

KS-357 Service Note

Koden Electronics Co, Ltd 284 Kamiosaki Chojamaru Shinagawa-ku Tokyo Japan Cable Address"KOELEC TOKYO"

KS - 357 SERVICE NOTE

CONTENTS

		Page
I.	SPECIFICATION	1
, II .	FEATURES	1
III.	CIRCUITS	2
IV.	SERVICE MEMO	. 6
۷.	ADJUSTMENT	12
VI.	STANDARD CHARACTERISTICS OF KS - 357	19

* * * * * * *

6)

- Remove the batteries from the machine when the machine is not required for a period of longer than two weeks.
- o Do not forcibly move knobs and the whip antenna.
- o Control volume just to an audible degree. Excess volume will deplete your batteries more than necessary.

I. Specifications:

Circuit:

Frequency Range:

Intermediate Frequency:

Intermediate Frequency Width:

Voice Output:

Batteries:

Speaker:

Antenna:

Sensitivity:

Image Rejection Ratio:

Dimensions:

Weight:

Fixed Freq Reception:

II. Features

Beacon (B) 150-420 KC B.C. (BC) 520-1650 KC Marine (M) 1.6 - 4.4 MC 455 KC Approx. 5 KC within 6 db Variation 500 mW, includes 800c/s tone generator 9 V 6x1.5 Volt (6 flashlight batteries UM-1) 4" Permanent Dynamic Speaker Ferrite Core Loop Antenna and Sense Whip (telescopic type) 30 u/m Beacon 15 µ V/m B.C. 7 µ //m Marine Beacon in excess of 100db B.C. in excess of 80 db in excess of 60 db Marine Width, 10 1/8"; Height, 7" and Depth, 12" 9 lbs (including batteries)

3 Band, 12 Transister Superheterodyne

3 crystals can be inserted in M band for local oscillation

a) With 12 transistors and 2 Diodes, this diminutive direction finder gives superior performance, unexcelled in sensitivity, image rejection ratio, intermediate frequency characteristic, audio frequency characteristic etc.

b) Its extra wide frequency range from 150 KC to 4.4 MC (except 420 to 520 KC) simplifies switching over between the three bands of Beacon, BC, and

- 1 -

Marine signal waves.

c) In the marine band, fixed reception is possible by means of a crystal which enables switch change-over for three frequency bands. Tuning can be adjusted as required by simply setting the tuning dial to an approximate position on the frequency scale.

d) True bearing determination is a simple operation by virtue of the built-in telescope type sense antenna.

e) The highly sensitive null meter provides a means for detecting battery voltages.

f) Gain and volume can be controlled independently. The gain being properly adjusted by bringing the indication on the null meter to any desired point, while the volume is controlled as required by means of the 'VOLUME CONTROL' knob.

g) The machine, complete with batteries weighs only nine pounds. In addition to its light weight, a convenient metal handle permits it to be carried with ease.

h) The batteries used are ordinary flashlight batteries UM-1 which can be purchased anywhere, and these are powerful enough to supply the necessary current for an average daily use of four hours or so over a period of two months.

i) Maintenance is simplified by the ease with which this machine can be dismantled into four units; the RF, IF and AF, a battery unit, and a loop antenna.

III. Circuits

a) Figure 1 shows a circuit diagram of KS - 357.

b) RF Input Circuit

This circuit is generally as illustrated in Fig. 2. For ease of understanding it has been divided into three sections, viz: Beacon, BC and Marine Band.

- 2 -

 L_o is a ferrite core loop antenna, which has been specially designed with one coil left-wound and one coil right-wound and both connected in parallel. A high Q and well balanced noise erasing characteristic has been obtained by the efficient use of a 7" long core. In that L of the loop coil is comparatively small in the Beacon and BC bands circuits, the voltage induced on the loop antenna will reach the base of transistor RF through the tap of either L_1 or L_2 and tap (t) will not be used. L_1 , L_2 and L_0 comprise the input tuning circuit together with main variable condenser C1-a, contributing a superior image rejection ratio in this machine.

Figure 3 shows the marine band circuit, which will be found to differ from the Beacon and B.C band circuits in that its input tuning circuit consists of L_0 and C_{1-a} of the loop antenna. As a consequence no special coil is used like L_1 and L_2 . The tap of L_0 is connected to the base of TR₁.

c) RF and MIX Circuits (See Fig. 4)

12

Figure 4 illustrates the RF and Mix circuits which employ the high performance drift type transistor 2SA80. The gain in the RF circuit exceeds 20 db.

In receiving beacon signals only, L4 and C66, 30PF are inserted between the top of T₃ and the earth of the printed circuit board to prevent oscillation in the circuit caused by the highest range of the frequency in the band. For the same purpose a wave trap $(L_4 \ C_{56})$ is inserted in the base input circuit of RF TR₁. This trap is tuned in 500 KC, having C of 200 PF and Q of in excess of 100.

Local oscillator output is applied to the base of TR_2 , used for mixing, through C15 (0.05 μ F). Very high conversion gain is obtained here. C15 serves also as a bypass condenser for the base of TR_2 . T_7 is the first of the IF transformers. Check point (1) is to check the sensitivity while check point (2) checks IF characteristic.

- 3 -

d) Local Oscillator Circuit (See Fig. 5)

This machine has embodied a separate oscillation mixing circuit for stabilized reception. The oscillator circuit is of emitter grounding base decoupling type. Oscillator output is supplied from the coupling coil of T5 or T6 to the base circuit of TR2 through C15 $(0.05\mu F)$.

Figure 5 describes the oscillator circuit for Beacon and B.C. signals. and C23 Co-c is the main tuning condenser, C_{21} , C_{22} are padding condensers. Check point (1) is for checking whether oscillation is present. The voltage on this point drops to approximately half the normal voltage in the absence of oscillation, thus making this check a simple matter.

One of the features of the local oscillator circuit for marine band signals is that it is possible, with the employment of a crystal, to have fixed reception. Turning switch SW3 will insert the crystal between the collector and the base. L_3 is then connected in series to the oscillator coil of $T_{4,3}$ thus making the reactance in the oscillator circuit capacitive so that crystal oscillation in the whole band is stabilized.

e) Intermediate Frequency Circuit (See Fig. 7)

Figure 7 illustrates a three-step amplifier circuit in which an alloy type transistor 2SA12 is employed. Between steps is a C-coupling double tuned circuit having excellent characteristic acquired by high quality coils and appropriate selection of C. The superior quality of this circuit is demonstrated by the facts that middle frequency is 455 KC with 6 db attenuation over a band of some 5 KC, and having an outside band attenuation of 8 db/KC. This amplifier circuit is neutralized and ceramic condensers for tuning, \mathcal{A} (for 200 PF, are for temperature compensation. Having heat coefficient of $-760 \times 10^{-6/0C}$ they function to stabilize the temperature of the transformers compensating the changes in their temperatures. (4) is an input point of IF printed board which is used for checking characteristic. The voltage of

- 4 -

AVC (automatic volume control) is applied to the bases of TR_4 and TR_6 .

f) Detector AVC Circuit (See Fig. 8)

Wave detection is carried out by diodes 1N34A. Distortionless high detected voltages can be obtained from $T_{1,2}$ which has an impedance of some 15 Kilo ohms on its secondary side. These voltages are supplied to the base of TR₉ (2SB75) of AF₁ as voice input. A portion of the detected current flows to the base of TRg (2SA12). The gain control and automatic volume control may be described as follows. The gain is controlled by changing the bias voltages of TR_1 (RF), TR_1 (IF₂) and TF_6 (IF₃) for which the volume is controlled automatically through the adjustment of VR4 (3 Kilo ohms). In the automatic volume control, when the incoming signal waves make detected current flow to the base of TR8, current flows through the collectors but the voltage of the collectors will drop due to the action of R_{45} (5 Kilo ohms). Since this drop will be negative voltage, the voltage will in any case approach toward positive more than when no signal is evident. So long as this voltage on the negative side of the germanium diode D_2 (1N34A), i.e., the collector side of TR8, is lower than that on the positive side, there will be no current flowing through the diode. When however, an incoming signal wave raises the voltage on the positive side, thus activating the diode, it will cause the voltage on the side of the automatic volume control to move toward the positive side with a resultant lowering of gain in the end.

The automatic volume control will be brought into operation when the field intensity of incoming waves is approximately $50 \ \mu$ V/m to $100 \ \mu$ V/m. The current in the collector will be supplied to the null meter for its indication. When the field intensity of the incoming waves reaches a degree sufficient to activate the automatic volume control, the indicator on the null meter will show its maximu. Check point (7) is to be used for both checking the detector output and as an imput point of the AF circuit.

- 5 -

g) Audio Frequency Circuit (See Fig. 9)

After the audic frequency has been amplified in two steps by the TR₉ (2SB75) and TR₁₀ (2SB77) it will go through the B class pushpull power amplification. The volume is controlled by VR₅ (3 Kile ohms) inserted between TR₉ and TR₁₀.

(8) is a check point for B voltages that have passed through the filter of R42 (500 ohms) and C65 (200µ), while (9) is a point which measures the voice coil voltage of the speaker, i.e. the output voltage. L.S. has an impedance of 3.5 ohms and the voltage on (9) is $1.2 \vee 0.5 \vee$. IV. SERVICE MEMO

1. Block Diagram is illustrated in Fig. 10.

2. How to handle any trouble

2.1. Should any trouble develop in this machine, it will be first necessary to ascertain just which part is out of order of the units shown in Fig. 10.

2.2 In checking, the following procedure will generally be found helpful.

- a) Remove the botton cover (See Fig. 13)
- b) Check the voltages on each TR by using a tester (See the directions under 4.6)
- c) If SG_Aa test o@cillator is available, test by applying signal waves to the AF stage, IF stage and RF stage, in that order. It will be easy to find out which unit is not working correctly by comparing the result obtained by these checks with the standard characteristics described under VI of this manual.
- d) Now replace any unit that is found to be defective, with a spare unit.

In replacing, follow the directions which are given under IV-c.

e) In case there is no spare part available for replacement, first remove the defective unit and after careful reference to the connection diagram, the machine can be put into operational condition by connecting the connectors in the manner illustrated in Figure 11.

- 6 -

- f) A spare machine kept on hand will be great help in checking the units in cases where some malfunction has developed, as the check can then be made by comparing the two sets.
- g) As can be seen in Figure 13, by the removal of the bottom cover, check points from (1) to (10) will be found on the printed circuit board and speaker. These should be used freely as they are important points in the checking and adjustment of this machine. The particulars of these points will be found in the table below.

LIST OF CHECK POINTS

Number	Electrical Location	Mechanical Location	Use
1	TR ₃ (2SA80) emitter	Righthand side of RF print- ed board	To check oscillation
2	TR_1 (2SA80) input to the base through C_5 (0.1)	Upper righthand side RF printed board	Feeding point for measuring sensitivity when the loop antenna is not in use
3	TR ₂ (2SA80)	Between 1 & 2 in BF print- ed board	Feeding point for ad- justing & measuring IF characteristic
4	TR_4 (2SA12) base	Lower righthand side of IF printed board	Feeding point for check- ing IF printed board only
5	TR ₆ (2SA12) base	Center righthand side of IF printed board	As above
6	TR ₇ (2SA12) base	Center righthand side of IF printed board	As above
7	D ₁ (1N34A) negative Side	Center of IF printed board	Measuring point for de- tector output. Feeding point for measuring AF characteristic
8	Negative B voltage Approx $6 V$ TR1, 2, 0 , 4, 5, 6, 7, 9.	Upper righthand side of IF printed board	To check negative B voltage
9	Speaker voice coil terminal	Speaker	To measure audio output
10	Ground circuit, body	Lelfhand side center of IF printed board	common terminal for checking

3. Dismantling

- 3.1. Loop Antenna
 - a) Pull out the antenna while at the same time holding down the machine lever.
 - b) If the loop antenna is not functioning properly or suspected of being defective, it should be replaced with a new one.
 - c) The loop antenna should work properly if the ferrite core, coil and lead wire are in proper working order.
- 3.2. RF Unit
 - a) Parts which can be removed from outside: (See Fig. 13)
 Knobs; (1) TUNE, (2) BAND, (3) CRYSTAL.
 Screws; four screws (4), (5), and (31) (at the top of the cabinet)
 Switch; (7) CRYSTALS, remove nut (8) and washer (9)
 Jack; Remove nut (11) from to¹_A(10)

Compass plate (12), washer (13), plastic plate (14) and the brass collar will come off at the same time.

b) Parts which require to be removed from the inside: (See Figures 13 and 14)

First remove the bottom cover from the cabinet after the eight screws (16) have been loosened.

Screws; two screws (17) & (18) which hold the RF printed board in place.

Plugs; Remove P3 (7 Pins) (19) from J3

c) After removing the parts listed under a) and b) above, the RF unit can be gently removed.

3.3. IF and AF Unit

a) Parts which can be removed from the outside: (See Fig. 13)
 Knob; (21) TONE, DF, BATTERY
 Switch; Remove the first nut (23) and the washer (24) from

- 8 -

switch (22), and the switch can be removed.

- b) Parts which require to be removed from the inside: (See Fig. 14) Screws; 4 screws (25), (26), (27), & (28) which hold the printed board IF and IF in place.
 - Plug; To remove this from the cabinet, take off J4 (9 Pins) (29) from PL.

Plug: To remove Plug (30) from the terminal of the sense antenna.

c) When all the above listed parts have been removed, the IF and LF unit can be carefully removed.

3.4. Battery Unit

This unit is connected to P4 (9 Pins). As it consists of a battery case, speaker, meter and volume control, the replacing of any of these parts which are found defective will be sufficient to remedy any trouble which may arise.

4. CAUTIONS TO BE OBSERVED IN SERVICING

It should always be remembered that a transistor circuit is different from a vacuum tube circuit.

4.1. The transistors which have been embodied in this machine are all of the PNP type and negative voltage is applied to the collector. Emitter grounding is adopted for the transistors, which means that in comparison to the vacuum tube, the emitter will correspond to the cathode of a vacuum tube, the base to the grid and the collector to the plate.

4.2. Transistors may be damaged when current is passed through them to test a circuit, is high voltage is applied, as for instance of a scale in the XI ohm range of a circuit tester. Since the resistance value of a transistor will very greatly according to the polarity, before testing parts which have been parallel-connected to transistors, by flowing current through them, one end of the part must be disconnected.

4.3. It is dangerous to let the lead of a transistor touch that of another, especially when an output transistor is connectd.

4.4. The soldering of the lead of a transistor and parts on the printed board should be done quickly using a soldering iron with a small capacity, as both the transistor and the printed board could be damaged by overheating when soldering.

4.5. It is important that when switch S-W2 is set at "BATTERY" the battery voltage be kept within the green position on the voltmeter. Before servicing the machine be sure to check the battery voltage to make sure that the voltage is maintained above 7.5 V.

4.6. If a circuit is not working efficiently or is suspected of being out of order the easist way to check will be to measure the collector current or emitter current. However, since the printed circuit does not permit this checking, measure instead the total amount of current consumed and also the voltage in each unit. When battery voltage is 8 V, the voltage of each transistor unit should show values as given below. These values are also given in the connection diagram.

Voltage of Each Transistor

(When battery voltage is 8V)

			and the second secon
TR	Vc	٧b	Ve
1	-5.9	-0.7(0.42)	-0.9
2	-4.6	-0.5(0.42)	-0,6
3	-3	+0 .3	-0.45
4	6	-0.7(0.5)	-0.9
5	-4.3	-0.3	-0,
6	-6	-0.7 (0.5)	-0.8
7	-6	0.5 (0.45)	<u>-0.5</u>
8	-5.8	0	0

- 10 -

TR	Vc	٧b	Ve
9	-4.6	-0.7(0.6)	-0.6
10	-6.2	~0 ,8	-0.6
11	-8	-0,2	-0.1
12	-8	-0.2	-0.1
Dl	Ó		
D2	×-0.8(0.67) 0	O	* *

Check point X When the gain control is max.

NOTE: The values in parenthesis are these measured in 2.5 V range of a circuit tester. All other values are those measured in 10V range. These values may be subject to minor changes according to the internal resistance of the tester used. When battery voltage is 9 volts these value should be increased by some 10%.

4.7. When replacing a resister or condenser, leave its lead wires as long as possible to facilitate connection with the lead wires of a new resister or condenser. In this way replacements can be speedily affected and with ease.

4.8. In adjusting or testing when either SG or a test oscillater is being used, a condenser from 0.1 to 1.0 F must be connected in series to the output terminal of either SG or the test oscillator rest the bias of the transistor should be shortcircuited by the output resistance of SG or the test oscillator used. For the detection of signals in each unit, it is advisable to use a cathode ray oscilloscope.

4.9. To check the condition of the local oscillation, measure voltage by connecting DC 2.5 V range of a tester to a point between check point (1) and the chassis. (10)

The following table shows an example of this. (Battery voltage here is 8 Volts):

- 11 -

#7487878487998799879887988798879887998879488794879798799999999	en e	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
	Reacon	BC	Marine
While Oscillating	-0.38 V	-0.46 V	-0.55 V
When not oscillating	-0 . 13 V	-0.13 V	-0.13 V

When there is no oscillation, the voltage in (1) (TR₃ emitter) will go to below half the normal value. Shortcircuiting of the main tuning condenser will not have the effect of stopping oscillations. It will be necessary for this purpose to connect a condenser of some 0.1 F to the earth of the chassis and the trimmer. A cathode ray oscilloscope of high sensitivity may also be used for checking the condition of oscillation.

4.10 The voice output stage of this machine is in the B class pushpull circuit of TP_{11} and TP_{12} . The power source current will generally show the changes as listed below according to whether signals are present or not.

When no signal is present

approx. 20 mA

When there is an output of 0.5 Watt approx. 120 mA These currents will increase with the battery voltage.

4.11. To measure the voltage in each unit, it will be advisable to use a circuit tester with a high internal resistance or a VTVM.

V. ADJUSTMENT

The KS - 357 is supplied with all units in perfect adjustment. The parts so adjusted have been fixed in position using wax, enamel paint or some similar method. Careless touching or handling any of these parts therefore could affect this delicate adjustment. When it does become necessary to adjust them after parts have been replaced, adjustment should be carried out in the manner described below and in accordance with the adjustment schedule.

1) The output is indicated both on the speaker and on the null meter. (Refer to the Standard characteristics). The audio output must be measured

- 12 -

on (9) by means of a circuit tester which will indicate it by RMS.

2) To feed the machine with signals use either a signal generator or a high class test oscillator with 400 c/s 40% as the standard medulation. In connecting the tester and the machine, make sure that the DC at the condenser is cut off as directed under IV 4.8.

3) It is advisable to use an insulated type driver for adjustment of the cores of coils, transformers, as well as trimmer condensers. Great care is required in adjusting the cores of coils and transformers as they can be very easily broken when turned. Turning a coil clockwise will increase L and turning it anti-clockwise will decrease L. After adjustment, any parts which have been disturbed must be again fixed into position by using wax or enamel.

4) In adjusting IF units, it is necessary that a centre frequency and band width be indicated by a marker employing a sweep generator and cathode ray oscilloscope.

ADJUSTMENT SCHEDULE

Set 'Gain' to its maximum.

5)

- ^o Adjust 'Volume' to an appropriate degree.
- Turn 'SW-3 (Crystal)' to the OFF position.
- Turn 'SW-2 (TONE, DF battery)' to the DF position.
- o Before adjustment make certain that the battery voltage is sufficient, by turning SW-2 to Battery.
- o The figures circled like(1)and(2)in the following table in column 'SG connection point' show the numbers given to the check points.
- o For the SG input, select a value at which the null-meter will indicate an appropriate figure.

- 13 -

							•	
Order of Adjustment	Circuit	Band S.W.	SG Connec- tion Point	Frequency	Dial Indimation	Point Adjusted	How to Adjust	Remarks
I	Inter-medi- ate Frequen- cy circuit	×	(9)	Sweep Gene- rator 455 KC ± 20 KC	о н	T12 core	4	
N	2	X	(5)	2	No	T11 core		Seeing the CET indication, make it as shown on the left.
۳.	z	¥	(4)	2	No	T4 core	drage drage	
17	I	W	(3)		No	T7 core	× + + +	
Ś	t	×	(3)			de de		By means of the procedures under 1 to 4 , see that the characteristic is such
								that a range of 6 db attenuation is approx.6KC and a range of 60 db at- tenuation is within 30kc.
Q	Beacon oscillation circuit	Beacon	D (2)		160 KC	T6 core	So that the null meter indicates maximum value	
2	2	z	(2)		400 KC	C26 Trimer		
				-				

Measuring Equipment

۰. م

- 14 -

.

Order of	Circuit		Measuting	Measuting Equipment Connec-		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	How to Adjust	Remarks
	Adjustment to be adjusted 8 Beacon	Beacon	1	rrequency	1001000	naren[ny		Repeat procedures 6 & 7 several
	oscillation ciruit				, ^t	~		times until the frequencies on SG agree with that on the dial. For example if C26 is increased
								by Step 7 and frequency is adjus- ted to 360 KC, it will lower 180 KC frequency adjusted by step 6 below 180 KC. To avoid this
		- 						effect caused by the next step and obtain the desired adjust- ment result sooner, turn T^{6} anticlockwise before proceeding to step 9.
	B.C. Circuit	в.с.	(2)	8	600 KC	T5 core	So that null meter indicates maximum value.	
	2	*	(2)	SG	1400 KC	C25 Trimmer	. 22	
	2	2	(2)					Repeat steps 12 and 13 and make ad- justments following the example under step 8.
	Marine Circuit	Marine	(2)	E.	1800 KC	T4 COre	2	Frequency will fluctuate greatly with a minor change in the position of a point caused by its adjustment. This calls for very delicate adjustment of the position of each point.
	æ	2	(2)	3	4 XC	C24 Trimmer	3	
1			in the second	· · · · · · · · · · · · · · · · · · ·				

Order of Adjustment	Circuit	Bend S.W.	196 Connect	t Frequency	Dial Indication	Point	How to Adjust	Remarks
4 T	Marine Circuit	Warine	(2)	997-1996, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997		· · · ·	• • •	
				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		required. If frequency is as required in any band at both upper and lower ranges but not in a centre range, a padding condenser ($C 24$, $C 25$ or $C 26$) will need adjustment. Inasmuch as the machine has been carefully adjusted
		· · · · · · · · · · · · · · · · · · ·					•	at the factory such need is not likely to occur. In the marine band it is especially important that spurious frequency is not mistaken for areal one.
Ä	Beacon RF Tuning circuit	Beacon	3	8	180 KC	T3 core	Adjust so that null meter will indicate max- imum velue	
16	#	2	(2)		360 KC	C14 Trinner	•	•
2	22 	E .	(2)		•	5. 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997		
9	B.C. RF Tuning circuit	ບ ອ	(3)	8	640 KC Mark	13 CO 14		the cautions outlined under step 8
64	2 2		(2)	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1240 KC	C13	م عد مربع • مدرعه	

- 16 -

Remarks	Repeat steps 18 and 19 until the maximum value is indicated on the null meter by either step. Refer to Step 8.			Repeat steps 21 and 22 until the null meter will indicate the maximum value in either step. Refer to step 8. Adjustment may be made in the oscil- lator circuit in succession for each frequency band.	Couple SG Output to Lo using a field generating loop antenna, if it is available, or lead if this loop an- tenna is not available.		Repeat steps 24 and 25 until the null meter will indicate the maximum value by either step. Refer to Step 8.	
How to Adjust		Adjust so that null meter will indicate maximum value	2	-	- 	, T		2
Point Adjusted		T ₁ core	C12 Trimmer		12 core	C4 Trimmer		Ll core
Dial Point Indication Adjusted		1.8 MC	3.6 NC		180 KC	360 KC		640 KC Mark
Frequency		8	SS		S.	8		झ
SG Connec- tion Point	~	2	2	2	Beacon SG Output	M-couple to loop an- tenna	æ	=
Band S.W.	B.C.	Marine		Ξ.	Beacon		2	B.C.
Circuit	B.C. RF Tuning Circuit	Marine RF Tuning Circuit	#		Beacon		2	B.C.
Order of Adjustment	50	C N N	82	ମ୍ବେ	54	25	26	27

I - 17

					φ				
A	Order of Adjustment	Circuit	Band S.W.	SG Connec- tion Point	SG Prequency	Dial Indication	Point Adjusted	How to Adjust	Remarks
	58	ິ ສ	ာ ရွ	M-couple to loop antenna	S	1240 KC Mark	C3 Trimmer	. ,	
	59	Ξ	- 2	Ŧ					Repeat steps 27 and 28 until the mull meter will indicate the maximum value by either step. Refer to Step 8.
	R	Marine	Marine	Ŧ	Š	3.4 KC	C2 Trimmer	Adjust so that the null meter will show the maximum value	Prior to making this adjustment, make sure that Io (loop antenna) is in order as the adjustments are made with 1 of Lo as the standard.
	After co never re	mpleting quire that	all the tall th	32 procedure iese be requir	s, all the r red. Only 5	necessary ad portion of	l justments v f these will	rill have been mad ever be required	o After completing all the 32 procedures, all the necessary adjustments will have been made. In practice however it will never require that all these be required. Only a portion of these will ever be required to meet any given situation.
0		in handli come dama,	ng coil: ged thei	s, transforme ir replacemen	rs and simi t will be a	lar parts du matter of s	uring adjust some difficu	tment must be stre ilty.	Caution in handling coils, transformers and similar parts during adjustment must be stressed again here, for if these parts become damaged their replacement will be a matter of some difficulty.
0		tment wil ends 9 of d it shou	.1 be re(the spe 1d be st	No adjustment will be required in the audio circuit, but its wave form must be pr at both ends 9 of the speaker coil is 1.2 volts with battery voltage above 9 volt distorted it should be sttributable to trouble in a transistor or a bias circuit.	audio circi 1.2 volts v o trouble in	uit, but it: with battery a transist	s wave form y voltage al tor or a bia	must be practidal bove 9 volts. If is circuit.	No adjustment will be required in the audio circuit, but its wave form must be practidally without distortion when voltage at both ends 9 of the speaker coil is 1.2 volts with battery voltage above 9 volts. If the wave form in this circuit is distorted it should be sttributable to trouble in a transistor or a bias circuit.
						Q r			

- 18 -

/

6) Adjustment of C66 (Wave Trap)

Turn the operation knobs to the following reapective positions.

Band → B Tune → The maximum of the frequency scale (over 420 kc)

L1-C \rightarrow Connect the roter and the stater

Gain → Max.

Volume-> proper position

Turn the C66 slowly and fix it at the point where the swing of the null meter comes to the minimum.

7) VR1 - VR3 (Adjustment of Amplification)

Following adjustment to be done where the radio waves and noise do not interfere (as in a shielded room)

Gain > Max

Volume → Proper

Turn the tuning knob in each band, and tune to the frequency where the swing of the null meter is max., and adjust the following:-

B band $\rightarrow VR_3$, BC band $\rightarrow VR_2$, M band $\rightarrow VR_1$ in order that the meter indicates about 6.

If the swing does not reach 6, adjust it to the maximum.

- 19 -

VI. STANDARD CHARACTERISTICS OF

The characteristics of the Navigator 550 are made up of the following items. These should be referred to in checking the condition of the machine after adjustment has been made to one or more units. The method of measuring each characteristic is stated on each data sheet.

- 1. Sensitivity
- 2. Image rejection ratio.
- 3. Sensitivity without loop antenna.
- 4. Intermediate frequency amplifier.
- 5. Frequency stability for battery voltage variation.
- 6. Frequency stability for temperature variation.
- 7. Audio amplifier frequency characteristic.
- 8. Modulated signal characteristic.
- 9. Audio amplifier output.
- 10. AVC characteristic.

2

a

b) MARINE BAND

0

Fig 4

ß

1

Fig 6

e

Fig. 11

2

Fig. 13

30

2

N/ đ

.

Y

