

Like regular digital pins, the analog input pins are configured in INPUT mode by default. With the
pinMode function, they can be configured in the OUTPUT or INPUT_PULLUP mode.

Analog Write
The analogWri te function is so important that it deserves its own category. When I first saw this
function, I assumed the microcontroller had digital-to-analog converters (DACs) capable of convert
ing integer values into true analog outputs. Unfortunately, the Mega doesn't have any DACs, so it's
incapable of producing real analog values.

'-'

'-

9.2 Programming the Arduino Mega 157

Instead, analogWri te on the Mega produces a train of pulses formatted with pulse width modula

tion (PWM). As introduced in Chapter 2, "Preliminary Concepts," PWM is the primary mechanism

for controlling most DC motors. Pulses in a PWM signal have the same height and period, but the

pulse width may vary over the course of the signal. The ratio of the pulse width to the period is the

duty cycle.

To generate a PWM signal, the analogWrite function needs two arguments:

I Pin number-analogWrite is available only for a specific set of pins (2-13, 44-46 on the Mega).

It cannot be called on the analog input pins.

1 Duty cycle-This value determines the time width of the pulse relative to the time between

pulses. This takes a value between 0 (always off) and 255 (always on).

The code in Listing 9.2 shows how analogWrite can be used to generate pulses.

Listing 9.2 Ch9/pwm.ino-Pulse Width Modulation
I* This sketch produces a pulse-width modulation (PWM) signal
whose duty-cycle switches between 0%, 25%, 50%, and 75%. *I

II Assign a name to Pin 13
int pwm_pin = 13;

II Configure Pin 13 as an output pin
void setup () {

pinMode(pwm_pin, OUTPUT);

II Switch the duty-cycle between 25% and 75%
void loop () {

analogWrite(pwm_pin, 0); II set duty cycle to 0%
delay(1000); II delay one second
analogWrite(pwm_pin, 64); II set duty cycle to 25%
delay(1000); II delay one second
analogWrite(pwm_pin, 128); II set duty cycle to 50%
delay(1000); II delay one second
analogWrite(pwm_pin, 192); II set duty cycle to 75%
delay(1000); II delay one second

In this sketch, setup configures Pin 13 in OUTPUT mode. Then loop calls analogWrite four times,
changing the duty cycle from 0% to 25% to 50% to 75%. This changes the brightness of the LED con

nected to Pin 13. After each change, the sketch delays for one second. Figure 9.4 gives an idea of

what these pulses look like.

The time between pulses (period) varies from board to board, and occasionally from pin to pin.

Based on my tests on the Mega, the period for Pins 2, 3, and 5-12 is 2.05 ms. The period for Pins 4

and 13 is about 1.025 ms. Put another way, the PWM frequency for Pins 2, 3, and 5-12 is 488Hz and

the PWM frequency for Pins 4 and 13 is 976Hz.

158 Motor Control with the Arduino Mega

0% duty cycle 25% duty cycle 50% duty cycle 75% duty cycle
Figure 9.4
PWM output from
analogWrite

It's possible to change the PWM frequencies of the Arduino Mega with special code. This topic lies
beyond the scope of this book, but there are plenty of online resources that explain how it can be
done.

9.3 The Arduino Motor Shield
The Arduino Mega has many capabilities, but it can't deliver enough current to control a motor. It
also lacks the H bridge needed to reverse a motor's direction. Therefore, before the Mega can con
trol a motor, it must be connected to the Arduino Motor Shield.

In Arduino parlance, a shield is a secondary circuit board that can be connected on top of an
Arduino board. Many different types of shields are available for Arduino devices, including shields
for wireless communication, GPS tracking, and MP3 playing. The motor shield contains resources
needed for motor control, and Figure 9.5 shows what it looks like.

The motor shield may seem confusing because of the many connections to support different types of
motors. The goal of this section is to explain how it works. Later sections explain how the shield can
be used to control specific motors.

9.3.1 Power
The logic devices on the motor shield receive power from the Arduino Mega, but this isn't sufficient
to deliver power to a motor. For this reason, the motor shield has its own power connections: the
Vin and GND screw terminals in the lower-left of the figure. Vin accepts voltages between 7 V and
12 V and can receive as much as 2 A of current per motor.

If Vin is set to a high voltage, it's important to keep the shield's power from affecting the Arduino
Mega. The official directions recommend removing the "Vin Connect" jumper on the underside of
the shield. I recommend bending the shield's Vin pin (at the far right of the POWER header) so that
it doesn't connect to the Mega.

Above the Vin and GND screw terminals, the motor shield has four connections for output power.
These can provide power to two brushed motors or one stepper motor. Later sections explain how
this is accomplished.

....

9.3 The Arduino Motor Shield 159

Two wire interface (TWI) PWM pins (2-13)

L298P Dual H bridge Analog input pins (AO-A 15)

Figure 9.5
The Arduino Motor Shield (v1.1)

9.3.2 The L298P Dual H Bridge Connections

Analog
(PWM)
outputs

Analog
inputs

Chapter 3, "DC Motors," introduced the H bridge, whose four switches make it possible to reverse
current to a motor. The motor shield contains two H bridges in the form of the L298P integrated
circuit. This chip uses bipolar junction transistors (BJTs) to serve as switches, and Figure 9.6 shows
how the first H bridge is connected to the shield's signals.

This circuit is complex, but keep in mind that its primary purpose is to deliver power to the motor
outputs, MOT_A+ and MOT_A-. To turn the motor in the forward direction, MOT_A+ should be con
nected to Vin and MOT_A- should be connected to GND. To reverse the motor's direction, MOT_A+
should be connected to GND and MOT_A- should be connected to Vin.

The PWM_A signal receives PWM pulses from the Arduino Mega board. When this is high, the cir
cuit functions normally. When it's low, no voltage is applied to the switches' inputs, which means

\..,. MOT_A+ and MOT_A- are left unconnected.

If PWM_A is high, the states of the four switches are controlled by DIR_A and BRAKE_A. If DIR_A is
high, 8

0
connects MOT_A+ to Vin. If DIR_A is low, 82 connects MOT_A+ to GND.

9

160 Motor Control with the Arduino Mega

Vin

GND

Figure 9.6
H bridge
connections

The right of the diagram shows how BRAKE_A affects the circuit. When BRAKE_A is low, DIR_A# is
the inverse of DIR_A. This means MOT_A- is connected to GND when MOT_A+ is connected to Vin,
and vice versa.

However, when BRAKE_A is high, DIR_A# equals DIR_A. This means MOT_A+ and MOT_A- are
always connected to the same source. Because the voltage difference between MOT_A+ and
MOT_A- is zero, no current flows through the motor, so it comes to a halt.

To control a motor properly, it's important to know how the signals in Figure 9.6 relate to the
Arduino Mega's pins. Table 9.4 lists each of the motor signals and their corresponding pins.

Table 9.4 Motor Signals and Arduino Pins

Motor Signal Arduino Mega Pin Description

DIR_A 12 Controls the direction of Motor A

~::,

PWM_A 3 PWM signal for Motor A

PWM_B ll :e . tQi .. wrd:tji:~~~·= ..
BRAKE _A 9 Halts Motor A when high

' ·' " "'"' ; ,,,,., '"" "~i- ·~·.- ·"" '

BRAKE_B 8 "···.H ~~p;~:.higt1 ··;1\. *'}~
SNS_ A AO Current sensing for Motor A

SNS_B ·A'.!;i>·· :·~~~t~~j~~f~rMo"~;:Si~~~~ ~;k,,.·;(JQt,{·. ···•·.>
--..:~-·

''
;
I
t\...

9.3 The Arduino Motor Shield 161

9.3.3 Controlling a Brushed Motor
An example will clarify how the dual H bridge and its connections can be used to control a motor.
The code in Listing 9.3 controls a brushed DC motor whose wires are connected to the shield's
Motor Power A+ and Motor Power A- screw terminals.

Listing 9.3 Ch9/brushed.ino-Brushed DC Motor Control
I* This sketch controls a brushed motor. It drives it in the

forward direction at 75% duty cycle and halts. Then it

drives it in reverse at 75% duty cycle and halts. *I

II Assign names to motor control pins

int dir a 12;

int pwm_a 3;

int brake_a = 9;

II Configure the motor control pins in output mode

void setup () {

pinMode(dir a, OUTPUT);

pinMode(pwm_a, OUTPUT);

pinMode(brake a, OUTPUT);

II Deliver power to the motor

void loop() {

II Drive the motor forward at 75% duty cycle

digitalWrite(brake_a, LOW);

digitalWrite(dir_a, HIGH);

analogWrite(pwm_a, 192);

delay(2000);

II Halt the motor for a second

digitalWrite(brake_a, HIGH);

delay(1000);

II Drive the motor in reverse at 75% duty cycle

digitalWrite(brake_a, LOW);

digitalWrite(dir_a, LOW);

analogWrite(pwm_a, 192);

delay(2000);

II Halt the motor for a second

digitalWrite(brake_a, HIGH);

delay(1000);

9

162 Motor Control with the Arduino Mega

When the processing loop starts, DIR_A is set to 1 and PWM_A is set to 192. This drives the motor
forward at 75% duty cycle. After a halt period, DIR_A is set to 0 and PWM_A is set to 192. This
drives the motor in reverse at 75% duty cycle.

9.4 Stepper Motor Control
Of the many motors discussed in this book, stepper motors are the easiest to understand: They
rotate through a fixed angle and halt. But they aren't the easiest motors to control. Bipolar steppers
have four connections that require signals, and unipolar steppers have six.

The motor shield makes it straightforward to control a stepper. Not only is the shield's hardware
ideally suited for the purpose, but Arduino provides free software to get your sketches working.
This free software is packaged in the form of a library, so the first part of this section explains how
to obtain the Stepper library and use its functions.

9.4.1 The Stepper Library
When you install the Arduino environment, you can call about 40 functions, not including the Stream
and Serial functions. This set of functions can be extended using libraries. For example, one library
contains functions for communicating across a serial peripheral interface {SPI) bus. Another contains
functions that control liquid crystal displays {LCDs).

To see what libraries are available, visit http://arduino.cc/en/Reference/Libraries. Most of these
libraries fall into one of two categories: standard libraries and contributed libraries. Contributed
libraries must be downloaded and installed into the Arduino environment. Standard libraries don't
have to be downloaded or installed. They're already included in the environment.

To access functions from a standard library, open a sketch in the environment's editor. Then, in the
main menu, go to Sketch > Import Library and select the library you're interested in. This section
relies on the Stepper library, and if you select this option, the following code will be prepended to
the sketch:

#include <Stepper.h>

With this line added to the sketch, you can call the functions of the Stepper library. Table 9.5 lists
each of them and provides a description of its purpose.

Table 9.5 Functions of the Stepper Library

Function Description

Stepper(int steps_per_rev,
int pinl, int pin2)

Returns a Stepper object with the given number of
steps per revolution and connection pins

9.4 Stepper Motor Control 163

These functions are straightforward if you know what objects and classes are. Just in case you
don't, I'll provide a brief overview of object-oriented theory. Then I'll explain how to use the func
tions in Table 9.5.

Objects and Classes
The first two functions in Table 9.5 aren't like any of the other functions discussed in this chapter.
That is, they're not called in the setup or loop method. Instead, their purpose is to create a new
global variable, and for this reason, the Stepper function must be coded above the setup function.

The variable created by the Stepper functions isn't an int or a float, but has the Stepper data
type. Technically speaking, Stepper is a class, and any variable created by the stepper method is
an object. Object-oriented programming {OOP) is a deep topic, and many books have been written
on it. However, for Arduino development, you need to understand only four points:

• Every object is created by a function called a constructor. A class may have multiple constructors,
and each must have the same name as its class.

• An object may contain variables of its own. These are called member variables.

• An object may contain functions of its own. These are called member functions.

• An object's member variables and functions can be accessed by following the object name with a
dot{.) and the name of the variable or function.

In Table 9.5, the first two functions are constructors and the second two functions are member func
tions. As an example, the following code creates a Stepper object using the first constructor in the
table. Later in the sketch, the loop function calls one of the object's member functions.

Stepper s = Stepper(200, 6, 5);

~ loop() {

·.~

s.step(l);

The first line calls the Stepper constructor. Like a regular function, the constructor accepts argu
ments and returns a variable. In this case, the variable is a Stepper object named s.

This object has two member functions it can call: setSpeed and step. In this code, the object's
step function is called inside loop. The dot between sand step identifies step as a member of the
s object. It's important to note that a member function must be called with its associated object.

Stepper Functions
In both stepper constructors, the first argument sets the number of steps the motor needs to tum
to complete a revolution. For example, if each tum of the stepper rotates by an angle of 1.8°, the
number of steps in a revolution is 360°/1.8° = 200. The constructor requires that this be given as
an int.

9

164 Motor Control with the Arduino Mega

The constructors' other arguments identify which pins control the stepper motor. Depending on the
nature of the motor, it may be connected to two or four pins.

After the stepper object is created, setspeed specifies the desired speed of the motor. By combin
ing the steps per revolution and the revolutions per minute, the program determines the time delay
between steps.

For example, suppose the motor takes 150 steps to complete a revolution and set speed is called
with a speed of 20 revolutions per minute. The program will determine that the motor should take
150 x 20 = 3000 steps in a minute, or 50 steps per second. Therefore, the program will delay
1/50 = 0.02 seconds between steps.

The last function in the table is step, whose argument identifies how many times the motor should
step. If the argument is 1, the motor will step once and control will return to the program. If the
argument is greater than 1, the motor will step multiple times. In this case, the program will halt
until the steps are completed. If the argument is negative, the stepper will rotate in the reverse
direction.

9.4.2 Controlling a Stepper Motor
As discussed in Chapter 4, "Stepper Motors," stepper motors come in two types: bipolar and
unipolar. As a quick review, here are their characteristics:

• Bipolar steppers have four wires. Unipolar motors have five or six.

• Bipolar steppers require two H bridges for control. Unipolar stepper control is less complex.

• Bipolar steppers are significantly more efficient because they utilize the entire length of each
winding when energized.

The drawback of using bipolar steppers is the need for two H bridges, but the motor shield's L298P
provides two H bridges, so this isn't a concern. Therefore, this discussion focuses on controlling
bipolar steppers. If you have a unipolar stepper, these directions still apply. Just ignore the center
tap connections and connect the remaining wires as needed for a bipolar stepper.

Both types of stepper motors have two phases: A/A' and B/B'. Figure 9.7 shows how these phases
are related to motor's windings and external connections.

Looking back at Figure 9.6, it should be clear that A and A'
should be connected to the MOT_A+ and MOT_A- screw ter
minals in the lower-left corner of the shield. Similarly, Band B'
should be connected to MOT_B+ and MOT_B-. In Figure 9.5,
these connections are labeled Motor Power (A+), Motor Power
(A-), Motor Power (B+), and Motor Power (B-).

The output of the two H bridges is determined by DIR_A and
DIR_B, which correspond to Pins 12 and 13. Therefore, these are
the pins provided to the Stepper constructor. This is shown in
Listing 9.4.

Cl note
Don't be concerned if the col
ors in Figure 9.7 don't match
the wires of your stepper.
You can tell which wires are
paired together by testing
the resistance between them.
Also, it doesn't matter if you
connect B/B' in place of AlA'.
The stepper will still rotate.

9.4 Stepper Motor Control 165

Figure 9.7
Connections of a bipolar
stepper

Black

Listing 9.4 Ch9/stepper.ino-Stepper Motor Control
I*
This sketch controls a bipolar stepper motor,

stepping ten times in the forward direction and

ten times in the reverse direction.

The steps/revolution is set to 200 (1.8 deg/step)

and the speed is set to 10 RPM.

*I

#include <Stepper.h>

II Set the pin numbers

int pwrn_a 3;

int pwrn_b 11;

int dir a 12;

int dir b 13;

II Create a stepper object

Stepper s Stepper(200, dir_a, dir_b);

void setup() {

II Set speed to 10 revs/min

s.setSpeed(10);

II Make sure the two H Bridges are always on

pinMode(pwrn_a, OUTPUT);

pinMode(pwm_b, OUTPUT);

digitalWrite(pwm_a, HIGH);

Red

Blue

166 Motor Control with the Arduino Mega

digitalWrite(pwm_b, HIGH);

void loop() {

II Ten steps in the forward direction

s.step(lO);

delay(lOOO);

II Ten steps in the reverse direction

s . step (-1 o) ;

delay(lOOO);

In addition to DIR_A and Dffi_B, this sketch sets the values of PWM_A and PWM_B. These signals
need to be set high to ensure that both H bridges will function normally. Note that, when controlling
a stepper, you don't really need PWM signals or braking.

9.5 Servomotor Control
Chapter 5, "Servomotors," discussed the topic of servos and how most servos used by makers don't
provide feedback to the controller. This section explains how to control these hobbyist servos by
accessing the Arduino Motor Shield. The first part of the section discusses the Servo library and its
functions. The second part presents the servo-control code.

9.5.1 The Servo Library
Like the Stepper library discussed earlier, the Servo library is a standard library, which means it
comes preinstalled with the Arduino environment. To access this library in a sketch, go to the main
menu, select Sketch > Import Library, and select the Servo option. This will prepend the following
code to the sketch:

#include <Servo.h>

Just as the Stepper library defines a class called Stepper, the Servo library defines a class called
servo. This class contains a number of methods, and Table 9.6 lists each of them.

Table 9.6 Functions of the Servo Library

Function Description

attach(int pin) Associates the Servo object with the given pin

attached() Returns 1 if the servo is attached to a pin and 0 if not

9.5 Servomotor Control 167

read() Returns the last angle written to the servo

None of these functions is a constructor, so these functions can't create Servo objects. Instead, a
servo object can be declared like any other variable. This is shown in the following line of code:

Servo sv;

The Servo object must be associated with the pin that will deliver PWM control signals to the
motor. This association is created by the attach function, which can be called with one argument
or three arguments.

When you're controlling a servo's shaft, the minimum pulse width produces the minimum angle
(usually 0°) and the maximum pulse width produces the maximum angle (usually 180°). If attach

is called with one argument (the PWM pin number), the minimum pulse width is 544 and the maxi
mum pulse width is 2400.

If attach is called with three arguments, the first argument is the PWM pin number, the seconQ. is
the minimum pulse width, and the third is the maximum pulse width. As an example, the following
code associates sv with Pin 8 and sets the min/max pulse widths to 900/2100:

sv.attach(8, 900, 2100);

After the Servo object is associated with its pin, the angle of the motor's shaft can be set with
write or writeMicroseconds. The write function accepts the desired angle in degrees, and
the program determines the appropriate pulse width. If the desired pulse width is already known,
writeMicroseconds accepts the pulse width in milliseconds.

9.5.2 Controlling the Servomotor
As discussed in Chapter 5, hobbyist servomotors generally have three wires:

• Power-Provides about 5-6 V to power the motor (usually the red wire)

• Signal-Controls the servo with PWM signals

• Ground-Provides electrical ground (usually the black wire)

In Figure 9.5, the shield has two orange connectors labeled Analog (PWM) Outputs. These connec
tors have three pins each: power, PWM control, and ground, in that order.

Unfortunately, the connections of my hobbyist servos are ordered with the PWM control signal first,
followed by the power and ground. For this reason, I've found it necessary to separate the servomo
tor's wires and manually connect them to the shield's header connections.

9

168 Motor Control with the Arduino Mega

The code in Listing 9.5 shows how to control a servomotor whose PWM control wire is connected to
Pin 6.

Listing 9.5 Ch9/servo.ino-Servomotor Control
/*
This sketch controls a hobbyist servomotor.

It rotates the shaft 180 degrees forward and 180 degrees back.

*I

#include <Servo.h>

Servo sv;

int angle;

void setup ()

II Servo object

II servo's angular position

II Attach the Servo object to Pin 6

sv. attach (6, 800, 2200);

void loop ()

II Rotate from 0 to 180 degrees

for(angle = 0; angle < 180; angle += 1) {

sv.write(angle);

delay(10);

II Rotate from 180 to 0 degrees

for(angle = 180; angle >= 1; angle -=1) {

sv.write(angle);

delay(10);

In this case, the minimum angle corresponds to a pulse width of 800 microseconds and the maxi
mum angle corresponds to a pulse width of 2200 microseconds. These values are specified in the
attach function.

9.6 Summary
After so many chapters discussing motor theory, it's good to see how real-world motors can be con
trolled with real-world electronics. Many motor control systems cost a great deal of money, but the
Arduino Mega and Arduino Motor Shield are both inexpensive and easy to use. With the Arduino
programming environment, you can have a motor control sketch coded and compiled in less than an
hour.

9.6 Summary 169

The primary device of the Arduino Mega is the ATmega2560 microcontroller. This single chip con
tains all the ROM, RAM, and processing power needed to execute Arduino sketches, but the Mega
doesn't have the resources needed to control motors.

In contrast, the Arduino Motor Shield is designed to control brushed DC motors, stepper motors, and
servomotors. Its primary device is the L298P, which contains two H bridges. The H bridge connec
tions are complex, but they allow the shield to halt a motor, deliver PWM signals, and reverse the
motor's direction. In addition, the shield can deliver more electrical power than the Mega can.

The capabilities of the Arduino programming environment can be extended with libraries. The first
library discussed in this chapter is the Stepper library, which makes it possible to control stepper
motors. This library has four functions, and two of them are constructors that return a stepper
object. After this object is created, its member functions-setSpeed and step-can be called.

\., The functions of the Servo library make it possible to control servomotors. To accomplish this in
code, a sketch needs to declare a servo object and associate it with a pin capable of delivering
PWM signals. When you're using this library, it's important to know the minimum and maximum
pulse widths needed to set the angle of the servomotor's shaft.

9

