INSTRUCTION MANUAL for V.S.W.R. INDICATOR AND SELECTIVE AMPLIFIER TYPE 6593A 1982 MARCONI INSTRUMENTS LIMITED MICROWAVE PRODUCTS DIVISION STEVENAGE HERTFORDSHIRE ENGLAND A GEC-MARCONI ELECTRONICS COMPANY # * # **Contents** | Chap | ter 1 | GEN | ER | | NF | OF | RV1/ | ZTI | $\supset N$ | | | | | | | |------------|---------------------------|----------|--------|--------|-------|------------|-------|-----|-------------|------|-----|-----|-----|-----|----| | 1.1 | Type 6593 | A spec | ificat | tion | ••• | ••• | ••• | ••• | ••• | | | | | ••• | 1 | | 1.2 | Introduction | on | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | 2 | | 1.3 | Installatio | n | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | 2 | | Chan | ter 2 | OPE | RA. | TIO | Ν | | | | | | | | | | | | 2.1 | Front Pan | | | | ••• | | ••• | | | | | | | | 3 | | 2.1 | Rear Pane | | | | ••• | ••• | ••• | ••• | | | | ••• | ••• | ••• | 4 | | 2.3 | Operating | | | | | ••• | ••• | ••• | ••• | ••• | ••• | | ••• | | 4 | | 2.3.1 | V.S.W.R | | | | | ••• | | | ••• | | | | ••• | | 4 | | 2.3.2 | Measureme | ent of v | ery l | ow V | .S.W | .R. | ••• | ••• | ••• | ••• | ••• | | ••• | ••• | .5 | | 2.3.3 | Measureme | ent of l | arge | V.S.V | ٧.R. | • • • | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | 5 | | 2.3.4 | Bolometer | operat | ion | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | 5 | | Chan | ter 3 | TEC | HN | ICΑ | LE | DES | CF | IPT | 101 | V | | | | | | | 3.1 | Principle | | | | | | | | | | | | | | 7 | | 3.2 | Amplifiers | | | | | | | | | ••• | ••• | | | ••• | 7 | | 3.3 | • | | | ••• | ••• | | ••• | ••• | ••• | ••• | | | | ••• | 7 | | 3.4 | Output cir | cuits | | | ••• | | | ••• | | ••• | ••• | ••• | ••• | ••• | 7 | | 3.5 | Power Sup | plies | | ••• | | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | 7 | | OI | 1 | | N 1 | | A B 1 | С Г | | | | | | | | | | | • | ter 4 | | | | 71/1 | | | | | | | | | | 8 | | 4.1
4.2 | Introducti
Removal (| | | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | 8 | | 4.2 | Safety pre | | | | ••• | | ••• | ••• | | ••• | ••• | ••• | ••• | | 8 | | 4.3 | Equipmen | | | | | ••• | | | | | | ••• | ••• | | 8 | | 4.5 | Performan | - | | | | heck | | | ••• | ••• | | | | | 8 | | | | | | | | | | | | | | | | | | | Chap | ter 5 | REP | LA | CAE | 3LE | E PA | AR' | TS | | | | | | | | | | Replaceal | ble part | s lis | t | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | 10 | | | Spare part | s order | ing | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | ••• | 15 | | Chan | ter 6 | DEE | | = \ (| :F | ΤΔΙ | RI F | -5 | | | | | | | | | • | El Conv | | | | | | | | decil | bels | | | | ••• | 16 | | TABL | | V.R. – | | | | | | | | | | | | | 17 | | TABL | | V.R. – | | | | | | | | | | | ••• | ••• | 17 | | TABL | | ction o | | | | | | | | | | ••• | | | 18 | | TABL | | W.R. (< | | | | | | | | | ••• | | ••• | ••• | 19 | | TABL | _E 6 V.S.\ | W.R. (< | 1) to | volt | age i | refle | ction | сое | fficie | ent | ••• | ••• | ••• | ••• | 20 | | | TRATIC | | | | | | | | | | | | | | | | | 1 Type 659 | | wp | المما: | -at- | | | | | ••• | | | | | 1 | | • | 1 Type 639
2 Front Pai | | | | | | | | ••• | | ••• | ••• | ••• | | 3 | | • | 2 Front Fai
3 Rear Pan | | | | | | | | | | | ••• | ••• | | 4 | | | 4 Block Die | | | | ••• | | | | ••• | | | ••• | ••• | ••• | 6 | | Fig. | 5 Side Viev | y, Top | Cove | r Ren | | | | | | | | | | ••• | 6 | | | 6 Printed C | | | | | • | | | • | | | | | | | | • | 7 Circuit D | | | - | | | | | | | | | | | | ## **General information** Fig. 1 Marconi Instruments V.S.W.R. Indicator Type 6593A | 11 SPECIFICIAL C | JN | |------------------|----| |------------------|----| | AMPLIFIE | - K | |----------|-----| |----------|-----| 2 channels, A and B. High im-Inputs pedance. 2000 Bolometer input, bias current 4.5mA. **Functions** A,B, A-B, Bolometer. Frequency range 800 Hz-1200 Hz variable. Selectivity 20 Hz-100 Hz variable. Sensitivity 0.5 μ V R.M.S. for F.S.D. on chan- nels A and B. 0.15 μ V R.M.S. for F.S.D. on Bolometer input. Noise level Below -10 d3 level on meter at maximum sensitivity and band- width with high impedance input terminated in 50Ω . Output Proportional to meter indication. 1 volt corresponding to F.S.D. Output impedance, $100 \text{ k}\Omega$. #### **ATTENUATORS** Coarse 0 to 60 dB in steps of 10 dB ± 0.1 dB/10 dB. From 0-10dB $\pm 0.5 dB$. Medium 0 to 10 dB in steps of 1 dB ± 0.05 dB/dB. Fine 0 to 1 dB continuously variable. METER SCALES **VSWR** 1.0 to ∞ 3.16 to ∞ Expanded 1.0 to 1.3 dB range 0 to -10dB Expanded dB range 0 to -2.2 dB Battery check Discharged/Charged Meter calibration For square law detector Scale length 119,5 mm 4.7 in. POWER REQUIREMENTS A.C. mains 115 or 230V a.c. 50 to 60 Hz. #### DIMENSIONS AND WEIGHT 7.95 in Height 140.5 mm Width Depth 202 mm Weight 284 mm 2.64 kg 11.2 in 51b 13 oz #### OPTIONAL ACCESSORY 2200186 5.53 in Internal rechargeable battery pack. permits use up to 20 hours con- tinuous operation. FEROLLULION The V.S.W.R. indicator and selective amplifier is basically a low noise, high gain amplifier driving a meter output. The instrument is primarily intended for Laboratory use but its small size and robust construction make it equally suitable for use in the field. Provision is made for two inputs from crystal detectors. These can be used indepentently or together for bridge measurements. A separate input is provided with a d.c. bias supply for bolometer operation. The switched attenuators are adjustable from 0 to 70db in increments of 1db, and a continuously variable 0-1db attenuator is also provided. Attenuator calibration assumes that the input is from a square law detector. Either a mains a.c. supply or optional internal batteries can be used to power the instrument which has a very low power consumption. Before connecting the mains supply check that the rear panel voltage switch is set to the appropriate value and that the correct fuse (160mA) is fitted. ## **Operation** Fig. 2. Front Panel Controls # 2.1 FRONT PANEL CONTROLS #### 1. MAINS SWITCH Mains supply ON/OFF switch and associated indicator lamp. During battery charge, indicator lamp is lit. #### 2. BATTERY A three-position push-button switch which energises the 6593A from the battery pack (optional). It also permits the condition of the battery pack to be checked (BAT CHK button) and charged (BAT CHG button). When the mains is on, a trickle-charge is applied to the battery pack and in the BAT CHG position the power is used for charging purposes with the indicator lamp glowing. #### 3. METER MECHANICAL ZERO Set meter indication to zero when mains power is OFF. #### 4. METER RANGES Selects normal or expanded meter ranges as indicated on meter. #### 5. INPUT SELECTOR SWITCHES Selects alternative high impedance input channels A and B as well as A-B facility for bridge measurements. #### 6. INPUT SOCKETS BNC sockets for channels A and B inputs. #### 7. STEP ATTENUATOR CONTROLS Coarse 0 to 60dB in steps of 10dB ± 0.1 dB/10dB. From 0-10dB ± 0.5 dB. Medium 0 to 10dB in steps of 1dB ± 0.05 dB/dB. ## 8. CONTINUOUSLY VARIABLE ATTENUATOR CONTROL Fine 0 to 1 dB continuously variable. Fig. 3. Rear Panel Controls # 2.2 REAR PANEL CONTROLS #### 1. OUTPUT 0-1V output proportional to meter indication. 1 volt corresponding to f.s.d. Output impedance 100k Ω . #### 2. INPUT Bolometer input and associated bias ON/OFF switch. #### 3. AMPLIFIER TUNING Tuned amplifier centre frequency adjustment. Clockwise rotation increases frequency. #### 4. AMPLIFIER BANDWIDTH Amplifier bandwidth adjustment. Clockwise rotation increases bandwidth. #### 5.115 - 230V MAINS This switch permits the application of either 115V or 230V a.c. power. Insure that the switch position is properly set prior to the application of power to avoid equipment damage. If replacement of the associated fuse (160mA slow blow) becomes necessary, ensure that the replacement conforms with the description given in the Replaceable Parts list. # 2.3 OPERATING INFORMATION #### 2.3.1. V.S.W.R. For normal V.S.W.R. measurements the instrument is used in the conventional manner. Socket A or B may be used for connection to a crystal, the input selector switch being set appropriately. #### BRIDGE APPLICATIONS If two signals are available from the microwave bench, very small deviations in either of the signals can be accurately measured using bridge techniques. When the two inputs are connected to sockets A and B they complete a bridge network with two primary windings on the input transformer. Having connected the signals to sockets A and B, proceed as follows: - Switching INPUT SELECTOR to A and B in turn, adjust attenuators on microwave bench until the two signals are indicated as being of approximately the same level on the V.S.W.R. Indicator. - 2) Set INPUT SELECTOR TO A B. - 3) Switch out attenuation in amplifier to increase the reading to a convenient indication. - 4) Adjust attenuators on microwave bench to obtain a null on the meter indication. 5) Re-adjust one of the microwave attenuators to a position at which the sensitivity of the indication is adequate for the measurement to be performed, at the same time ensuring that the working region for these measurements is confined to one side of the null. If necessary the meter indication can be calibrated against an attenuator in the arm in which variations are being measured. A simpler, but slightly less accurate application of the bridge balance facility, particularly useful in measuring insertion losses above 0.1dB, is as follows: - Adjust the two signals, as described above, to obtain a null reading. - Insert or remove the component, whose insertion loss is to be measured in one arm of the microwave system. - Adjust the attenuator in that arm of the system to re-establish the null readings. The difference in the two readings of the attenuator is
the insertion loss. ## 2.3.2. MEASUREMENT OF VERY LOW V.S.W.R. When a V.S.W.R. of less than 1.3:1 is being measured, more accurate readings can be obtained by using the expanded scale facility as follows:- Adjust microwave and/or amplifier attenuators to obtain a reading of approximately '1' for the standing wave maximum. - 2) Depress 'Expand' Button. - Proceed as if normal V.S.W.R. measurement were being made but read the red EXPANDED V.S.W.R. scale. ## 2.3.3. MEASUREMENT OF LARGE V.S.W.R. For measurement of a V.S.W.R. greater than 3.16:1 proceed as follows:- - Set the instrument inputs and controls for ordinary V.S.W.R. measurements and proceed to make the measurement. - 2) When the null of the signal is obtained, reduce the attenuation by 10dB and take the V.S.W.R. reading from $3.16-\infty$ scale instead of the $1.0-\infty$ scale. #### 2.3.4. BOLOMETER OPERATION To use a Bolometer with the 6593A proceed as follows:- - 1) Connect Bolometer to Bol. I/P on the rear panel. - Set the Bolometer Bias switch to ON and select channel B on front panel. Proceed as with other mmmeasurements. - 3) It is important to set the Bolometer Bias switch to OFF when not in use, or the input sensitivity on channel B will be degraded. 3 # **Technical description** Fig. 4. Block Diagram of 6593A Fig. 5. General Internal Layout # 3.1 PRINCIPLE OF OPERATION & CIRCUIT DESCRIPTION Two front panel inputs A and B are provided which are both connected via switches S1, S2 and S3 to the primaries of the input transformer T2. (See Circuit Diagram Fig 7). A Bolometer input is provided on the rear panel which is linked to one primary of T2 by S11 and C1. The bolometer bias is fixed at 4.5ma by TR1, R1, R2 and R3. When the A-B button, S1, is depressed, both A and B inputs are connected to T2 primaries which are in antiphase hence the subtraction of B from A. #### 3.2 AMPLIFIERS AND ATTENUATORS The input amplifier ICI is a low-noise integrated circuit, part No. 6593 Item 212 Attenuator SW1 and SW2 are the 10db stepattenuators and attenuator SW3 gives the 1db steps. These are located within the screened box shown in Fig. 5. The first amplifier, ICI, operates at a gain of 330, IC2 operates at a gain of 100 and IC3 gain is variable. By fixing the gains of the operational amplifiers and using resistive attenuators, better stability and noise performance can be obtained. The attenuators are separated from one another by amplifiers to eliminate interaction and loading effects. #### 3.3 FILTER To reduce the noise level at the detector to a minimum, it is necessary to filter the signal at this point. An active filter is used, composed of IC4 and IC5 whose frequency is controlled by RV6 and bandwidth by RV5. IC6 provides more signal amplification and RV3 determines the gain of this stage. This preset potentionmeter is adjusted during test and no further adjustment should be necessary. #### 3.4 OUTPUT CIRCUITS IC7 and IC8 form the output rectifier together together with D9 and D10. IC7 and IC8 amplify separately the positive and negative halves of the waveform. The negative half is inverted and added to the positive half, giving a full wave rectified output. Smoothing is achieved by C16. The output from IC8 is taken to the meter M1 via S4 and S5. In the "Norm" position the meter is shunted with RV1 and R9. In the "Exp" position the shunt is removed and a backing-off current is provided from the -8 volt rail by RV2 and R11. RV2 is preset to give a backing-off current such that the 1.0 to 1.3 portion of the normal scale is expanded and aligned to cover the whole of the expanded V.S.W.R. scale. #### 3.5 POWER SUPPLIES The amplifier operates from any 50 - 60Hz supply in the ranges 110-120V or 200-250 volts. The change-over switch S12 is located on the rear panel. Two supplies are necessary for the circuit, +8V and -8V. These are provided by the secondaries of T1, two bridge rectifiers D1-D8 and the two regulators VR1 and VR2. Switching is achieved by S9 and S10. When the optional rechargeable battery pack is fitted this can be selected by S8, Battery 'ON' switch. N.B. The battery pack contains 2 independent batteries shown as BT1 and BT2 on the circuit diagram. The batteries are trickle-charged from the the mains via T1, D1-8, R34 and R36 when the instrument is operating from the mains. For a full charge, S7, Battery Charge, is selected and they are then fed via R35 and R37. Battery testing is accomplished with S6 which loads both batteries with R39 and measures the resulting voltage on the Meter M1 via R33. Battery life will be of the order of 20 hours from one full charge. 4 ### **Maintenance** #### 4.1 INTRODUCTION Readily-available components are used in the manufacture of the 6593A wherever possible. The parts list show the replaceable parts available from MIMPD. Full instructions for re-ordering are given at the end of the replaceable parts list. #### 4.2 REMOVAL FROM CASE To remove the instrument from its case it is necessary to undo the six chrome-head screws at the rear of the instrument. The top and bottom covers may then be removed. #### 4.3 SAFETY PRECAUTIONS This equipment is protected in accordance with IEC Safety Class 1. It has been designed and tested according to IEC Publication 348, 'Safety Requirements for Electronic Measuring Apparatus', and has been supplied in a safe condition. The following precautions must be observed by the user to ensure safe operation and to retain the equipment in a safe condition. Removal of the covers is likely to expose live parts although reasonable precautions have been taken in the design of the equipment to shield such parts. The equipment shall be dis-connected from the supply before carrying out any adjustment, replacement or maintenance and repair during which the equipment shall be opened. If any adjustment, maintenance or repair under voltage is inevitable it shall only be carried out by a skilled person who is aware of the hazard involved. The mains plug shall only be inserted in a socket outlet provided with a protective earth contact. The protective action shall not be negated by the use of an extension lead without protective conductor. Any interruption of the protective conductor inside or outside the equipment is likely to make the equipment dangerous. # 4.4 EQUIPMENT REQUIRED FOR TEST - 1 DMM, DANA 4600 or equivalent. - 2 Signal Generator covering three frequencies 0.8, 1.0 and 1.2 kHz squarewave output with output filtered by 750Hz high pass filter, (For mains rejection). Output amplitude: 8V, p.p. - 3 Precision attenuators covering: - 0 100dB in 10dB steps - 0 10dB in 1dB steps - 4 Mains Variac. - 5 Multimeter, AVO 8. # 4.5 PERFORMANCE AND CALIBRATION CHECKS - 1 Power Supplies - a) Connect 6593A to mains variac and set variac to 230V. - b) Using DMM measure voltage regulator supply outputs across C10 and C11. - c) Check these voltages are within 7.8 8.3 volts +ve and -ve respectively. - d) Using the variac adjust the supply voltage from 180V 260V and observe the change in supply voltages. The change should be no greater than 0.1V on both supplies. - e) Set 6593A to OFF and set voltage selector to 115V (rear panel). - f) Repeat b) to d) for supply voltages 100 to 130V. - 2 Meter Scale Calibration - a) Connector equipment as below:- b) Set 6593A controls as follows: ATTENUATOR 0-60 20dB NORM/EXP NORMAL INPUT CHANNEL A BANDWIDTH CONTROL FULLY C W (Rear Panel) - c) Switch mains ON and check meter deflection is zero. - d) Apply signal from signal generator at frequency 1.000kHz and peak the meter reading using frequency adjust pot. on rear panel of 6593A. - e) Set the meter to read f.s.d. (i.e. 1.0) by adjusting either the signal level or the attenuator controls. - f) Using DMM check the RECORDER output for 1.0 1.3V dc. - g) Switch to EXP and adjust RV2 to give full scale deflection. - h) If f.s.d. cannot be obtained then set the instrument to NORM and adjust RV1 by several turns, then set f.s.d. using attenuators. Repeat (g). - i) Switch to NORM and adjust attenuators to give a reading of 1.3 on the 1.0 VSWR scale. - j) Switch to EXP and check that a reading of 1.3 is obtained on the expanded scale. Adjust RV1 if necessary. Progressive adjustment of RV1 and RV2 may be necessary to obtain correct results. ## **Maintenance** - k) Having calibrated the meter scale, set the attenuator controls of the 6593A to minimum and set precision attenuators to setting of 70dB. - I) Adjust RV3 for f.s.d. on NORM. - N.B. Adjust RV3 only if meter is ON scale, leave if meter is upscale of f.s.d. - m) Set 6593A attenuator controls to 20dB and adjust output level from precision attenuators to give 1/2 f.s.d. on the meter. - n) Set signal generator frequency to 800Hz and adjust the frequency control on rear panel of 6593A to peak the reading on the meter. - o) Set signal generator frequency to 1.200KHz and adjust the frequency control on rear panel of 6593A to peak the reading on the meter. - p) Reset and repeat at 1.000kHz. - q) Check behaviour of bandwidth control set to fully CW and ACW, meter reading should vary. Reset bandwidth control to approx. mid-position. - r) Disconnect signal input to Input A and connect to Input B. With the 6593A attenuator set to 20dB there should be very little difference between readings on inputs A or B. - s) Disconnect signal input to 6593A and connect the output of a Marconi Instruments 6060 Detector to input A. With the attenuators set to minimum, the noise level should be less than -10dB on full scale as indicated on the dB scale on the meter. - t) Adjust RV3 if meter indicates upscale of -10dB. N.B. This adjustment is to comply with para. (k) & (I). - 3 Attenuator Checks - a) Reconnect 1.000kHz signal from precision attenuator output to input A of 6593A. - b) Using the 10dB step precision attenuator check each step on the 0-60dB attenuator in the 6593A, by increasing the precision attenuator whilst decreasing the attenuator of 6593A. - The error as seen on the dB scale of the
6593A should be no more than ± 0.1 dB per 10dB step except 0dB, ± 0.5 dB. - c) Repeat this process using the dB precision attenuator and the 0 10dB attenuator on the 6593A. - The error between steps should be no more than $\pm 0.05 dB$. - 4 Bolometer Bias Check - a) Connect an AVO 8 in series with a 200 ohm resistor and connect across BOLO bias socket as shown:- b) Remove locking plate from Bolometer bias switch (on rear panel) and set to ON. Measured current output to be within 4.25 - 4.75mA. Switch Bolometer Bias off when not in use. Chapter # Replaceable parts | Circ.
Ref. | Description | Total No. used. | Mfrs. | Part No. | Circuit Diag.
Grid Ref. | |---------------|---|-----------------|-------------------|-----------|----------------------------| | Capa | CHACHTER | | | | | | C1 | Capcitor, fixed, Met. Film, $0.1 \mu F \pm 10\%$ | 6 | Mullard or equiv. | C280 | X7 - Y10 | | C2 | Capacitor, fixed, Met. Film, $0.047 \mu \mathrm{F} \pm 10\%$ | 2 | Mullard or equiv. | C280 | X7 – Y9 | | C3 | As C1 | | | | X7 – Y8 | | C4 | As C1 | | | | X10 - Y10 | | C5 | As C2 | | | | X10-Y9 | | C6 | As C1 | | | | X10 - Y8 | | C7 | Capacitor, fixed, Tant. Bead, $2.2\mu F$ 35V | 3 | ITT or
equiv. | TAG | X11 – Y9 | | C8 | Capacitor, fixed, electrolytic, 470μ F -10% to $+50\%$ @ 25 V | 2 | ITT or
equiv. | EN 12.12 | X16 – Y3 | | C9 | As C8 | | | | X16 – Y2 | | C10 | Capacitor, fixed, electrolytic. $100\mu F$; -10% to $+50\%$ @ $16V$ | 2 | Erie or
Equiv. | | X18 – Y3 | | Cll | As C10 | | | | X18 - Y1 | | C12 | Capacitor, fixed, Tant. bead, $4.7\mu\mathrm{F}$ 35V | 1 | ITT or
Equiv. | TAG | X17 – Y9 | | C13 | As C1 | | | | X15 – Y8 | | C14 | Capacitor, fixed,
ceramic, 1000pf | 2 | Erie or
Equiv. | | X15 – Y8 | | C15 | As C14 | | | | X16 – Y7 | | C16 | Capacitor, fixed, Tant. bead, 0.1 μ F 35V | 1 | ITT or
Equiv. | TAG | X20 – Y9 | | C17 | As C7 | | | | X8 – Y9 | | C18 | As C7 | | | | X5 – Y 10 | | C19 | As C1 | | | | X3 – Y6 | | C20 | Capacitor, fixed, Tant.
Bead, 3.3 μ F, 35V | 1 | ITT or
Equiv. | TAG | X2 – Y5 | | C21 | Capacitor, fixed, Tant. Bead, 0.4 7 μ F 35V | 1 | ITT or
Equiv. | TAG | X21 – Y8 | | | | | | | | | DI | Semiconductor,
Diode, Type 1N4003 | 4 | Comm. | | X15 – Y2 | | D5-8 | Semiconductor
Diode, Type IN4003 | 4 | Comm. | | X15 – Y3 | | D9 | Semiconductor
Diode, Type IN914 | 1 | Comm. | | X19 - Y9 | | D10 | As D1 | | Comm. | | X19 - Y9 | | DII | As D1 | | Comm. | | X8 – Y3 | | D12 | As D1 | | Comm. | | X8 – Y5 | | | | | | | | | FS1 | Fuse 20mm 160mA | 1 | Comm. | 23411/054 | X3 – Y3 | | Circ.
Ref. | Description | Total No. used. | Mfrs. | Part No. | Circuit Diag.
Grid Ref. | |---------------|---|-----------------|---|----------------------------------|----------------------------| | IC1 | Integrated circuit | 1 | P.M.I. | OP-06-CJ | X7 – Y9 | | IC2 | Integrated circuit
Type LM741CH | 1 | National
Semiconductors
or equiv. | | X10 – Y9 | | IC3 | Integrated circuit
Type LM741CN | 6 | National
Semiconductors
or equiv. | | X 13 = Y9 | | IC4 | As IC3 | | | | X15 – Y9 | | IC5 | As IC3 | | | | X 16 – Y7 | | IC6 | As IC3 | | | | X17 _ Y9 | | IC7 | As IC3 | | | | X18 - Y8 | | IC8 | As IC3 | | | | X20 = Y8 | | 1LP1 | Indicator Lamp | 1 | Boss Industrial
Mouldings | Series M
Lens A
T/Red 125V | X14 – Y3 | | М | Meter, 100μ a,
Moving coil | 1 | Sangamo
Weston | S819 | X11 - Y4 | | PL1 | Plug, Mains inlet | 1 | Marconi
Instruments | 3850/069 | X2 – Y2 | | R1 | Resistor fixed film
1/8 watt 1.2K ohms
2% | 1 | Comm. | | X2 – Y4 | | R2 | Resistor fixed film
1/8 watt 330 ohms
2% | 1 | Comm. | | X2 – Y5 | | R3 | Resistor fixed film
1/8 watt 1K ohms
2% | 1 | Comm. | | X2-Y4 | | R4 | Resistor fixed film
1/8 watt 12 ohms
1% | 1 | Comm. | | X5 – Y7 | | R5 | Resistor fixed film
1/8 watt 150 ohms
1% | 1 | Comm. | | X5 – Y7 | | R6 | Resistor fixed film
1/8 watt 100 ohms
2% | 1 | Comm. | | X6 – Y10 | | R7 | Resistor fixed film
1/8 watt 100 ohms
2% | 1 | Comm. | | X7 – Y9 | | R8 | Resistor fixed film
1/8 watt 27 ohms
2% | 1 | Comm. | | X7 – Y9 | | R9 | Resistor fixed film
1/8 watt 47 ohms
2% | 1 | Comm. | | X19 – Y7 | | R 10 | Resistor fixed film
1/8 watt 8K2 ohms
2% | 1 | Comm. | | X21 – Y8 | | Circ.
Ref. | Description | Total No. used. | Mfrs. | Part No. | Circuit Diag.
Grid Ref. | |---------------|---|-----------------|-------|----------|----------------------------| | RII | Resistor fixed film
1/8 watt 22K ohms
2% | 1 | Comm. | | X19 - Y5 | | R12 | Resistor fixed film
1/8 watt 33K ohms
2% | 1 | Comm. | | X7 – Y10 | | R13 | Resistor fixed film
1/8 watt 120 ohms
1% | 1 | Comm. | | X8 – Y7 | | R 14 | Resistor fixed film
1/8 watt 1.5K ohms
1% | 1 | Comm. | | X9 – Y7 | | R15 | Resistor fixed film
1/8 watt 100 ohms
2% | 1 | Comm. | | X9 - Y10 | | R16 | Resistor fixed film
1/8 watt 100 ohms
2% | 1 | Comm. | | X10 - Y9 | | R17 | Resistor fixed film
1/8 watt 27 ohms
2% | 1 | Comm. | | X10 - Y9 | | R18 | Resistor fixed film
1/8 watt 10K ohms
2% | 1 | Comm. | | X10 - Y10 | | R 19 | Resistor fixed film
1/8 watt 1K ohms
2% | 1 | Comm. | | X13 – Y9 | | R 20 | Resistor fixed film
1/8 watt 1K ohms
2% | 1 | Comm. | | X13 – Y8 | | R21 | Resistor fixed film
1/8 watt 1K ohms
2% | 1 | Comm. | | X13 – Y8 | | R22 | Resistor fixed film
1/8 watt 20K ohms
2% | 1 | Comm. | | X18 – Y9 | | R23 | Resistor fixed film
1/8 watt 10K ohms
2% | 1 | Comm. | | X18 – Y8 | | R24 | Resistor fixed film
1/8 watt 20K ohms
2% | 1 | Comm. | | X19 – Y9 | | R25 | Resistor fixed film
1/8 watt 20K ohms
2% | 1 | Comm. | | X19 - Y10 | | R26 | Resistor fixed film
1/8 watt 10K ohms
2% | 1 | Comm. | | X19 – Y8 | | R27 | Resistor fixed film
1/8 watt 8.2K ohms
2% | 1 | Comm. | | X16 – Y7 | | R28 | Resistor fixed film
1/8 watt 8.2K ohms
2% | 1 | Comm. | | X16 – Y7 | | Circ.
Ref. | Description | Total No. used. | Mfrs. | Part No. | Circuit Diag.
Grid Ref. | |---------------|---|-----------------|--------|----------|----------------------------| | R29 | Resistor fixed film
1/8 watt 1K ohms
2% | 1 | Comm. | | X16 – Y8 | | R30 | Resistor fixed film
1/8 watt 20K ohms
2% | 1 | Comm. | | X20 – Y9 | | R31 | Resistor fixed film
1/8 watt 5.1K ohms
2% | 1 | Comm. | | X20 – Y9 | | R32 | Resistor fixed film
1/8 watt 4.7K ohms
2% | 1 | Comm. | | X20 - Y8 | | R33 | Resistor fixed film
1/8 watt 390K ohms
2% | 1 | Comm. | | X12-Y3 | | ₹34 | Resistor fixed film
1/8 watt 1.5K ohms
2% | 1 | Comm. | | X8 – Y3 | | R35 | Resistor fixed W/W
3 watt 51 ohms 5% | 1 | C.G.S. | | X8 – Y3 | | R36 | Resistor fixed film
1/8 watt 1.5K ohms
2% | 1 | Comm. | | X8 – Y5 | | R37 | Resistor fixed W/W
3 watt 51 ohms 5% | 1 | C.G.S. | | X8 – Y5 | | R38 | Resistor fixed film
1/8 watt 100K ohms 2% | 1 | Comm. | | X21 – Y8 | | R39 | Resistor fixed W/W
3 watt 220 ohms 5% | 1 | C.G.S. | | X12 – Y4 | | R40 | Resistor fixed film
1/8 watt 15K ohms 2% | 1 | Comm. | | X14 – Y9 | | R41 | Resistor fixed film
1/8 watt 10K ohms 2% | 1 | Comm. | | X15 – Y7 | | R42 | Resistor fixed film
1/8 watt 47 ohms 1% | 1 | Comm. | | X11 – Y6 | | R101 | Resistor fixed film
1/8 watt 100K ohms 1% | 1 | Comm. | | X5 – Y9 | | R102 | Resistor fixed film
1/8 watt 10K ohms 1% | 1 | Comm. | | X5 – Y8 | | R103 | Resistor fixed film
1/8 watt 1K ohms 1% | 1 | Comm. | | X5 – Y8 | | R104 | Resistor fixed film
1/8 watt 100 ohms 1% | 1 | Comm. | | X5 – Y7 | | R105 | Resistor fixed film
1/8 watt 10K ohms 1% | 1 | Comm. | | X8 – Y9 | | R106 | Resistor fixed film
1/8 watt 1K ohm 1% | 1 | Comm. | | X8 – Y9 | | R 107 | Resistor fixed film
1/8 watt 100 ohms | 1 | Comm. | | X11 – Y9 | | R108 | Resistor fixed film
1/8 watt 82 ohms 1% | 1 | Comm. | | X11 – Y9 | | R109 | Resistor fixed film
1/8 watt 62 ohms 1% | 1 | Comm. | | X11 – Y8 | | Circ.
Ref. | Description | Total No. used. | Mfrs. | Part No. | Circuit Diag.
Grid Ref. | |---------------|--|-----------------|------------------------|-------------|----------------------------| | R110 | Resistor fixed film
1/8 watt 47 ohms 1% | 1 | Comm. | | X11 – Y8 | | R111 | Resistor fixed film
1/8 watt 39 ohms 1% | 1 | Comm. | | X11 – Y8 | | R112 | Resistor fixed film
1/8 watt 30 ohms 1% | 1 | Comm. | | X11 – Y8 | | R113 | Resistor fixed film
1/8 watt 24 ohms 1% | 1 | Comm. | | X11 – Y7 | | R114 | Resistor fixed film
1/8 watt 20 ohms 1% | 1 | Comm. | , | X11 – Y7 | | R115 | Resistor fixed film
1/8 watt 15 ohms 1% | 1 | Comm. | | X 11 – Y7 | | R116 | Resistor fixed film
1/8 watt 12 ohms 1% | 1 | Comm. | | X11 – Y6 | | R117 | Resistor fixed film
1/8 watt 1.2K ohms 2% | 1 | Comm. | | X12 – Y3 | | R118 | Resistor fixed film
1/8 watt 82K ohms 2% | 1 | Comm. | | X21 – Y8 | | Resis | tors Variable | | | | | | RV1 | Resistor Variable
Cermet, 2K, ±10% | 1 | Spectrol or equiv. | 43P | X19 – Y6 | | RV2 | Resistor Variable
Cermet, 50K, ±10% | 1 | Spectrol or equiv. | 43P | X19 – Y5 | | RV3 | Resistor Variable
Cermet, 20K, ±10% | 1 | Spectrol or equiv. | 43P | X17 – Y8 | | RV4 | Resistor Variable
Wirewound, 1K, ±10% | 1 | Spectrol or equiv. | CW05 | X14 – Y8 | | RV5 | Resistor Variable
Cermet, 200K, ±10% | 1 | Bourns
or equiv. | Туре М | X14 – Y9 | | RV6 | Resistor Variable
Cermet, 50K ±10% | 1 | Bourns
or equiv. | Туре М | X14 – Y7 | | Switc | ches | | Marconi | | | | S1 | Switch, Push Button | 5 | Instruments | 6593/048 | X3 – Y10 | | S2 | As S1 | | | | X3 – Y9 | | \$3 | As S1 | | | | X3 – Y7 | |
S4 | As S1 | | | | X 20 – Y7 | | S5 | As S1 | | Maria | | X20 – Y6 | | S 6 | Switch, Push Button | 5 | Marconi
Instruments | 6593/049 | X12 – Y5 | | S 7 | As S6 | | | | X9 – Y5 | | S8 | As S6 | | | | X7 – Y5 | | S9 | As S6 | | | | X6 – Y5 | | S10 | As \$6 | | M: | | X5 – Y5 | | S11 | Switch, slide | 2 | Marconi
Instruments | T/11040/004 | X2 – Y6 | | S12 | As \$11 | | | | X 14 – Y3 | | SW1 | Switch, rotary | 3 | N.S.F. | MU117044MA3 | X6 – Y8 | | SW2 | As SW1 | | | | X9 – Y8 | | SW3 | As SW1 | | | | X12 – Y8 | | | | | | | | | Circ.
Ref. | Description | Total No. used. | Mfrs. | Part No. | Circuit Diag.
Grid Ref. | |---------------|-----------------------------------|-----------------|------------------------|----------|----------------------------| | Socke | its | | | | | | SK1 | Socket B.N.C.
G.E. 35063BN | 4 | | | X21 – Y8 | | SK2 | As SK1 | | | | X1 - Y10 | | SK3 | As SK1 | | | | X1 – Y8 | | SK4 | As SK1 | | | | X1 – Y6 | | Trans | formers | | | | | | Tl | Transformer, mains,
step down | 1 | C.B.T. | T 23458 | X15 – Y3 | | T2 | Transformer, screened,
step up | 1 | Belclere | EN5752 | X4 – Y10 | | Trans | istors | | | | | | TRI | Transistor Type
ZN3053 | 1 | Comm. | | X1 – Y5 | | Voltag | ge Regulators | | | | | | VR1 | Voltage regulator,
Type 7808UC | 2 | Fairchild or equiv. | | X 17 – Y3 | | VR2 | As VR1 | | | | X17 – Y2 | | Option | nal Accessory | | | | | | BT1/
BT2 | Battery, rechargeable | 1 | Marconi
Instruments | 2200186 | X10 - Y3
X11 - Y3 | #### SPARE PARTS ORDERING All enquiries for spare parts should go to our Technical Services Department. Please specify the following information for each part required. - 1. Type and serial number of the instrument. - 2. Circuit reference - 3. Full description as detailed in the replaceable parts list. #### Orders should be sent to:- The Technical Services Department Marconi Instruments Limited Microwave Products Division P. O. Box. 10 Stevenage, Herts. SG1 2AU England Telephone: Stevenage 2311 Or to your local distributor if outside the U.K. ## Reference Tables The Input V.S.W.R. resulting from the insertion of attenuation is found by laying a straight-edge from the original V.S.W.R. to the attenuator value and reading-off on the left-hand scale. # VSWR (<1) TO POWER REFLECTION COEFFICIENT | s | 50
52
53
54 | 55
55
57
58
58 | .60
.61
.63
.63 | .65
.66
.67
.68
.69 | 70
71
72
73
74 | 75
76
77
78
79 | 83
83
84
84 | 88
88
89
89 | 90
192
193
194 | 95
96
98
98
98 | s | |----|---|---|---|--------------------------------------|---|--------------------------------------|---|--------------------------------------|--------------------------------------|---|----| | თ | .1059
.0949
.0897
.0848 | 0800
0755
0711
0669 | 0591
0554
0519
0485 | 0423
0393
0366
0339
0314 | .0290
.0267
.0246
.0225 | 0188
0171
0154
0139
0125 | .0112
.0099
.0087
.0077 | 0058
0049
0042
0035 | .0023
.0018
.0014
.0010 | 0000
0000
0000
0000 | 6 | | ω | .1065
.1008
.0954
.0902
.0853 | .0805
.0759
.0715
.0673
.0633 | .0594
.0557
.0522
.0488
.0456 | 0426
0396
0363
0342
0316 | .0292
.0269
.0248
.0227 | 0190
.0172
.0156
.0141 | 0113
0100
0089
0078
0008 | .0058
.0050
.0042
.0035 | .0023
.0018
.0014
.0010 | 0000 | 80 | | 7 | 1070
1014
0960
0907
0858 | .0810
.0764
.0720
.0677 | .0598
0561
0526
.0492
.0459 | 0429
0339
0371
0344
0319 | 0295
0272
0250
0259
0210 | .0191
.0174
.0158
.0142 | .0114
.0101
.0090
.0079 | .0059
.0051
.0043
.0036 | .0024
.0019
.0014
.0011 | 0000 | 7 | | 9 | 1076
1019
0965
0913
0862 | .0814
.0768
.0724
.0681 | .0602
.0565
.0529
.0495
.0495 | 0432
.0402
.0374
.0347 | .0297
.0274
.0252
.0231 | 0193
0176
0159
0129 | 0115
0103
0091
0080
0070 | .0060
0052
0044
.0037 | 0024
0019
0015
0011 | 0000
0000
0000
0000 | 9 | | 5 | 1082
1025
0970
0918
0867 | .0819
.0773
.0728
.0686 | 0606
0568
0533
0498
0466 | 0435
0405
0377
0350
0324 | 0299
0276
0254
0233
0214 | 0195
.0177
.0161
.0145 | 0117
0104
0092
0081 | 0061
0052
0044
0037 | 0025
0020
0015
0011 | 00002 | 5 | | 4 | 1088
1030
.0976
.0923
.0872 | 0824
0777
0733
0690
0649 | .0610
0572
0536
0502
0469 | .0438
.0408
.0379
.0352 | 0302
0278
0256
0235
0216 | 0197
0179
0162
0147 | .0118
.0105
.0093
.0082
.0072 | 0062
0053
0045
0038
0031 | .0025
.0020
.0016
.0012 | 00000 | 4 | | 33 | .1093
1036
0981
.0928
.0877 | .0829
.0782
.0737
.0694
.0653 | .0613
.0576
.0540
.0505 | 0441
0411
0382
0355
0379 | 0304
0281
0259
0237
0217 | .0199
.0181
.0164
.0148 | 0119
0106
0094
0083
0073 | 0063
0054
0046
0039
0032 | 0026
0021
0016
0012
0009 | 0000
00004
00002
00001 | 3 | | 2 | 1099
1042
0986
0933
0882 | .0833
.0786
.0741
.0698
.0657 | .0617
.0579
.0543
.0509
.0475 | 0444
0414
0385
0357
0331 | 0307
0283
0261
0239
0239 | 0200
0182
0166
0150 | .0121
0108
.0095
.0084 | 0064
0055
0047
0039
0033 | 0027
0021
0017
0012
0009 | 000000000000000000000000000000000000000 | 2 | | - | 1105
1047
0992
0938
.0887 | .0838
.0791
.0746
.0702 | .0621
.0583
.0547
.0512
.0512 | 0447
0417
0388
0360
0334 | .0309
.0285
.0268
.0242
.0271 | 0202
0184
0167
0151 | 0122
0109
0097
0085 | 0065
0056
0048
0040
0033 | 0027
0022
0017
0013
0003 | 0000
00004
00002
00001
00001 | - | | 0 | 1111
1053
0997
0944
0892 | .0843
.0796
.0750
.0707 | 0625
0587
0550
0515
0482 | 0450
0420
0391
0363
0337 | 0311
0288
0265
0244
0223 | 0204
0186
0169
0153
0138 | 0110
0110
0098
0086 | 0066
0057
0048
0041
0034 | 0028
0022
0017
0013
0010 | 00007
00004
00002
00001
00000 | 0 | | ~ | 50
52
53
54 | 50
50
50
50
50
50
50
50
50
50
50
50
50
5 | 65
63
64
64 | 66
67
68
68 | 72 73 74 74 74 | 76
77
78
78 | 883
83
84 | 88 88
88 88 | 8 2 2 8 2 | 96
96
98
98 | s | | | | | | | | | | CONTRACTOR OF THE PROPERTY | COMMERCIAL CONTROL OF THE | THE RESERVE TO STREET, | *************************************** | |----|--------------------------------------|---|---|--------------------------------------|---|---------------------------------------|---|---
--|--|---| | 61 | 82984 | 99,089 | 511224 | 2057 | 25
22
24
24 | 25
26
27
28
28
29 | 33
33
34 | 35
37
38
39 | 04 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 45
47
47
48
49 | s | | 6 | 9646
9268
8906
8555 | 7896
7685
7286
6998
6721 | 6455
6199
5952
5714
5486 | 5265
5053
4849
4652
4463 | 4281
4105
3936
3773
3615 | 3464
3318
3178
3043
.2912 | .2787
2666
2549
2437
2329 | 2225
2125
2028
1935
1846 | 1759
1676
1597
1520
1446 | .1275
.1307
.1241
.1178 | 6 | | 8 | 9685
9305
8940
8589
8757 | 7927
7615
7315
7026
6749 | .6481
.6224
.5976
.5738
.5738 | 5287
5074
4869
4672
4482 | 4299
4122
3952
3789
3631 | 3479
3333
3192
3056
2925 | 2799
.2678
.2561
.2448 | .2235
.2134
.2037
1944
.1854 | .1768
.1685
.1605
.1527
.1453 | .1382
.1313
.1247
.1184 | 80 | | 7 | 9724
9343
8976
8624
8785 | 7959
7646
7345
7055
.6776 | 6507
6249
6000
5761
5531 | 5309
5095
4889
4691
4500 | 4317
4139
3969
3805
3646 | 3494
3347
3206
3069
2938 | .2811
.2690
.2572
.2459
.2350 | .2245
.2144
.2047
.1953
.1863 | 1776
1693
1612
1535 | 1389
1320
1254
1190 | 7 | | 9 | 9763
9380
9102
8658
8318 | 7991
7677
7374
7083
.6803 | 6534
6275
6025
5785
5553 | 5331
5116
4910
4711
4519 | 4335
4157
3986
3821
3662 | 3509
3361
3219
3083
2951 | .2824
.2702
.2584
.2470
.2361 | .2256
.2154
.2057
.1963
.1872 | .1785
.1701
.1620
.1543 | .1396
.1327
.1260
.1196 | 9 | | 5 | 9802
9418
9048
8693
8352 | 8023
7708
7404
7112
6831 | 6560
6300
6049
5808
5576 | 5352
5137
4930
4730
4538 | 4353
4174
4003
3837
3678 | 3524
3376
3233
3096
2964 | 2836
2714
2595
2481
2372 | .2266
.2164
.2066
.1972
.1881 | .1793
.1709
.1628
.1550 | .1403
.1334
.1267
.1203 | 5 | | 4 | 9841
9455
9085
8728
8385 | .8056
.7739
.7434
.7141
.6858 | 6587
6326
6074
5832
5599 | 5374
5158
4950
4750
4557 | ,4371
,4192
,4019
,3853
,3693 | 3539
3391
3747
3110
2977 | 2849
2726
2607
2493
2382 | 2276
2174
2076
1981
1890 | 1802
1718
1636
1558
1483 | .1410
.1340
.1273
.1209 | 4 | | 8 | 9881
9493
9121
8763
8419 | 8088
7770
7464
7169
6886 | .6611
.6351
.6099
.5856
.5622 | 5397
5180
4971
4770
4578 | 4389
4210
4036
3870
3709 | 3554
3405
3262
3123
2990 | 2861
2738
2619
2504
2393 | .2287
.2184
.2085
.1990
.1899 | .1811
.1726
.1644
.1566
.1490 | .1417
.1347
.1280
.1215 | ю | | 2 | 9920
9531
9158
8798
8453 | ,8121
,7801
,7494
,7198
,6914 | 6640
6377
6124
5880
5645 | 5419
5201
4991
4789
4595 | 4408
4227
4053
3886
3725 | 3569
3420
3276
3137
3003 | 2874
2750
2630
2515
2404 | 2297
2194
2095
2000
1908 | .1819
.1734
.1652
.1573 | 1424
1354
1287
1222
1159 | 2 | | - | 9960
9570
5194
8833
8487 | 8153
7833
7524
7227
.6942 | .6667
.6403
6149
.5904
.5568 | 5441
5222
5012
4809
4614 | 4426
4245
4071
3902
3741 | 3585
3435
3290
3150
3016 | 2887
2762
2642
2526
2415 | 2308
2204
2105
2009
1917 | .1828
.1743
.1680
.1581 | 1432
1361
1293
1228
1165 | - | | 0 | 9608
9608
9231
8869
8521 | 8186
7864
7554
7257
6970 | .6694
.6429
6174
.5928 | 5463
5244
5033
4829
4633 | 4444
4263
4088
3919
3757 | 3600
3449
3304
3164
3029 | 2899
2774
2654
2538
2426 | 2318
2215
2115
2019
.1926 | 1837
1751
1668
1589
1512 | .1439
.1388
.1300
.1235 | 0 | | s | 85838 | 83683 | 0=566 | 5000000 | 20
21
22
23
24 | 25
26
27
28
28 | 30
32
33
34 | 35
37
38
39 | 44
44 | 45
47
47
48
49 | ~ | VSWR (<1) TO VOLTAGE REFLECTION COEFFICIENT 9782 9589 9399 9212 9802 9608 9418 9231 8850 8674 8501 8332 8868 8692 8519 8349 00 00 00 00 00 .8165 .8002 .7841 .7684 .7529 8018 7857 7699 7544 0 - 12 5 4 7227 7079 6935 6793 7241 7094 6949 6807 17 17 19 51 52 53 53 54 55 55 56 57 58 58 59 64 65 65 66 66 66 66 66 66 66 66 | | | | | | | | | | | | - | |-----------|---|---|--|---
--|--|--|---|---|---|-----------| | 6 | .3254
.3167
.3080
.2996
.2912 | .2829
.2747
.2686
.2587
.2508 | 2430
2353
2278
2203
2129 | .2056
.1983
.1912
.1841 | .1703
.1635
.1567
.1501 | .1370
.1306
.1242
.1179 | .1056
.0995
.0935
.0876 | .0759
.0701
.0644
.0588
.0532 | .0477
.0422
.0368
.0315 | .0209
.0157
.0106
.0055 | 6 | | 8 | .3263
.3175
.3089
.3004
.2920 | .2837
.2755
.2674
.2595
.2516 | .2438
.2361
.2255
.2210
.2136 | .2063
.1990
.1919
.1848 | .1710
.1641
.1574
.1508 | .1377
.1312
.1249
.1186 | .1062
.0941
.0881
.0823 | .0764
.0707
.0650
.0593 | .0432
0428
0373
.0320 | .0215
.0163
.0111
.0060 | oo l | | 7 | .3271
.3184
.3098
.3012
.2928 | 2845
2763
2682
2602
2524 | .2446
.2369
.2293
.2218 | .2070
.1998
.1925
.1856 | 1717
1648
1581
1514 | .1383
.1319
.1255
.1192 | .1068
.0947
.0887 | .0770
.0712
.0655
.0699
.0543 | .0488
0433
0379
.0325 | .0220
.0168
.0116
.0065 | 7 | | 9 | .3280
.3193
.3106
.3021
.2937 | 2854
2771
2690
2610
2531 | 2453
2376
2300
2225
2151 | 2077
2005
1933
1862
1793 | .1723
.1655
.1583
.1521
.1521 | .1390
.1325
.1261
.1198 | .1074
.1013
.0953
.0893 | .0776
.0718
.0661
.0605 | 0493
0438
0384
.0331 | .0225
.0173
.0122
.0071 | 9 | | 2 | .3289
.3201
.3115
.3029
.2945 | 2862
2780
2698
2618
2539 | .2461
.2384
.2308
.2232
.2158 | .2085
.2012
.1940
.1869 | .1730
.1662
.1594
.1527
.1461 | .1396
.1331
.1268
.1205 | 1080
1019
0959
0899 | .0782
.0724
.0667
.0610
.0554 | .0499
0444
0390
.0336 | .0230
.0178
.0127
.0076 | 5 | | 4 | 3298
3210
3123
3038
2953 | 2870
2788
2707
2626
2547 | 2469
2392
2315
2240
2166 | .2092
.2019
.1947
.1877 | .1737
.1669
.1601
.1534
.1468 | .1403
.1338
.1274
.1211 | .1082
.1025
.0965
.0905 | .0788
.0730
.0672
.0616
.0560 | .0504
0449
0395
0341 | .0235
.0183
.0132
.0081 | 4 | | 8 | .3307
.3219
.3132
.3046
.2962 | 2878
2796
2715
2634
2555 | 2477
2399
2323
2247
2173 | .2099
.2027
.1955
.1884 | .1744
.1675
.1608
.1541
.1475 | .1409
.1344
.1280
.1217 | .1093
.1031
.0971
.0911 | .0793
.0735
.0678
.0621
.0565 | .0510
0455
0400
.0347
.0293 | .0241
.0189
.0137
.0086 | 3 | | 2 | .3316
.3238
.3141
.3055
.2970 | 2887
2804
2723
2642
2563 | 2484
2407
2331
2255
2180 | 2107
2034
1962
1891
1820 | 1751
1682
1614
1547
1481 | .1416
.1351
.1287
.1223 | .1099
.1038
.0977
.0917
.0858 | .0799
.0741
.0684
.0627 | .0515
n46n
0406
.0352
.0299 | .0246
.0194
.0142
.0691 | 2 | | - | .3325
.3236
.3149
.3063
.2979 | .2895
.2812
.2731
.2650 | 2492
2415
2338
2262
2188 | .2114
.2041
.1969
.1898 | .1758
.1689
.1621
.1554 | .1422
.1357
.1293
.1230 | .1105
.1044
.0983
.0923
.0864 | .0805
.0747
.0690
.0633
.0576 | .0521
0411
.0357 | .0251
.0199
.0147
.0095 | 1 | | - | 3333
3245
3158
3072
2987 | 2903
2821
2739
2658
2579 | 2500
2422
2346
2270
2195 | .2121
.2048
.1976
.1905 | .1765
.1696
.1561
.1561 | .1429
.1364
.1299
.1236 | .1111
.1050
.0989
.0929
.0870 | .0811
.0753
.0695
.0638
.0582 | .0526
0417
.0363 | .0256
.0204
.0152
.0101 | 0 | | 0 | | | | | | 10.10 > 00.5 | 0 0 0 0 0 | 10 (0 > m @ | 0=0.84 | LC (C ~ 00 €) | S | | o s | . 50
. 51
. 53
. 53 | | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | | .70
.71
.72
.73 | 75 78 | 28.88
2.888
2.888 | 8888
7888 | | 06 90 90 90 90 90 90 90 90 90 90 90 90 90 | | | s | | | | | | | | | | | | | o s | 0.00 0. | 20.
30.
70.
80.
09. | 012254 | 2 9 1 1 2 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | .20
.21
.22
.23
.24 | .25
.27
.28
.29 | 30
33
33
34
34 | 35 × 36 5
7 8 8 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 0 4 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | द मं 4 च च
8 ७ / ८ छ
0 | S | | s | | | | | | | | | | | | | S | 0.00 0. | 20.
30.
70.
80.
09. | 012254 | 2 9 1 1 2 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | .20
.21
.22
.23
.24 | .25
.27
.28
.29 | 30
33
33
34
34 | 35 × 36 5 7 8 8 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 0 4 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | द मं 4 च च
8 ७ / ८ छ
0 | S | | s 6 | .9822 00
.9627 .01
.9436 .02
.9249 .03 | .8886 0.5
.8709 .06
.8336 .07
.8368 .09 | .8034 10
.7873 .11
.7715 .12
.7559 .13 | . 7256 15
. 7109 . 16
. 6854 17
. 6821 18 | .6543 20
.6407 21
.6273 22
.6142 23 | .5886 .25
5760 .26
5637 .27
55397 .29 | .5279 30
5163 31
5049 32
4937 34 | 4717 35
4609 36
4503 37
4296 39 | 4195 40
4004 41
3966 42
3899 43
3803 44 | 3708 45
3615 46
3823 47
3432 48 | s 6 | | s 6 8 | 9841 9822 00
9646 9627 01
9455 9436 02
9268 9349 03 | 8904 8886 05
8727 8709 06
8853 8836 07
83212 8136 09 | 8061 8034 10
7789 7715 11
7731 7715 12
7422 7406 14 | 7271 7256 15
7723 7109 16
6958 6964 17
6855 6821 18 | . 6556 6543 20
6420 6407 21
6428 6273 22
6155 6142 23
6026 6013 24 | . 5898 5886 25
5773 5760 26
5650 5637 27
5568 5516 28
5408 5397 29 | 5291 5279 30
5175 5163 31
5060 5049 32
4987 4826 34 | 4728 4717 35 4620 4609 36 454 4503 37 4306 4399 38 4306 4296 39 | .4205 4195 .40
4104 4004 41
4006 3996 42
.3812 3803 44 | 3717 3708 45
3624 3615 46
3832 3523 47
3431 3432 48 | \$ 6 8 | | s 6 8 Z | 9861 9941 9822 00
9666 9646 9627 01
9474 9455 9436 02
9286 9288 9249 03 | 8922 8904 8886 05
8744 8727 8709 06
8570 8532 8536 07
8399 8232 8366 08
8232 8215 8198 09 | 8067 8051 8034 10
77905 77889 77873 11
7746 7751 7715 12
7590 7555 7569 13
77437 7742 7406 14 | 7286 7271 7.256 15
6.992 6978 6664 17
6.6708 6695 6681 19 | . 6570 6556 . 6543 20
6434 6420 . 6407 21
6300 6287 . 6273 22
6168 6155 . 6142 23
. 6026 . 6013 . 24 | 5911 5898 5886 25 5785 5773 5760 26 5662 5650 5637 27 5540 528 5397 29 5420 5408 5397 29 | .5302 5.291 .5279 30
5.186 5.175 5.163 31
.5072 5060 .5049 32
.4959 4.948 4.937 33 | 4738 4728 4717 35 4631 4620 4609 36 4524 4514 4903 37 4420 4499 4399 38 4316 4306 4296 39 | 4215 4206 4195 40 4114 4104 4004 41 4015 400 3396 42 3918 3398 43 3822 3812 3803 44 | 3727 3717 3708 45
3633 3624 3615 46
3841 3523 3823 47
3450 3351 3342 48 | 7 8 9 5 | | s 6 8 7 8 | 9881 9861 9841 9822 00
9685 9666 9646 9627 01
9493 9474 9455 9438 02
9305 9268 9248 03
9121 9102 9084 9066 04 | 8939 8922 8904 8886 05
8762 8744 8727 8709 06
8587 8570 8553 8536 07
8416 8339 8332 8566 08
8748 8232 8215 8198 09 | 8083 8067 8051 8034 10
7921 7906 7889 7873 11
7762 7746 7731 7715 12
7606 7890 7575 7559 13
7452 7437 7422 7406 14 | 7301 7286 7271 7756 15
77153 7138 7123 7109 16
6892 6978 6984 17
6863 6849 6835 6831 18 | 6584 6570 6556 6543 20 6447 6434 6420 6407 21 6313 6300 6287 6273 22 6181 6188 6155 6142 23 6051 6039 6026 6013 24 | 5924 5911 5898 5886 25 5798 5773 5760 26 5674 5667 5660 5637 27 5552 5640 5528 5516 28 5432 5420 5408 5397 29 | 5314 .5302 5291 .5279 30 5188 .5186 5175 .5163 31 5683 .5072 .5060 .5049 .32 4970 .4948 .4937 .33 4859 .4848 .4837 .4826 .34 | 4749 4738 4728 4717 35 4641 4631 4620 4609 36 4535 4574 4514 4903 37 4430 4409 4409 4409 38 4327 4316 4306 4296 39 | 4225 4215 4205 4195 40 4174 4104 4004 41 4025 4015 4006 3996 42 3928 3918 3908 3899 43 3831 3822 3812 3803 44 | 363 3727 3717 3708 45
3643 3633 3624 3615 46
3560 3541 3632 3823 47
3459 3360 3351 3332 48 | 6 7 8 9 5 | | s 8 9 s | 9901 9881 9861 9841 9822 00
9704 9685 9666 9646 9627 01
9512 9493 9414 9455 9436 02
9139 9121 9102 9984 9066 04 | 8957 8939 8922 8904 8886 05 8779 8762 8744 8727 8709 06 865 88587 8850 8838 8936 07 8433 8416 8339 8382 8366 08 8265 8248 8232 8215 8198 09 | 8100 8083 8067 8061 8034 10
7793 7762 7766 7789 7715 17
7767 7762 7766 7731 7715 12
7467 7452 7437 7422 7406 14 | 7316 7301 7286 7271 7256 15 7167 7153 7138 7123 7109 16 7021 7007 6992 6954 17 6878 6863 6849 6835 6821 18 6736 6708 6695 6681 19 | .6598 6584 .6570 .6556 6543 20 .6461 6447 6434 .6420 .6407 .21 .637 6313 6300 .6287 .21 .6194 6118 .6155 .6173 .22 .6064 .6051 .6039 .6026 .6013 .24 | 5936 5924 5911 5888 586 25 5810 5798 5773 5760 26 568 5674 5662 5650 5837 27 5544 5652 5540 5528 5516 28 5444 5432 5420 5420 5420 528 | 5326 5314 5302 5291 5279 30 5209 5188 5186 5175 5163 31 5094 5083 5075 5060 32 4981 4999 4984 4937 33 4870 4859 4848 4826 34 | 4760 4749 4738 4717 35 4652 4641 4631 4620 4609 36 4546 4533 4544 4514 4503 37 430 4420 4420 4399 38 4337 4316 4306 4366 39 | 4235 4225 .4215 .4205 .4105 .400 4134 4104 4104 4104 4104 4104 4035 4025 4015 3906 42 42 3841 .3831 .3912 .3812 .3803 .44 | 3746 3736 3727 3717 3708 45 3652 3643 3633 3624 3615 46 3659 3650 3641 3523 47 378 3450 341 3423 43 3378 3369 3360 3351 3342 49 | 8 2 6 8 6 | 71 72 73 74 75 76 77 78 79 83 83 84 88 88 88 89 96 97 98 99 92 93 94 6515 6380 6247 6116 .6657 .6529 .6393 .6250 .6129 5860 5735 5613 5492 5873 5748 5625 5504 5256 5140 5026 4914 5267 5152 5038 4925 221 222 223 224 226 227 228 229 331 331 332 333 333 336 336 336 337 4695 4588 4482 4378 4706 4599 4493 4389 4174 4075 3976 3879 4184 4085 3986 3889 3689 3596 3504 3414 3699 3605 3514 3423 47 48 49 Fig. 6. Printed Circuit Board layout