CCT. REF	. DESCRIF	NOIT		n dan disebut di sebut di setta di set	MANUFACTURER	NOTES
R30	1M	Ohm	5%	1/3W	Philips CR25	
R31	47K	Ohm	5%	1/3W	Philips CR25	
R32	1M	Ohm	5%	1/3W	Philips CR25	
R33	4 7K	Ohm	5%	1/3W	Philips CR25	
R 34	100K	Ohm	5%	1/3W	Philips CR25	
R 3 5	10K	Ohm	5%	1/3W	Philips CR25	
R36	220	Ohm	5%	1/3W	Philips CR25	
R37	560	Ohm	5%	1/3W	Philips CR25	
R38	1K8	Ohm	5%	1/3W	Philips CR25	
R39	1K8	Ohm	5%	1/3W	Philips CR25	
R 40	470K	Ohm	5%	1/3W	Philips CR25	
R 41	470K	Ohm	5%	1/3W	Philips CR25	
R42	3M3	Ohm	10%	1/3W	Philips CR25	
R 43	3M3	Ohm	10%	1/3W	Philips CR25	
R44	Select o	on test	5%	1/3W	Philips CR25	
TRI	741C	Integra	ted Cir	cuit	Fairchild	
TR4 - TR10	BC148	NPN S	ilicon		Philips	
TR11	AY115	PNP Si	licon		Fairchild	
TR12	OC946	NPN S	ilicon		Philips	

RV1 & RV310K Ohms 20% Lin. Type MP/PC

	Carbon Potentiometer	404/8/02857/028
R∨2	3K3 ohms 20% Lin Type MP/PC Carbon Potentiometer	Plessey 404/8/02857/028

Cont.

1.

NOTE: A setting of the SET COARSE SERVO pot must be found such that this meter reading is zero when the transmitter has self tuned for if this is not the case, the advantages of the automatic phase comparason is lost and in fact the anode circuit will be forced to tune at the wrong point.

The correct tuning requires only sufficient RF signal to operate it, and it is not unduly level sensitive. The presence of the feedback circuits etc, do not influence the operation since the sensing of phase is entirely within the feedback loop.

The correct setting for the load capacitor is established by recognising the correct ratio of grid swing to anode swing of the PA stage. A sample of the grid voltage is rectified and bucked by a voltage derived in a similar way from the anode circuit. When these two voltages are equal, the net output is zero and the correct loading point will be achieved. If the transmitter is under loaded the anode swing will be too high and the output of the bridge is positive and vice versa.

The correct transmitter loading is first established by disabling the ALC, ensuring that 1KW PEP can be achieved in the A3J mode without flattopping in the anode circuit with the mains voltage input 5% low.

The transmitter is then switched to tune, and the preset LOAD AD JUSTMENT set such that when the transmitter is caused to auto-tune, the load capacitor dial takes up the same setting. The mains are then restored to normal voltage, the transmitter switched back to A3J and the two-tone audio input increased. The ALC adjustment is then made to give 1KW PEP output (640mA) when the audio signal is increased by 2dB, above that when the loading adjustment was made. The exciter should then be switched to A3H if that mode is to be used.

Once the correct adjustment of the load preset is established for the transmitter it should not need readjustment unless components in the loading bridge itself are changed. The load preset should not be adjusted on making tube changes.

The balance point of the loading bridge is level sensitive because of curvature in the input/output characteristic of the PA tubes. Because of this, the loading adjustment is only made in the TUNE mode, and the meter reading will not show balance when the transmitter is operating normally in other modes.

When the servo system is tuning, a special tune signal (limited to 1a = 400mA) is derived from the exciter. This tune signal continues until the voltage on both servo motors has fallen to zero whence the flip-flop toggles, the tune signal is switched off and the green lamp lights. At the same time, the FET switches in the servo motor amplifiers open and their gain is greatly reduced such that the motors will not run again until the TUNE mode is selected.

2. Sequence of Adjustments

If, for example, it is necessary to check and re-adjust the circuits in the transmitter, the following points should be bourne in mind.

- 2.1 The transmitter is designed for A3J operation (A3H mode is an additional facility) and hence all adjustments, current readings etc, are based on A3J mode using a 2-tone test signal as required.
- 2.2 Screen potentiometers are provided for the purpose of balancing the quiescent current of the four tubes. In order to set this current, the transmitter should be switched to TRANSMIT (A3J) without an audio input signal. Under these conditions the standing plate current should be about 60mA per tube (240mA total). All screen pots should be set at maximum and the tube with the lowest current noted. The SET BIAS control is adjusted to make the standing current of this (lowest) tube 60mA. The screen potentiometer of the remaining three tubes only are then adjusted to reduce their standing current to 60mA (see 7.6(v)).
- 2.3 Assuming the transmitter is correctly loaded, the ALC sets the maximum anode swing and hence the maximum anode current under signal drive conditions. Increase in audio drive does not cause an increase in RF output after the ALC threshold is reached. However this is independent of the loading in so far as the loading determines the plate swing and current required for a given power output. The correct adjustment of the loading is achieved when the transmitter delivers 1KW PEP A3J from a 2-tone test signal without significant flat-topping. The ALC is then set to see that increased audio drive does not cause the RF output to rise which would then take the operation into the region of increasing intermodulation distortion. In order to make the loading adjustment the mains supply is first reduced by 5% to ensure that (when operating normally) a drop in mains voltage is not accompanied by an increased distortion due to reduced anode HT voltage. Although a Variac auto-transformer, a CRO and a dummy load and watt meter are used in the factory for the loading set-up, a good approximation can be achieved in the field by operating the transmitter on 240 volt tap to give the effect of a 5% reduction in mains voltage. Also, instead of observing the flat-topping on a CRO, the screen current meter can be used as an indicator since there is a sudden rise in screen current when the maximum anode swing is reached.
- 2.4
- In general, then, it is necessary to disable the ALC by advancing the SET ALC pot fully clockwise (as mentioned in 7.6(b) and reduce the loading by setting the LOAD ADJ pot fully anticlockwise as mentioned in 7.6 (c).

When switched to TUNE, THE TRANSMITTER should tune and load, the adjustment of 7.7.2(d) and (e) should be made to see that the operation is in the dead-band of the coarse servo amplifier. Loading should now be attempted as in 7.7.4. The procedure in 7.7.4(d) may be used if desired and after 1a = 640 mA is achieved, the ALC LEVEL ADJUSTMENT must be made according to 7.9. It should be recognised that alteration of the LOAD pot will not have any effect until TUNE is selected and the transmitter caused to auto-tune. The effect of the re-loading so caused is then observed by switching back to LOCAL with the standby switch in the TRANSMIT Further, there is an interdependence of load capacitor position. and anode tuning capacitor setting such that changes in loading will affect the position of the anode tuning. It is necessary therefore to keep checking (and readjusting as necessary) the position of the SET COARSE SERVO using the SERVO BALANCE position of the meter as an indicator whilst the loading procedure is carried out.

2.5 After the tuning and loading adjustments are complete A3H may be selected. The anode current reading will be about 680mA. This current is set by the characteristics of the ALC circuit and is related to the current for full PEP (640mA) set under A3J conditions. Transmitter adjustment, however, should not be attempted in the A3H mode.

3. Tube Changing

The effects of tube ageing are substantially reduced by the amount of negative feedback applied. In general, the effect of low tubes will be an increase in intermod distortion at full PEP (N.B. intermod distortion can only be measured with a 2-tone test signal in the A3J mode).

The setting of the ALC preset pot, and preset LOADING ADJ pot are controlled essentially by parameters established in the transmitter itself, and once set, should not require alteration unless component parts have been changed.

If new tubes are fitted it should only be necessary to set all screen pots to maximum, readjust the SET BIAS for 60mA for the lowest tube and adjust the screen pots for the others for 60mA also (TRANSMIT MODE A3J, no audio input). Further readjustment should not then be required.

If readjustment of the COARSE SERVO pots appear necessary accompanied with a change in dial reading of the Anode Tuning Capacitor and dial reading of the Loading control, this suggests the antenna impedance presented to the transmitter has changed from that existing when originally set-up. In general this will be accompanied by a change in SWR indicator reading and leads to an examination of the antenna system.

3. Cont.

Variation of dial readings of Tuning and/or Loading capacitors where the antenna circuits are known to be correct (or a change in previous readings established on a known dummy load) suggest a mal-function in the phase comparator or load comparator circuits.

The 4CX250B tubes used in this equipment operate at almost zero screen current. In some cases, depending upon the particular tube and working condition, the screen current may be negative.

4.

Record this amendment on the AMENDMENT RECORD PAGE and insert this section in lieu of Section 6, (Factory use only).

7. TEST AND ALIGNMENT

This section is applicable to a complete equipment assembled into a cabinet. Figures in brackets refer to 500W LIN AMP.

7.1 General

- (a) The HF SSB EXCITER Type 7021 must be an operational unit, fully set-up and tested.
- (b) The POWER CONTROL UNIT must be a checked unit with time-delay and overcurrent trips etc functionable.
- 7.2 Visual Examination
 - (a) Remove covers from the DRIVER and PA compartments of the amplifier.
 - (b) Open the PA STAGE compartment, ensure valves and chimneys are are correctly fitted and anode leads are secure. The compartment should be clean.
 - (c) Inspect plugs and sockets and ensure they are correctly mated on the POWER CONTROL UNIT, EXCITER and AMPLIFIER with those on the cabinet harness. The RF cable from EXCITER to AMPLIFIER should be fitted.
 - (d) Check that FAN impeller turns freely. Check FAN connections, left to right should be BLACK, BLUE, BROWN, SLATE.
 - (c) Check the voltage taps selected on the :-

MAIN POWER TRANSFORMER T1 (Ref DWG C04-00103)

AUXILIARY TRANSFORMER T2 (Ref DWG C04-00103)

MINOR HT TRANSFORMER T4 (Ref DWG B04-00102)

If the equipment is to be used on other than 50 Hz supply, special components will be fitted :-

POWER SUPPLY (L1 and C1) FAN Capacitor (C47) and the AUXILIARY TRANSFORMER T2 will require a different tapping (Ref DWG C04-00103).

- 7.3 Test Equipment Required
 - (a) AUDIO OSCILLATOR (600 ohm output).
 - (b) C.R.O. with response to 10 MHz and low capacity probe.
 - (c) AVO Model 8 or similar 20K 10PV multimeter.
 - (d) RF Dummy Load 50 ohm, 500W.
 - (e) Peak -reading VTVM (300V AC Range)
 - (f) EILCO SSB DISTORTION METER Type 6918 or SPECTRUM ANALYSER

7.4 CHANNEL SELECTION (MULTI-CHANNEL TRANSMITTER)

- (a) Use 10/0.010 wire of the appropriate colour for the channel number (e.g. Channel 1 brown etc) and connect pin 10 of Relays A, B, D, F, H or K to the correct tap on the DRIVER Tank inductor L6 as shown on the TUNING CHART DWG. D10-00027 (30) If the chart indicates turn 21 (counting down from coil top) no physical connection is made as the circuit is completed by the parasitic suppressor L7-R22.
- (b) For frequencies below 8 MHz damping resistors (PHILIPS Type CR52) are fitted across capacitors C14A-C19A between the common bus line and the wire joining each capacitor to its selection relay. The value is shown on the TUNING CHART DWG. D10-00027 (30)
- (c) For frequencies below 3.5 MHz additional tuning capacitors C14B-C19B are added in parallel with the appropriate variable capacitor. These are DUCON Styroseal 630V 5% the value as shown on the TUNING CHART DWG D10-00027 (30)
- (d) Use 14 SWG (0.080") TCW and connect the PA TANK COIL (L12) tap to the appropriate channel relay C, E,G, J or L. Ensure that solder eyes are filled with solder and keep the tap wires as short and direct as possible bending to maintain adequate clearances.

Note that there is no relay allocated for the lowest frequency channel and the tank tap should be connected directly to the common relay contact bus bar. The taps are shown on the TUNING CHART DWG. D10-00028(31)

(e) Refer to the TUNING CHART DWG D10-00028(31) and add diodes (EM402) to the DIODE MATRIX PCB to select relays M and/or N to operate on lower frequency channels where required

The diodes (D13-D24) are connected between the channel select line (cathode) and the relay coils bus bars (anode).

7.5 CHANNEL SELECTION (SINGLE CHANNEL TRANSMITTER)

- (a) Use 10/0.010" wire (BROWN) and connect the tuning capacitor C14A direct to the DRIVER tank inductor L6 as shown on the TUNING CHART DWG D10-00027(30)
- (b) For frequencies below 8 MHz a damping resistor (PHILIPS Type CR52) is fitted across C14A the value as shown on the TUNING CHART DWG D10-00027 (30)
- (c) For frequencies below 3.5 MHz an additional tuning capacitor C14B is added in parallel with C14A. The value (DUCON Styroseal 630V 5%) as shown on the TUNING CHART DWG. D10-00027(30)

(d)	Select the appropriate PA TANK COIL (L12) inductance from the TUNING CHART DWG D10-00028(31) and connect the tap to the lowest point of the coil with 3 mm auto cable. Ensure that the solder eye is filled with solder and keep the tap wire as short and direct as possible.							
(e)	Refer to the TUNING CHART DWG D10-00028(31) and add additional loading capacitors as indicated. These are DUCON Type CTP CERAMIC CAPACITORS Style F N150 10% 330 pF and are wired directly between C38 and/or C39 and ground at C39.							
Prelir	ninary Adjustments							
(a)	Switch to OFF, SCREEN SUPPLY, SW1							
(b)	Set the following controls fully clockwise : -							
	SET –SCREEN VOLTS, RV1 –RV4. SET BIAS ALC LEVEL, 2RV2							
(c)	Set the following controls fully ANTI-CLOCKWISE : SERVO PRESETS, 3RV1-3RV6 (Multi-Tx only) BIAS TRIP, SRV1 LOAD, 2RV1							
(d)	Remove SERVO AMPLIFIER PCB from underside of amplifier chassis (Multi-Tx only).							
(e)	Set NEUTRALISING CAPACITORS, C23 to minimum capacity and C20 to half-capacity.							
(f)	Set the EXCITER controls as follows : -							
	LOCAL MODE(SW7)to A3 J (Amplifier rear)OUTPUT(SW4)to AMPLIFIER.LOCAL CONTROL(SW5)to STANDBY.FUNCTION(SW2)to LOCAL CONTROL.AUDIO INPUT(SW1)to 1.							

(g) Remove the blank panel immediately above the POWER CONTROL PANEL and remove the MAIN POWER SUPPLY cover plate.

WARNING

7.6

THE HIGH VOLTAGES PRESENT ARE LETHAL.

CHANNEL

POWER

channel fitted,

Check that the DANGER – HIGH VOLTAGE label attached to cover is in good order and legible.

(SW3)

(SW6)

(Multi -Tx only).

to ON.

to highest frequency

- 7.6
- (h)

Check that MAJOR HT switch is OFF, then switch ON the CIRCUIT BREAKER CB1. Observe that the AC MAINS, AUXILIARY, AND RELAY supply lamps light. The FAN should start and run up to speed and when the air pressure switch closes the FILS, BIAS & MINOR HT lamp should light.

(j) Check the Filament Voltages at transformer T1,

PA V	alves	6.	1	Vol	Its
	PA V	PA Valves	PA Valves 6.	PA Valves 6.1	PA Valves 6.1 Vo

- (ii) DRIVER Valve 6.3 Volts
- (k) Switch OFF CB1, remove the FILS, BIAS & MINOR HT fuse F3, switch ON CB1. Check that all Channel relays operate correctly.
- (I) Connect AUDIO OSCILLATOR to the audio input jack of the EXCITER, set to 1 KHz, 0 dBm at 600 ohms.
- (m) Connect CRO proble to RF INPUT SK1 on the amplifier
- (n) Switch EXCITER LOCAL CONTROL switch to TRANSMIT
- (o) Observe RF input signal at SK1 and adjust AUDIO OSCILLATOR output until CRO measures 3V peak.
- (p) Use a low capacity probe, AC coupled and connect CRO to the hot -end of the DRIVER tank inductor (junction of L7-R22 and tuning capacitor or relay bus-bar.) Adjust appropriate tank tuning capacitor (highest channel fitted) for maximum deflection. Then NEUTRALISE driver stage by adjusting C4 (attached to V5 socket) for minimum deflection (less than 10 mV peak).
- (q) Disconnect the wire to V5 cathode at capacitor C6 by unscrewing 2BA nut. Use a male BNC connector fitted with short leads and connect the EXCITER output cable inner to V5 cathode (pin 5) and ground the outer at the earthy end of R9.
- Adjust AUDIO OSCILLATOR output until RF signal is approximately 5V peak. Connect the CRO probe to SK1 and observe the RF waveform. The waveform will be unsymmetrical consisting of one positive peak and several negative peaks for each cycle.

Adjust C2 until all the negative peaks are in line, disregard the positive peaks. This neutralises the negative feedback bridge.

- (s) Reduce AUDIO OSCILLATOR output to zero. Switch EXCITER LOCAL CONTROL switch to STANDBY. Re-connect EXCITER output cable to SK1, disconnect male BNC adaptor and reconnect cathode lead of V5 to C6.
- (t) Switch OFF, CIRCUIT BREAKER CB1, replace fuse F3 and switch ON, CB1. Adjust 6RV1 (on MINOR HT REGULATOR PCB) to give a reading of 350V on the SWITCHED METER, and with an AVO check the +300V rail.
- (u) Connect a DC Voltmeter (2500V Range) to the high voltage rail in the MAIN POWER SUPPLY. Switch ON the MAJOR HT (SW1) observe that

the MAJOR HT pilot lamp lights. Check the MAJOR HT Voltage on the SWITCHED METER and compare with the DC Voltmeter reading. Adjust SWITCHED METER sensitivity by adding a calibration resistor across R32 (this will be greater than 3K3 ohms).

Adjust SET BIAS (RV6) to Max (clockwise).

Switch OFF, MAJOR HT, remove DC Voltmeter, replace MAIN POWER SUPPLY cover, then switch ON, MAJOR HT.

 (\mathbf{v})

Switch EXCITER LOCAL CONTROL switch to TRANSMIT (no audio input to exciter), check cathode currents for V1, V2, V3 and V4 on the PA CATHODE CURRENT Meter. Observe which valve passes the lowest cathode current and adjust SET BIAS until this valve current is 60 mA. Switch the PA CATHODE CURRENT meter to each other valve in turn and adjust the corresponding SET SCREEN VOLTS (RV1-RV4) until all four cathode currents read 60 mA. (Do not adjust the SET SCREEN VOLTS potentiometer for the valve originally passing the lowest cathode current.

(w) Switch the PA CATHODE CURRENT meter to ALL and re-adjust the SET BIAS potentiometer for 440 mA (top scale). (220 mA for 500W)

Slowly turn the BIAS TRIP potentiometer 5RV1 clockwise until the BIAS TRIP operates. Ch eck that the BIAS FAIL fault indicator lamp lights, MAJOR HT lamp extinguishes and FILS, BIAS and MINOR HT fails as the B relay releases. Rotate SET BIAS anticlockwise approximately $\frac{1}{4}$ turn (90°)

Reset the FAULT INDICATOR by switching OFF CB1 for 2 to 5 seconds, switch ON again. When the time delay has expired and the MAJOR HT is restored, re-adjust the SET BIAS to give a PA CATHODE CURRENT of 240 mA (ALL - top scale), (approx -60V). Switch EXCITER LOCAL CONTROL switch to STANDBY, observe that PA CATHODE CURRENT falls to 80 mA (top scale) or less. (40 mA for 500W) Switch - OFF, MAJOR HT switch.

- (x) Adjust SWR BALANCE potentiometer 2RV3 until SWR indicated on SWITCHED METER reads infinity (meter zero). This adjustment is temperature sensitive and should only be attempted after the equipment has been running at least ten minutes.
- (y) Connect a jumper lead across the PA ANODE-TUNING capacitors
 C36 and C37 to ground. Switch ON, MAJOR HT. Switch EXCITER
 LOCAL CONTROL SWITCH to TRANSMIT. Check GRID tuning.
 Observe PA CATHODE CURRENT meter (ALL) and increase AUDIO
 OSCILLATOR input to EXCITER until the HT OVERCURRENT TRIP operates.
 (Do NOT run amplifier under these conditions for longer than necessary
 to observe trip point). The trip should operate below 850 mA (425 mA for 500W)
 Check that the HT OVERCURRENT fault indicator Iamps lights and
 MAJOR HT Iamp extinguishes. Reduce audio input to zero and reset the
 trip as in (w) above.

7.6

A calibrating resistor R2 (PHILIPS Type CR37) must be fitted in parallel with R1 (10 ohm) on the RELAY INTERLOCK PCB. Choose the highest standard value (E10 series) which allows the trip to operate at just over 850mA. (425mA for 500W)

(z) Switch EXCITER LOCAL CONTROL switch to STANDBY. Switch OFF, MAJOR HT. Switch OFF, CIRCUIT BREAKER CB1. Remove anode circuit jumper lead. Re-fit SERVO AMPLIFIER PCB.

7.7 TUNING, NEUTRALISING AND LOADING (MULTI-CHANNEL)

7.7.1 General

The procedure differs from single -channel transmitters inasmuch as the tuning and loading capacitors are adjusted through the SERVO AMPLIFIER. In addition the normal operation of the EXCITER is inhibited until tuning and loading has been satisfactorily completed.

7.7.2 Tuning and Preliminary Loading

- (a) Connect the 50 ohm RF DUMMY LOAD and peak-reading VTVM to the output SKT2.
- (b) Select the highest frequency channel on the EXCITER and place the FUNCTION switch to TUNE.
- (c) Switch ON, CIRCUIT BREAKER CB1. Switch the TUNE meter to GRID and adjust the appropriate GRID TUNING capacitor until the TUNE meter balances. (Ensure the meter needle moves in the same direction as the GRID TUNING knob when adjusting)
- (d) Switch TUNE METER to ANODE and SWITCHED METER to SERVO BALANCE. Switch ON, MAJOR HT. Adjust the appropriate SERVO PRESET potentiometer slowly clockwise, the servo -system will follow and attempt to tune the transmitter. Continue until the TUNE INDICATOR DIAL approximates the expected indication for the channel frequency (refer P.A. TUNING CHART, Dwg. 10-00028 if unknown), and the TUNE, LOAD and SERVO BALANCE meters all read zero. (Note, meter readings may not provide significant indications until resonance is approached).
- (e) Switch EXCITER FUNCTION switch to LOCAL and the SYSTEM READY LAMP should light after a slight delay. Switch to another channel briefly then reselect channel under adjustment. The servo-system should re-tune the transmitter and when auto-tuning completed, again light the SYSTEM READY lamp. If hunting occurs proceed to para (f), adjust then repeat para (e). A PA CATHODE CURRENT of less than 400mA may be used if the system has any tendency to hunt. Log the level finally selected.
- (f) Adjust the TUNE LEVEL potentiometer 1RV1 EXCITER (furthest from crystal filter of pair at LHS of PCB), to give a PA CATHODE CURRENT (ALL) of 400mA (max) (200mA for 500W)

300m

(g) Repeat (b), (c), (d) and (e) for each channel fitted. The amplifier is then tuned on all channels but the loading will be too light.

- (h) Switch to the highest frequency channel fitted and allow the SERVO SYSTEM to re-tune and load.
- (j) Switch EXCITER FUNCTION switch to LOCAL CONTROL Check that LOCAL CONTROL switch is at STANDBY.
- 7.7.3 Neutralising

This should be done on the highest frequency channel fitted, check that 7.7.2 (h) and (j) is completed before proceeding.

(a) Switch OFF at CB1 and remove the SERVO AMPLIFIER PCB.

This allows the EXCITER output level to be controlled by the external audio input level.

(b) Connect the CRO (low capacity probe, AC coupled) to the hot end of the DRIVER TANK inductor (junction of L7-R22 and relay bus).

Switch OFF, MAJOR HT Switch OFF, SCREEN SUPPLY Check EXCITER FUNCTION switch is at LOCAL CONTROL

- (c) Switch ON, CIRCUIT BREAK ER CB1. Switch EXCITER LOCAL CONTROL switch to TRANSMIT. Increase AUDIO OSCILLATOR input to the EXCITER until the CRO indicates approximately 50V peak RF. (Trim GRID TUNING for maximum)
- (d) Transfer CRO probe to the PA ANODE TUNING CAPACITOR C36-C37 and retrim the GRID TUNING capacitor (TUNE meter switched to GRID).

Adjust C23 by sliding the collar UP or DOWN until deflection on CRO is a minimum. (approx 150 mV).

CAUTION C23 is at approximately - 100 Volts with respect to ground and a short circuit during adjustment will cause the BIAS FAIL trip to operate.

An indication of the accuracy of adjustment can be obtained by adjusting C20. Approaching balance by increasing C20 indicates C23 collar is too high and vice versa.

- (e) Switch EXCITER FUNCTION switch to STANDBY Disconnect CRO Switch OFF, CB1 Refit SERVO AMPLIFIER PCB Switch ON, SCREEN SUPPLY Switch ON, MAJOR HT Switch ON, CB1.
- 7.7.4 Loading

For this adjustment it is necessary to drive the EXCITER with a two-tone audio source since full measurement of PEP is required. (SSB DISTORTION METER Type 6918 audio output).

7.7.4

(a)

Connect a two-tone audio signal source to the EXCITER AUDIO INPUT SKT 1. Connect CRO probe to sample the RF waveform. This may be done by inserting CRO probe into PA valve compartment, taking care that it does not come into contact with the connections the valve anodes.

Reduce mains input by 5%

- (b) Switch EXCITER LOCAL CONTROL switch to TRANSMIT Increase two-tone audio input level until peak flattening is noticable on the RF output waveform. The power output will be less than 1 KW PEP (224 volts peak across 50 ohms). RMS (500W PEP = 158 volts peak across 50 ohms) (316 v peak)
- (c) Rotate LOAD potentiometer 2RV1 slightly clockwise. Switch EXCITER FUNCTION switch to TUNE, allow servo system to tune and load, return switch to LOCAL CONTROL

Observe the new power output.

Repeat (c) until power output is 1 KW PEP. (500W),

Proceed to section 7.9 ALC LEVEL ADJUSTMENT.

- (d) If a means of measuring power (RF Wattmeter or peak -reading VTVM) is unavailable :-
 - (i) instead of observing flat topping of RF waveform on the CRO, increase audio drive until screen current goes slightly positive e.g. 2¹/₂ mA, (b).
 - (ii) load the PA until PA CATHODE CURRENT (ALL) rises to 640 mA, (c). (320 mA for 500W)

7.8.1 General

The procedure for a single channel transmitter is relatively simple, as there is no SERVO AMPLIFIER and associated interlocks to inhibit the EXCITER operation.

- 7.8.2 Tuning and Preliminary Loading
 - (a) Connect the 50 ohm RF DUMMY LOAD and peak reading VTVM to the output SKT 2.
 - (b) Switch EXCITER FUNCTION switch to TUNE
 Switch ON, CB1.
 Switch TUNE meter to GRID, adjust GRID TUNING capacitor
 until meter balances.
 Switch TUNE meter to ANODE
 - (c) Turn LOADING control to 0 (min. loading, max. capacity). Turn TUNING control to 0 (min frequency) Switch EXCITER FUNCTION switch to TUNE Switch ON, MAJOR HT and adjust TUNING control until TUNE meter balances.

When the PA Anode circuit is detuned the PA CATHODE CURRENT will rise and under these conditions should be limited to 400 mA by adjusting TUNE LEVEL potentiometer 1RV1 in the EXCITER (furthest from crystal filter of pair at LHS of PCB). DO NOT operate the amplifier in a detuned state for longer than necessary to make the adjustment. (200 mA for 500W)

(d) Switch EXCITER FUNCTION switch to LOCAL CONTROL Switch OFF, MAJOR HT.

7.8.3 Neutralising

The transmitter will be tuned and lightly loaded when procedure 7.8.2 is completed.

- (a) Connect the CRO (low capacity probe, AC coupled) to the hot end of the DRIVER TANK inductor (junction of L7-R22 and C14A).
 Switch OFF, SCREEN SUPPLY
 Switch EXCITER LOCAL CONTROL switch to TRANSMIT
- (b) Connect AUDIO OSCILLATOR to EXCITER AUDIO INPUT and increase signal input until CRO indicates 50 Volts peak RF (trim GRID TUNING capacitor for maximum)
- (c) Transfer CRO probe to PA ANODE TUNING CAPACITOR C36-C37 and retrim the GRID TUNING capacitor (TUNE meter switched to GRID).

Adjust C23 by sliding the collar UP or DOWN until deflection on CRO is a minimum.

CAUTION : C23 is at approximately - 100V with respect to ground and short circuit during adjustment will cause the BIAS FAIL trip to operate.

An indication of the accuracy of adjustment can be obtained by adjusting C20. Approaching balance by increasing C20 indicates C23 collar is too high and vice versa.

Switch EXCITER FUNCTION switch to STANDBY. Disconnect CRO. (d)

> Switch ON, SCREEN SUPPLY. Switch ON, MAJOR HT.

7.8.4 Loading.

(Single channel)

For this adjustment it is necessary to drive the EXCITER with a two-tone audio source since the full measurement of PEP is required. (SSB DISTORTION METER Type 6918 audio output).

Connect a two-tone audio signal source to the EXCITER AUDIO (a)INPUT SKT 1 Connect CRO probe to sample the RF waveform. This may be done by inserting CRO probe into the PA valve compartment taking care that it does not come into contact with the connections to the valve anodes.

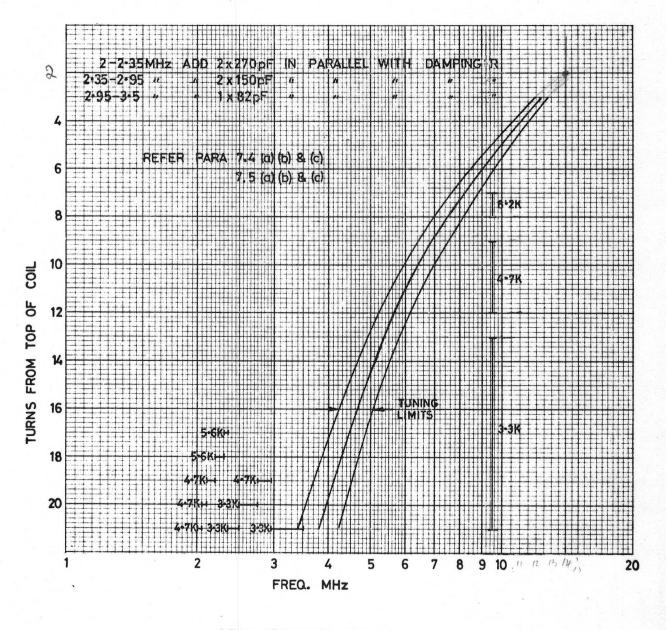
Reduce mains supply by 5%.

(b) Switch EXCITER LOCAL CONTROL switch to TRANSMIT. Increase two-tone audio input level until peak flattening is noticeable on RMS at least of PEP (224 volts peak across 50 ohms). (500W PEP = 158 volts peak the RF output waveform. The power output will be less than 1 KW

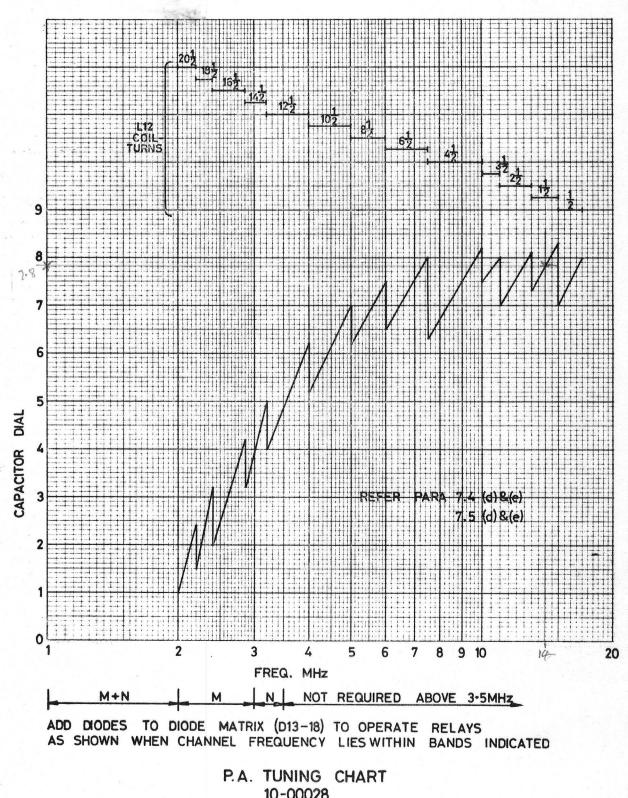
- across 50 ohms). 9 - 316 V poale
- (c) Turn LOADING control to increase loading and at the same time adjust the TUNING control to keep the TUNE meter (ANODE) centred. (The two controls are interdependant). Continue until required output 1 KW PEP is achieved. (500W)

Proceed to section 7.9 ALC LEVEL ADJUSTMENT.

(d) If a means of measuring power is unavailable (i.e. RF wattmeter or peak reading VTVM) refer to the notes in para 7.7 4.(d).


7.9 ALC LEVEL ADJUSTMENT.

- (a) Raise the mains voltage again to the nominal value (refer 7.7.4 (a) and 7.8.4 (a)).
- (b) Increase the two-tone audio signal to the EXCITER by approximately 2 dB (20%) to obtain a power output in excess of 1 KW PEP. (500W)
- (c) Rotate the ALC LEVEL potentiometer 2RV2 anticlockwise until the output power reduces to 1KW PEP (or PA CATHODE CURRENT reads 640 mA if no wattmeter is available). (320 mA for 500W)
- (d) On multi-channel transmitter switch to each channel in turn and check that power output is $1KW PEP + \frac{1}{2} dB . (500W PEP + \frac{1}{2} dB)$


(e) Check the INTERMODULATION DISTORTION on all channels The intermodulation products (D3 and D5+) must be less than -34dB with respect to either tone of the two tone test. (Eilco Type 6918 Distortion meter reading 34dB)

Proceed to section 7.10

- 7.10 SWR BRIDGE BALANCE
 - (a) Switch EXCITER LOCAL CONTROL switch to STANDBY. Switch EXCITER FUNCTION switch to TUNE.
 - (b) Adjust IC2 (on SWR DETECTOR PCB) for maximum meter deflection on SWITCHED METER set to SWR (i.e. minimum SWR).
 - (c) Switch EXCITER FUNCTION Switch to LOCAL CONTROL so that meter returns to zero. If necessary trim SWR BALANCE potentiometer 2RV3 (para 7.6. (x)).

10-00028 1KW The parts list contains the following information.

(a) Circuit reference number Each component is prefixed. This prefix must be stated when ordering the component. The prefix is given in the table below and at the beginning of each section of the parts list.
 (b) Description Gives the value and type of component
 (c) Manufacturer States the manufacturer and component series. Where no manufacturer is stated,

the number given is a CODAN part number.

When ordering, it is necessary to quote all of this information for the particular component required to minimise the risk of obtaining the wrong part.

Note: 1.

: 1. All resistor values are in Ohms

- 2. All resistors are carbon film unless otherwise stated.
- 3. All electrolytic capacitors are aluminium foil unless otherwise stated.

Parts lists are assembled in order of their prefix.

MANUFACTURER NOTES

8.1.1 MAIN CHASSIS

All components prefixed 1.

Cl	32uF +50%-10% 300∨	Electrolytic	Ducon ET5B
C2a	18pF Trimmer 500∨	Ceramic	Philips 802
C2b	22pF 5% NPO 500V	Ceramic	Philips 555
C3	330pF 5% 630∨	Styroseal	Ducon DFB
C4	3pF Trimmer 500∨	Ceramic	Philips 801
C5	220pF 5% 630∨	Styroseal	Ducon DFB
C6	0.01uF 20% Y 2KV	Ceramic	Ducon CAD103
C7	1000pF +50%-20%500∨	Ceramic	Philips 563
C8	0.01uF +80%-20% 25∨	Ceramic	Ducon CDR
C9	0.01uF +80%-20% 25∨	Ceramic	Ducon CDR
C10	0.01∪F +80%-20% 25∨	Ceramic	Ducon CDR
C11	39pF 10% NPO 10K V	Ceramic	Ducon CAA33
C12	4700pF 10% 400∨	Polyester	Philips 315
C13	0.01uF +80%-20% 25∨	Ceramic	Ducon CDR
C14a	6–150pF Trimmer	Air	Polar/Jackson C804
C 19a			
С146	Selected during set-up		
С19Ь	5% 630∨	Styroseal	Ducon DFB
C20	15-130pF compression trin		
		Mica	Arco 302
C21	1500pF 20% Y 2K∨	Ceramic	Ducon CAD
C22	0.1uF 10% 400∨	Polyester	Philips 315
C23	Neutralising capacitor		08-00413
C24-27	2700pF integral with valv	e socket	
C28	1000pF +50%-20% 20K∨	Ceramic	Ducon CVH
C29	1000pF +50%-20% 20K∨	Ceramic	Ducon CVH
C30	1000pF +50%-20% 20K∨	Ceramic	Ducon CVH
C31	4700pF 20% 3K∨	Ceramic	Ducon CTP
C32	2.2pF 5% 5K∨	Ceramic	Ducon CDI
C33	2.2pF 5% 5K∨	Ceramic	Ducon CDI
C34	2.2pF 5% 5KV	Ceramic	Ducon CDI

MANUFACTURER NOTES

8.1.1	Cont

C35	3300pF 10% 400∨ Polyester	Philips 315
C36	23–347pF Variable Air	E.F. Johnson 154-10 1KW only
C37	23–347pF Variable Air	E.F. Johnson 154-10 1KW only
C38	23–1000pF Variable Air	E.F. Johnson 154-0030-001
C39	23–1000pF Variable Air	E.F. Johnson 154-0030-001
C40	330pF 10% N150 1KV Ceramic	Ducon CTR-F
C41	330pF 10% N150 1KV Ceramic	Ducon CTR-F
C42	330pF 10% N150 1KV Ceramic	Ducon CTR-F
C43	330pF 10% N150 1KV Ceramic	Ducon CTR-F
C44	330pF 10% N150 1KV Ceramic	Ducon CTR-F 1KW only
C45	330pF 10% N150 1KV Ceramic	Ducon CTR-F 1KW only
C46	330pF 10% N150 1KV Ceramic	Ducon CTR-F 1KW only
C47	2uF 5% 440V AC Paper	Ducon GPE420 50Hz
OR	3∪F 5% 440∨ AC Paper	Ducon GPE430 40Hz
C48	2x100uF +50%-10% 500V Electrolytic	Ducon EMG1016S
OR	200uF +50% -10% 500V Electrolytic	Ducon EMG/F2050S
DI	OA91 Germanium diode	Philips
D2	OA91 Germanium diode	Philips
D3	OA91 Germanium diode	Philips
D4	OA91 Germanium diode	Philips
D5	BY127/800 Silicon diode	Philips
D6	EM402 Silicon diode	Philips
LI	Peaking Inductor	44-80065
L2	RF choke	44-80008
L3	1mH RF choke	Philips 535
L4	1mH RF choke	Philips 535
L5	1mH RF choke	Philips 535
L6	Driver tank inductor	44-70071
L7	Parasitic suppressor	44-80006
L8	1mH RF choke	Philips 535

CCT REF	DESCR	PTION		MANUFACTURER NOTES
8.1.1	Cont.			
L9	lmH RF	choke		Philips 535
L10		RF choke	•	44-80054
L11	4uH RF			44-80026
L12		tank indu	uctor	44-80064
L13		RF choke		44-80054
LP1	Indicat	or lamp ç	green 5∨ 0.06A	Plessey BFK5
MI	50-0-5	0uA M/C	C Scale X693	Master S225
M2	50-0-5	00A M/C	Scale X693	Master S225
M3	0-1mA	100 ohm	M/C Scale X692	Master S225
M4	0-1mA	100 ohm	M C Scale X694	Master S225
M5	12∨ 23	rpm DC	motor	Philips 9904–120–52607 Multi channel or
M6	12∨ 23	rpm DC	motor	Philips 9904–120–52607 Multi channel or
M7	240∨ fo	an and m	otor (EBM120-2)	08-00194
PL1	24 way	chassis r	ntg plug	Painton P24MFS
R1	220	5%	ξW	Philips CR37
R2	470K	5%	$\frac{1}{2}W$	Philips CR37
R3	56K	5%	$\frac{1}{2}W$	Philips CR37
R4	10	5%	1/3W	Philips CR25
R5	330	5%	2/3W	Philips CR52
R6	10	5%	$\frac{1}{2}W$	Philips CR37
R7	470	5%	5W	IRC PW5
R8	15K	5%	2W	Philips CR93
R9	3 3K	5%	2W	Philips CR93
R10	1.5K	5%	7W	IRC PW7
R11	10K	5%	1/3W	Philips CR25
R12	10K	5%	1/3W	Philips CR25

 \bigcirc

.

CCT REF.	DESCRI	PTION		MANUFACTURER	NOTE
8.1.1	Cont.				
R13	10	5%	1/3W	Philips CR25	
R14	10	5%	1/3W	Philips CR25	
R15	4K7	5%	1/3W	Philips CR25	
R16	10K	5%	1/3W	Philips CR25	
R17	10K	5%	1/3W	Philips CR25	
R18	10K	5%	1/3W	Philips CR25	
R19	10	5%	1/3W	Philips CR25	
R20	10	5%	1/3W	Philips CR25	
R21	4K7	5%	1/3W	Philips CR25	
R22	Part of	L7		Philips CR52	
R23				Philips CR52	
R24				Philips CR52	
R25	Salacto	d during	sat-up	Philips CR52	
R26	Jelecie	u uonnig	sei-op	Philips CR52	
R27				Philips CR52	
R28				Philips CR52	
R29	١ĸ	5%	₽W	Philips CR37	
R30	١ĸ	5%	¹ / ₂ ₩	Philips CR37	
R31	6.8K	5%	2/3W	Philips CR52	
R32	10	5%	₽W	Philips CR37	
R33	10	1%	±₩	Philips CR37	
R34	10	1%	¹ / ₂ ₩	Philips CR37	
R35	10	1%	¹ / ₂ ₩	Philips CR37	
R36	10	1%	±₩	Philips CR37	
R37	6.8	5%	$\frac{1}{2}W$	Philips CR37	
R38	6.8	5%	$\frac{1}{2}W$	Philips CR37	
R39	100	5%	$\frac{1}{2}W$	Philips CR37	
R40	10	5%	¹ / ₂ ₩	Philips CR37	
R41	10	1%	- 1₂₩	Philips CR37	
R42	10	1%	¹ / ₂ ₩	Philips CR37	
R43	10	1%	¹ / ₂ ₩	Philips CR37	

\cup	CCT REF	DESCRIF	TION		MANUFACTURER	NOTES
	8.1.1	Cont.				
	R44	10	1%	$\frac{1}{2}W$	Philips CR37	
	R45	6.8	5%	$\frac{1}{2}W$	Philips CR37	
	R46	6.8	5%	1 ₂ W	Philips CR37	
	R47	100	5%	₽W	Philips CR37	
	R48	523	1%	¹ / ₂ ₩	Philips MR30	
	R49	10	5%	$\frac{1}{2}W$	Philips CR37	
	R50	10	1%	$\frac{1}{2}W$	Philips CR37	
\mathbf{i}	R51	10	1%	$\frac{1}{2}W$	Philips CR37	
	R52	10	1%	¹ / ₂ ₩	Philips CR37	
	R53	10	1%	$\frac{1}{2}W$	Philips CR37	
	R54	6.8	5%	¹ / ₂ ₩	Philips CR37	
	R55	6.8	5%	$\frac{1}{2}W$	Philips CR37	
	R56	100	5%	±₩	Philips CR37	
	R57	10	5%	$\frac{1}{2}W$	Philips CR37	1KW on
	R58	10	1%	±₩	Philips CR37	
	R59	10	1%	₹W	Philips CR37	
	R60	10	1%	$\frac{1}{2}W$	Philips CR37	
	R61	10	1%	$\frac{1}{2}W$	Philips CR37	
	R62	6.8	5%	¹ / ₂ ₩	Philips CR37	
	R63	6.8	5%	¹ / ₂ ₩	Philips CR37	
	R64	100	5%	$\frac{1}{2}W$	Philips CR37	
	R65	174K	1%	$\frac{1}{2}W$	Philips MR30	
	R66	18K	1%	$\frac{1}{2}W$	Philips MR30	
	R67	174K	1%	$\frac{1}{2}W$	Philips MR30	
	R68	174K	1%	$\frac{1}{2}W$	Philips MR30	
	R69	3K3	5%	1/3W	Philips CR25	
	R70	220K	5%	2/3W	Philips CR52	
	R71	4K7	5%	2/3W	Philips CR52	500W onl
	R72	4K7	5%	2/3W	Philips CR52	500W onl

MANUFACTURER NOTES

8.	۱.	1	Cont.
••	•••	•	

RV1 5K WW Potentiometer IRC 2W IRC 2W RV2 5K WW Potentiometer RV3 5K WW Potentiometer IRC 2W RV4 5K WW Potentiometer IRC 2W RV5 10K 20% Linear Potentiometer multi channel only 22-10399 RV6 50K 20% Linear Potentiometer Plessey E

RLA	4 pole C/O relay 820	Ohm	coil	Siemens V23154-D0721-B110
RLB	4 pole C/O relay 820	Ohm	coil	Siemens V23154-D0721-B110
RLC	Frequency select relay			Part of 08–00169
RLD	4 pole C/O relay 820	Ohm	coil	Siemens V23154-D0721-B110
RLE				Part of 08–00169
RLF	4 pole C/O relay 820	Ohm	coil	Siemens V23154-D0721-B110
RLG				Part of 08–00169
RLH	4 pole C/O relay 820	Ohm	coil	Siemens V23154-D0721-B110
RLJ				Part of 08–00169
RLK	4 pole C/O relay 820	Ohm	coil	Siemens V23154-D0721-B110
RLL				Part of 08–00169
RLM	Load select relay			08-00170
RLN	Load select relay			08-00170

NOTE : RLA-RLN MULTI CHANNEL ONLY

SK1	BNC jack receptacle VG-1094/U	Acme
SK2	C jack receptacle VG-568/U	Acme
	Value socket with integral screen	EIMAC SK600
	by-pass capacitor (4 off 1KW) (2 off 500W)	
	Value chimney (1 per socket)	EIMAC SK606

MANUFACTURER NOTES

8.1.1 Cont.

SW1	DPDT toggle switch	MSP8373B3
SW2	Meter switch	14-00011
SW3	PA metering switch	14-00012
SW4	Tune select switch	14-00013
SW5	Microswitch	Burgess CR1K2 or CT2K2
TI	RF input transformer	44-80052
T2	RF current transformer	44-80053
Т3	RF current transformer	44-80053
T4	Power transformer 40Hz	44-00963
OR	Power transformer 50–60Hz	44-00897
VI	Valve type 4CX250B	EIMAC
√2	Valve type 4CX250B	EIMAC
∨3	Valve type 4CX250B	EIMAC 1KW only
V4	Valve type 4CX250B	EIMAC 1KW only
V5	Valve type E55L	Philips
ZI	BZY88C3V3 zener diode	Philips

8.1.2 LOAD, ALC AND SWR DETECTOR

All Components Prefixed 2							
	Complete Sub-assy	08-00147					
	Printed Circuit Board	07 -00106					
C1	4.7 pF + 0.5 pF 500V NPO Ceramic	Philips 555					
C2	22 pF 5% 125V Polystyrene	Allied TCS0122					
C3	200 uF +50% –10%10V Electrolytic	Philips 001					
C4	0.047 uF +80% -20% 25V Ceramic	Ducon CDR					
C5	0.047 uF +80% -20% 25V Ceramic	Ducon CDR					
C6	33 pF 5% 100V Styroseal	Ducon DFB0133					
C7	270 pF 5% 630V Styroseal	Ducon DFB 605					
C8	0.047uF + 80% -20% 25∨ Ceramic	Ducon CDR					
C9	0.047 uF +80% -20% 25V Ceramic	Ducon CDR					
C10	0.047 uF +80% -20% 25V Ceramic	Ducon CDR					
C11	0.047 uF +80% -20% 25V Ceramic	Ducon CDR					
C12	0.01 uF + 80% -20% 100V Ceramic	Ducon CDR					
C13	470 pF 5% 630V Styroseal	Ducon DFB608					
C14	2200 uF + 100% -10% 25V Electrolytic	Elna RT					
C15	2200 uF +100% -10% 25V Electrolytic	Elna RT					
C16	3300 pF 10% 100V Ceramic	Philips 630					
C17	0.047 uF +80% -20% 25V Ceramic	Ducon CDR					
C18	0.047 uF +80% -20% 25V Ceramic	Ducon CDR					
C19	0.047 uF + 80% -20% 25V Ceramic	Ducon CDR					
C20	160uF + 50% –10% 2.5V Electrolytic	Philips 001					
C22	0.047uF +80% -20% 25V Ceramic	Ducon CDR					
C23	0.047uF +80% -20% 25V Ceramic	Ducon CDR					
C25	160 uF +50% -10% 2.5V Electrolytic	Philips 001					
C26	0.047 uF +80% -20% 25V Ceramic	Ducon CDR					
C27	0.047 uF + 80% -20% 25V Ceramic	Ducon CDR					
C28	3300 pF 10% 100V Ceramic	Philips 630					
C29	0.047 uF +80% -20% 25V Ceramic	Ducon CDR					

NOTES

CCT REF.	DESCRIPTION	1		MANUFACTURER	NOTES
D1-D4	1N914 Silicor	n Diode			
D5 - D8	BY126/200 Si	licon Di	ode	Philips	
D9	IN914 Si	licon Di	ode		
D10	EM402 Sil	icon Dic	de		
D11&D12	IN914 Sil	icon Dic	de, Matched	pair to specification 10-0	0017
Zl	BZY88/C6V2	Zene	er Diode	Philips	
Z2	BZY88/C6V2	Zene	er Diode	Philips	
LI	1mH RF Choke	9		Philips 535	
R1	22K Ohms	5%	1/3W	Philips CR25	
R2	10K Ohms	5%	1/3W	Philips CR25	
R3	22K Ohms	5%	1/3W	Philips CR25	
R4	10K Ohms	5%	1/3W	Philips CR25	
R5	10K Ohms	5%	1/3W	Philips CR25	
R6	10K Ohms	5%	1/3W	Philips CR25	
R7	33K Ohms	5%	1/3W	Philips CR25	
R8	10K Ohms	5%	1/3W	Philips CR25	
R9	120K Ohms	5%	1/3W	Philips CR25	
R10	330 Ohms	5%	1/3W	Philips CR25	
R11	4.7K Ohms	5%	1/3W	Philips CR25	
R12	10K Ohms	5%	1/3W	Philips CR25	
R14	1K Ohms	5%	1/3W	Philips CR25	
R15	100 Ohms	5%	1/3W	Philips CR25	
R17	1K Ohms	5%	1/3W	Philips CR25	
R21	10 Ohms	5%	1/3W	Philips CR25	
R22	Select -on -Test		1/3W	Philips CR25	(180 Ohm
R23	1K Ohms	5%	1/3W	Philips CR25	
R25	100 Ohms	5%	1/3W	Philips CR25	
R28	4.7K Ohms	5%	1/3W	Philips CR25	
R29	10K Ohms	5%	1/3W	Philips CR25	

8.1.3 SERVO PRESET

	All Components Prefixed 3	
	Complete Sub-assy	08-00152
	Printed Circuit Board	07 -00072
VR1 -VR6	10K Ohms 20% Lin. Type MP/PC	Plessey
	Carbon Potentiometer	404/8/02857/028

8.1.4 SERVO AMPLIFIER

All Components Prefixed 4

Complete Sub –assy	08-00148
Printed Circuit Board	07 -00102

C1-C5	0.047 uF + 80% - 20% 25∨ Ceramic	Ducon CDR	
C6	0.047 uF 10% 200V Polyester	Soanar 'N'	
C7-C10	0.047 uF + 80% -20% 25V Ceramic	Ducon CDR	
C11	10 uF + 50% - 20% 25V Electrolytic	S.T.C. Tag	
C12 - C15	0.047 uF + 80% - 20% 25V Ceramic	Ducon CDR	

D1-D18 IN914 Silicon Diode

R1	470	Ohms	5%	1/3W	Philips CR25
R2	1.8K	Ohms	5%	1/3W	Philips CR25
R 3	68K	Ohms	5%	1/3W	Philips CR25
R 4	68K	Ohms	5%	1/3W	Philips CR25
R5	1.8K	Ohms	5%	1/3W	Philips CR25
R6	470	Ohms	5%	1/3W	Philips CR25
R7	220K	Ohms	5%	1/3W	Philips CR25
R8	4. 7K	Ohms	5%	1/3W	Philips CR25
R9	١ĸ	Ohms	5%	1/3W	Philips CR25
R10	1K	Ohms	5%	1/3W	Philips CR25
R11	10K	Ohms	5%	1/3W	Philips CR25
R12	1M	Ohms	5%	1/3W	Philips CR25
R13	100K	Ohms	5%	1/3W	Philips CR25
R14	10K	Ohms	5%	1/3W	Philips CR25
R15	2.2K	Ohms	5%	1/3W	Philips CR25
R16	1К	Ohms	5%	1/3W	Philips CR25
R17	220K	Ohms	5%	1/3W	Philips CR25
R18	4. 7K	Ohms	5%	1/3W	Philips CR25

CCT. REF	DESC	RIPTIO	V		MANUFACTURER	NOTES
R19	١ĸ	Ohm	5%	1/3W	Philips CR25	
R20	330	Ohm	5%	1/3W	Philips CR25	
R21	330	Ohm	5%	1/3W	Philips CR25	
R22	١ĸ	Ohm	5%	1/3W	Philips CR25	
R23	4.7K		5%	1/3W	Philips CR25	
R24	680	Ohm	5%	1/3W	Philips CR25	
R25	680	Ohm	5%	1/3W	Philips CR25	
R26	4.7	Ohm	5%	1/3W	Philips CR25	
R27	4.7	Ohm	5%	1/3W	Philips CR25	
R28	47K	Ohm	5%	1/3W	Philips CR25	
R29	4.7K	Ohm	5%	1/3W	Philips CR25	
R30	10K	Ohm	5%	1/3W	Philips CR25	
R31	10K	Ohm	5%	1/3W	Philips CR25	
R 32	4.7K	Ohm	5%	1/3W	Philips CR25	
R33	10K	Ohm	5%	1/3W	Philips CR25	
R34	10K	Ohm	5%	1/3W	Philips CR25	
R35	1M	Ohm	5%	1/3W	Philips CR25	
R36	100K	Ohm	5%	1/3W	Philips CR25	
R 3 7	10K	Ohm	5%	1/3W	Philips CR25	
R38	2.2K	Ohm	5%	1/3W	Philips CR25	
R39	١ĸ	Ohm	5%	1/3W	Philips CR25	
R40	470K	Ohm	5%	1/3W	Philips CR25	
R41	4.7K	Ohm	5%	1/3W	Philips CR25	
R42	١ĸ	Ohm	5%	1/3W	Philips CR25	
R43	330	Ohm	5%	1/3W	Philips CR25	
R44	330	Ohm	5%	1/3W	Philips CR25	
R45	١ĸ	Ohm	5%	1/3W	Philips CR25	
R46	4. 7K	Ohm	5%	1/3W	Philips CR25	
R47	680	Ohm	5%	1/3W	Philips CR25	
R48	680	Ohm	5%	1/3W	Philips CR25	
R49	4.7	Ohm	5%	1/3W	Philips CR25	
R50	4.7	Ohm	5°°	1 3\V	Philips CR25	

CCT REF	DESCR	RIPTION			MANUFACTURER	NOTES
R51	47K	Ohms	5%	1/3W	Philips CR25	
R52	4.7K	Ohms	5%	1/3W	Philips CR25	
R5 3	10K	Ohms	5%	1/3W	Philips CR25	
R54	1 0K	Ohms	5%	1/3W	Philips CR25	
R55	4.7K	Ohms	5%	1/3W	Philips CR25	
R56	10K	Ohms	5%	1/3W	Philips CR25	
R57	47K	Ohms	5%	1/3W	Philips CR25	
R58	١ĸ	Ohms	5%	1/3W	Philips CR25	
R59	100K	Ohms	5%	1/3W	Philips CR25	
R60	4.7K	Ohms	5%	1/3W	Philips CR25	
R61	١ĸ	Ohms	5%	1/3W	Philips CR25	
R62	10K	Ohms	5%	1/3W	Philips CR25	
R63	10K	Ohms	5%	1/3W	Philips CR25	
R64	10K	Ohms	5%	1/3W	Philips CR25	
R65	4.7K	Ohms	5%	1/3W	Philips CR25	
R66	4.7K	Ohms	5%	1/3W	Philips CR25	
R67	47K	Ohms	5%	1/3W	Philips CR25	
R68	10K	Ohms	5%	1/3W	Philips CR25	
R69	1K	Ohms	5%	1/3W	Philips CR25	
R70	10K	Ohms	5%	1/3W	Philips CR25	
R71	150K	Ohms	5%	1/3W	Philips CR25	
R72	10K	Ohms	5%	1/3W	Philips CR25	
R73	10K	Ohms	5%	1/3W	Philips CR25	
R74	100K	Ohms	5%	1/3W	Philips CR25	
TRI	741C I	ntegrated	d Circu	it	Fairchild	
TR2	2N546	I P Chan	nel FET	장사 관계	Fairchild	
TR3	741C I	ntegrated	Circu	it	Fairchild	
TR4	BC148	NPN Sil	icon		Philips	
TR5	AY111	5 PNP Si	licon		Fairchild	
TR6	AY111	5 PNP Si	licon		Fairchild	
TR7	BC148	NPN Si	licon		Philips	
TR8	TIP 32	PNP Pow	ver Silio	con	Texas	

MANUFACTURER

NOTES

TR9	TIP 31 N	IPN Pow	ver Silicon	Texas	
TR10	BC148	NPN	Silicon	Philips	
TR11	BC148	NPN	Silicon	Philips	
TR12	AY1115	PNP	Silicon	Philips	
TR13	2N5461	P Chann	el FET	Philips	
TR14	741C Int	egrated	Circuit	Fairchild	
TR15	BC148	NPN	Silicon	Philips	
TR16	AY1115	PNP	Silicon	Fairchild	
TR17	AY1115	PNP	Silicon	Fairchild	
TR18	BC148	NPN	Silicon	Philips	
TR19	TIP 32	PNP	Power Silicon	Texas	
TR20	TIP 31	NPN	Power Silicon	Texas	
TR21	BC148	NPN	Silicon	Philips	
TR22	BC148	NPN	Silicon	Philips	
TR23	AY1115	PNP	Silicon	Philips	
TR24	BC148	NPN	Silicon	Philips	
TR25	BC148	NPN	Silicon	Philips	
TR26	AY1115	PNP	Silicon	Philips	
TR27	OC926	PNP	Silicon	Philips	
TR28	OC946	PNP	Silicon	Philips	
TR29	BC148	NPN	Silicon	Philips	
TR30	BC148	NPN	Silicon	Philips	
TR31	BC148	NPN	Silicon	Philips	

Zl	BZY88	C7V5	Philips
Z2	BZY88	C7V5	Philips
Z3	BZY88	C15V	Philips

MANUFACTURER

NOTES

8.1.5 BIAS REGULATOR

All Components Prefixed 5

	Complete Sub-assy	08-00149
C1	47 uF + 50% - 10% 160V Electrolytic	Elna RT
C2	0.047 uF 10% 400V Polyester	Philips 311

D1-D4	BY126/400	Philips
D5 & D6	IN914	
D7 & D8	BY126/400	Philips

R1	1.5K	Ohms	5%	1/3W	Philips CR25
R2	15K	Ohms	5%	1W	Philips CR68
R3	3.9K	Ohms	5%	Metal Oxide	Welwyn F33
R 4	8.2K	Ohms	5%	1W	Philips CR68
R5	2.2K	Ohms	5%	1/3W	Philips CR25
R6	12K	Ohms	5%	1/3W	Philips CR25
R7	82K	Ohms	5%	¹ / ₂ ₩	Philips CR37
R8	2.2K	Ohms	5%	1/3W	Philips CR25
R9	١ĸ	Ohms	5%	1/3W	Philips CR25
R10	2.7K	Ohms	5%	1/3W	Philips CR25
R11	33 K	Ohms	5%	1/3W	Philips CR25
R12	56K	Ohms	5%	1/3W	Philips CR25
R13	560	Ohms	5%	$\frac{1}{2}W$	Philips CR37
R14	560	Ohms	5%	¹ / ₂ ₩	Philips CR37
R15	560	Ohms	5%	$\frac{1}{2}W$	Philips CR37
R16	22 K	Ohms	5%	1/3W	Philips CR25
R17	22 K	Ohms	5%	1/3W	Philips CR25
R18	22K	Ohms	5%	1/3W	Philips CR25
R19	3.3K	Ohms	5%	1/3W	Philips CR25
R20	15K	Ohms	5%	$\frac{1}{2}W$	Philips CR37
R2]	100K	Ohms	5%	1/3W	Philips CR25

CCT REF.	DESCRIPTION	MANUFACTURER	NOTES
RLA	2 Pole C/O 7600 Ohm Cradle 'N'	Siemens	
TR1 & TR2	2 BC148 NPN Silicon	Philips	
TR3	AY1115 PNP Silicon	Fairchild	
TR 4 - TR7	OC926 PNP Silicon	Philips	
VR1	10K Ohms 20% Lin. Type MP/PC	Plessey	
	Carbon Potentiometer	404/8/02857/028	
ZI	BZY88 C12V	Philips	
Z2	BZY88 C6V2	Philips	
Z3	BZY88 C6V2	Philips	
Z4	BZY88 C6V8	Philips	
Z5	BZX70 C51V	Philips	
	Printed Circuit Board	07 -00077	

8.1.6 MINOR HT REGULATOR

All Components Prefixed 6

	Complete Sub-assy	08-00150
	Printed Circuit Board	07 -00076
Cl	250 uF + 50% −10% 25∨ Electrolytic	Philips 023
C2	1000 pF 5% 50V Styroseal	Ducon DFB0512
C3	0.1 uF 10% 630V Polyester	Philips 315

Z1-Z4 BZX70/C12

Philips

R1	100K	Ohms	5%	¹ / ₂ ₩	Philips CR37
R2	100K	Ohms	5%	$\frac{1}{2}W$	Philips CR37
R3	100K	Ohms	5%	$\frac{1}{2}W$	Philips CR37
R4	6.8K	Ohms	5%	1/3W	Philips CR25
R5	6.8K	Ohms	5%	1/3W	Philips CR25
R6	1K	Ohms	5%	1/3W	Philips CR25
R7	2.7K	Ohms	5%	1/3W	Philips CR25
R8	330K	Ohms	5%	$\frac{1}{2}W$	Philips CR37
R9	2.7K	Ohms	5%	1/3W	Philips CR25
R10	390	Ohms	5%	1/3W	Philips CR25
R11	2.2K	Ohms	5%	1/3W	Philips CR25
R12	27	Ohms	5%	1/3W	Philips CR25
R13	390	Ohms	5%	1/3W	Philips CR25
R14	100K	Ohms	5%	2/3W	Philips CR52
R15	100K	Ohms	5%	2/3W	Philips CR52

NOTES

CCT REF	DESCRIPTION	MANUFACTURER	NOTES
TRI	723 C Integrated Circuit	Fairchild	
		U6E 7723393	
TR2 –TR4	40313 NPN Silicon Transistor	R.C.A.	
VR1	10K Ohms 20% Lin. Type MP/PC	Plessey	
	Carobon Potentiometer	404/8/02857/028	

MANUFACTURER

NOTES

8.1.7 SWR BRIDGE

All	Components	Prefixed	7
	Componionio	110111100	

	Complete Sub-assy	08-00145
	Printed Circuit Board	07-00118
Cl	10 pF + 0.5 pF 500V NPO Ceramic	Philips 555
C2	5.5-65 pF Film Dialectric Trimmers	Philips 808
C3	390 pF 5% 630∨ Styroseal	Ducon DFB 607
C4	1000 pF + 50% – 20% 500V Pin-up Ceramic	Philips 563
C5	1000 pF + 50% − 20% 500∨ Pin–up Ceramic	Philips 563

01 0 02	1014 511 01 1 10 1 10 1 1 0 10 10 10 10 10 10	17
D1 & D2	1N914 Silicon Diode – Matched Pair to Specification 10-000	1/

LI	1 mH R	F Choke			Philips 535
R1	47	Ohms	5%	$\frac{1}{2}W$	Philips CR37
R2	47	Ohms	5%	$\frac{1}{2}W$	Philips CR37
R3	4.7K	Ohms	5%	$\frac{1}{2}W$	Philips CR37
R4	4.7 K	Ohms	5%	$\frac{1}{2}W$	Philips CR37

T1Toroidal Transformer44-80051

75 Ohm Type PT11M Coaxial Cable

Telcon 16PK1/06

NOTES

8.1.8 DIODE MATRIX

All Components Prefixed 8

	Complete Sub-assy	08-00146
	Printed Circuit Board	07-00119
D1 -D24	BY126/200 Silicon Diode	Philips

R1

~

330 Ohms 5% 2W

Philips CR93

MANUFACTURER NOTES

8.2.1	POWER CONTROL UNIT	
	All components prefixed 1	
CB1	10 Amp Circuit Breaker	Heinemann CF1
D25	BY126/200	Philips
D26	BY126/200	Philips
D27	BY126/200	Philips
D28	BY126/200	Philips
D29	BY126/200	Philips
D30	BY126/200	Philips
D31	BY126/200	Philips
D32	BY126/200	Philips
D33	BY126/200	Philips
Fl	1 Amp Delay Fuse	Australux 3AG
F2	750mA Delay Fuse	Australux 3AG
F3	2 Amp Delay Fuse	Australux 3AG
LP1	240V Neon Indicator-Red	IRH FP7/CL/NRH
LP2	240∨ Neon Indicator-Red	IRH FP7/CL/NRH
LP3	240∨ Neon Indicator-Red	IRH FP7/CL/NRH
LP4	240V Neon Indicator-Red	IRH FP7/CL/NRH
LP5	30V 20mA Liliput Tó	Tanuslicht
	Lamp Holder	Widmaier 188
	Lamp Cap-Red	Widmaier 182
LP6	30V 20mA Liliput Tó	Tanuslicht
LP7	30V 20mA Liliput Tó	Tanuslicht
LP8	30V 20mA Liliput Tó	Tanuslicht

MANUFACTURER NOTES

8.2.1 Cont.

RLA	3 Pole double throw 24V DC relay	ITT SL-7721319
RLB	3 Pole double throw 24V DC relay	ITT SL-7721319
RLC	3 Pole double throw 24V DC relay	ITT SL-7721319
RLJ	3 Pole double throw 24V DC relay	ITT SL-7721319
SK 1	18 way chassis mounting socket	Painton S18/MFS
SW1	2 Pole, single throw 10A toggle switch	MSP 7360 K8
T2	Power transformer auxiliary	44-00925

MANUFACTURER NOTES

8.2.2 RELAY INTERLOCK

All components prefixed 2

C1	2200uF +100%-10% 35V Electrolytic	Elna RT
C2	4.7uF 10% 100∨ Polyester	Philips 341
C3	4.7uF 10% 100∨ Polyester	Philips 341
DI	BY126/200 Diode	Philips
D2	BY126/200 Diode	Philips
D3	BY126/200 Diode	Philips
D4	BY126/200 Diode	Philips
D5	BY126/200 Diode	Philips
D6	BY126/200 Diode	Philips
D7	BY126/200 Diode	Philips
D8	BY126/200 Diode	Philips
D9	IN914 Diode	Philips
D10	IN914 Diode	Philips
DII	BY126/200 Diode	Philips
Rla	10 5% 1W	Philips CR68 1K only
OR	12 5% 1W	Philips CR68 500W only
R1b	Select on test 5% 1W	Philips CR68
R2	2.2M 5% 1/3W	Philips CR25
R3	10K 5% 1/3W	Philips CR25
R4	6.8M 5% $\frac{1}{2}W$	Philips CR37
R5	2.2K 5% 1/3W	Philips CR25
R6	10K 5% 1/3W	Philips CR25
RLD	2 Pole C/O 1700 coil	Siemens V23154-C0722-B104
RLE	2 Pole C/O 1700 coil	Siemens V23154-C0722-B104
RLF	2 Pole C/O 1700 coil	Siemens V23154-C0722-B104
RLG	2 Pole C/O 1700 coil	Siemens V23154-C0722-B104
RLH	2 Pole C/O 18 coil	Siemens V23154-C0710-B104
Zl	BZY88/C10V Zener Diode	Philips
Z2	BZY88/C3V3 Zener Diode	Philips

d.

MANUFACTURER

NOTES

8.2.3 START DELAY PCB ASSY

All Components prefixed 3

Complete Sub-assy	08-00603
Printed Circuit Board	07-00234
2200∪F + 100% - 10% 35∨	ELNA RT
4.7K Ohms 5% ¹ / ₂ W	Philips CR37
47 Ohms 5% 2/3W	Philips CR52
15 Ohms 20W Type DG	I.R.C.
	Printed Circuit Board 2200uF + 100% - 10% 35∨ 4.7K Ohms 5% ½W 47 Ohms 5% 2/3W

MANUFACTURER NOTES

8.2.4 POWER SUPPLY CHASSIS

All components prefixed 4

C1		
	0.22uF 10% 1200V AC Paper 50x60Hz	Ducon GPH 12022N
C2	0.22uF 10% 1200V AC Paper 40Hz only	Ducon GPH 12022N
C3	200uF 500V Electrolytic	Ducon EMG/F 2050S
C4	200uF 500V Electrolytic	Ducon EMG/F 2050S
C5	200uF 500∨ Electrolytic	Ducon EMG/F 2050S
C6	200uF 500V Electrolytic	Ducon EMG/F 2050S
C7	200uF 500∨ Electrolytic	Ducon EMG/F 2050S
C8	680uF 40V Electrolytic	Philips
C9	680uF 40∨ Electrolytic	Philips
D1-D24	BY100 Silicon Diode	Philips
L1 -	Power Choke 50Hz	44-40562
OR	Power Choke 40x60Hz	44-40565
R1-R24	Voltage Dependent Resistor "Violet"	Philips 2322-564-02622
R25	5.6 10% 10W Wire Wound	IRC PW10 (1KW)
R25 OR	5.6 10% 10W Wire Wound 6.8 10% 10W Wire Wound	IRC PW10 (1KW) IRC PW10 (500W)
OR	6.8 10% 10W Wire Wound	IRC PW10 (500W)
OR R26	6.8 10% 10W Wire Wound 220K 5% 1W	IRC PW10 (500W) Philips CR68
OR R26 R27	6.8 10% 10W Wire Wound 220K 5% 1W 220K 5% 1W	IRC PW10 (500W) Philips CR68 Philips CR68
OR R26 R27 R28	6.8 10% 10W Wire Wound 220K 5% 1W 220K 5% 1W 220K 5% 1W	IRC PW10 (500W) Philips CR68 Philips CR68 Philips CR68
OR R26 R27 R28 R29	6.8 10% 10W Wire Wound 220K 5% 1W	IRC PW10 (500W) Philips CR68 Philips CR68 Philips CR68 Philips CR68
OR R26 R27 R28 R29 R30	6.810%10WWire Wound220K5%1W220K5%1W220K5%1W220K5%1W220K5%1W	IRC PW10 (500W) Philips CR68 Philips CR68 Philips CR68 Philips CR68 Philips CR68
OR R26 R27 R28 R29 R30 R31	6.810%10WWire Wound220K5%1W220K5%1W220K5%1W220K5%1W150K5%vitreous wire 50W 50Hz	IRC PW10 (500W) Philips CR68 Philips CR68 Philips CR68 Philips CR68 Philips CR68 Philips CR68 Welwyn AP3134
OR R26 R27 R28 R29 R30 R31 OR	6.810%10WWire Wound220K5%1W220K5%1W220K5%1W220K5%1W220K5%1W150K5%vitreous wire 50W 50Hz110K5%vitreous wire 50W 40Hz	IRC PW10 (500W) Philips CR68 Philips CR68 Philips CR68 Philips CR68 Philips CR68 Welwyn AP3134 Welwyn AP3134
OR R26 R27 R28 R29 R30 R31 OR R32	6.8 10% Wire Wound 220K 5% 1W 150K 5% vitreous wire 50W 50Hz 110K 5% vitreous wire 50W 40Hz 1K 5% 1W	IRC PW10 (500W) Philips CR68 Philips CR68 Philips CR68 Philips CR68 Philips CR68 Welwyn AP3134 Welwyn AP3134 Philips CR68
OR R26 R27 R28 R29 R30 R31 OR R32	6.8 10% Wire Wound 220K 5% 1W 150K 5% vitreous wire 50W 50Hz 110K 5% vitreous wire 50W 40Hz 1K 5% 1W	IRC PW10 (500W) Philips CR68 Philips CR68 Philips CR68 Philips CR68 Philips CR68 Welwyn AP3134 Welwyn AP3134 Philips CR68