RECTIFIER ASSEMBLY

. . . utilizing individual void-free molded MR2500 Series rectifiers, interconnected and mounted on an electrically isolated aluminum heat sink by a high thermal conductive epoxy resin.

• 400 Ampere Surge Capability

THERMAL CHARACTERISTICS (Total Bridge) Characteristic

ELECTRICAL CHARACTERISTICS (T_C = 25^oC unless otherwise noted)

CASE: Plastic case with an electrically isolated aluminum base. POLARITY: Terminal designation embossed on case: + DC output - DC output AC not marked

Symbol

۷F

 ^{1}R

Thermal Resistance, Junction to Case

Characteristic

Instantaneous Forward Voltage

Reverse Current (Per Diode)

MECHANICAL CHARACTERISTICS

(Per Diode) (iF = 55 A)*

(Rated V_R)

MOTOROLA SEMICONDUCTOR I TECHNICAL DATA

- Electrically Isolated Base –1800 Volts
- UL Recognized
- Cost Effective in Lower Current Applications

MAXIMUM RATINGS

		MDA							
Rating (Per Diode)	Symbol	3500	3501	3502	3504	3506	3508	3510	Unit
Peak Repetitive Reverse Voltage	VRRM								
Working Peak Reverse Voltage	VRWM	50	100	200	400	600	800	1000	Volts
DC Blocking Voltage	VR								
DC Output Voltage Resistive Load Capacitive Load	Vdc Vdc	30 50	62 100	124 200	250 400	380 600	500 800	630 1000	Volts Volts
Sine Wave RMS Input Voltage	V _R (RMS)	35	70	140	280	420	560	700	Volts
Average Rectified Forward Current (Single phase bridge resistive load, 60 Hz, T _C = 55 ^o C)	10	35						Amp	
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions)	IFSM	400							Amp
Operating and Storage Junction Temperature Range	Tj,T _{stg}	-65 to +175							°C

Symbol

R_{θJC}

Min

Тур

1.4

Тур

1.0

Max

1.87

Max

1.1

10

Unit

°C/W

Unit

Volts

μA

MDA3500 Series

SINGLE-PHASE FULL-WAVE BRIDGE

> 35 AMPERES 50-1000 VOLTS

NOTES: 1. DIMENSION "Q" SHALL BE MEASURED ON

HEATSINK SIDE OF PACKAGE. 2. DIMENSIONS F AND G SHALL BE MEASURED AT THE REFERENCE PLANE.

	MILLIM	INCHES			
DIM	MIN	MAX	MIN	MAX	
A	34.80	35.18	1.370	1.385	
C	12.44	13.97	0.490	0.550	
D	6.10	6.60	0.240	0.260	
F	13.97	14.50	0.550	0.571	
G	28.00	29.00	1.100	1.142	
J	0.71	0.86	0.028	0.034	
К	9.52	11.43	0.375	0.450	
L	1.52	2.06	0.060	0.081	
P	2.79	2.92	0.110	0.115	
Q	4.32	4.83	0.170	0.190	
	CAS	SE 309	A-02		

through the surface opposite the terminals. Use silicone grease on mounting surface for maximum heat transfer.

WEIGHT: 40 grams (approx.)

TERMINALS: Suitable for fast-on connections. Readily solderable, corrosion resistant. Soldering recommended for applications greater than 15 amperes. MOUNTING TORQUE: 20 in-lb max

MOUNTING POSITION: Bolt down. Highest heat transfer efficiency accomplished

*Pulse Width = 100 ms, Duty Cycle < 2%.

3

3-160

R

FIGURE 10A - THERMALLOY HEATSINK 6005B

FIGURE 10B - IERC HEATSINK UP3 AND NO HEATSINK

NOTE 2: THERMAL COUPLING AND EFFECTIVE THERMAL RESISTANCE

In multiple chip devices where there is coupling of heat between die, the junction temperature can be calculated as follows: (1) $\Delta T_{J1} = R_{\theta 1} P_{D1} + R_{\theta 2} K_{\theta 2} P_{D2} + R_{\theta 3} K_{\theta 3} P_{D3}$

 $+ R_{\theta 4} K_{\theta 4} P_{D 4}$

Where ΔT_{J1} is the change in junction temperature of diode 1 R₀₁ thru 4 is the thermal resistance of diodes 1 through 4 PD1 thru 4 is the power dissipated in diodes 1 through 4

 $K_{\partial\,2}$ thru 4 is the thermal coupling between diode 1 and diodes 2 through 4.

An effective package thermal resistance can be defined as follows:

(2) $R_{\theta}(EFF) = \Delta T_{J1}/P_{DT}$

Where: PDT is the total package power dissipation

Assuming equal thermal resistance for each die, equation (1) simplifies to

(3) $\diamond T_{J1} = R_{\theta 1} (P_{D1} + K_{\theta 2}P_{D2} + K_{\theta 3}P_{D3} + K_{\theta 4}P_{D4})$ For the conditions where $P_{D1} = P_{D2} = P_{D3} = P_{D4}$, $P_{DT} = 4 P_{D1}$, equation (3) can be further simplified and by substituting into equation (2) results in

(4) $R_{\theta}(EFF) = R_{\theta 1} (1 + K_{\theta 2} + K_{\theta 3} + K_{\theta 4})/4$

When the case is used as a reference point, coupling between die is neglegible for the MDA3500. When the bridge is used without a heatsink, coupling between die is approximately 70% and $R_{\theta\,1}$ is 30°C/W,

 $\therefore \mathsf{R}_{\theta}(\mathsf{EFF}) = 30 [1 + (3) (.7)]/4 = 23^{\circ} \mathsf{C}/\mathsf{W}$

NOTE 3: SPLIT LOAD DERATING INFORMATION

Bridge rectifiers are used in two basic configurations as shown by circuits A and B of Figure 1. The current derating data of Figure 4 applies to the standard bridge circuit (A) where $I_A = I_B$. For circuit B where $I_A = I_B$, derating information can be calculated or figure 1. lated as follows:

(6) $T_{R(Max)} = T_{J(Max)} - \triangle T_{J1}$

Where $T_{R(Max)}$ is the reference temperature (either case or ambient)

T_{J1} can be calculated using equation (3) in Note 2.

For example, to determine ${\sf T}_{C\{Max\}}$ for the MDA3500 with the following capacitive load conditions.

 $I_A = 20$ A average with a peak of 60 A $I_B = 10$ A average with a peak of 70 A

First calculate the peak to average ratio for I_A. $I_{\rm (PK)}/I_{\rm (AV)}=60/10$ = 6.0. (Note that the peak to average ratio is on a per diode basis and each diode provides 10 A average). From Figure 5, for an average current of 20 A and an $I(\rm PK)/$

 $\begin{array}{l} I_{\{AV\}} = 6.0 \mbox{ read } P_{DT\{AV\}} = 40 \mbox{ wats or 10 wats/dicke. Thus } P_{D1} = P_{D2} = 10 \mbox{ wats.} \end{array} \\ \hline Similarly, for a load current Ig of 10 A, diode #2 and diode #4 each see 5.0 A average resulting in an I(PK)/I(AV) = 14. \end{array}$

Thus, the package power dissipation for 10 A is 20 watts or 5.0 watts/diode $\therefore P_{D2} = P_{D4} = 5.0$ watts. The maximum junction temperature occurs in diode #1 and #3. From equation (3) for diode #1 $\triangle T_{J1} = (7.5)$ (10), since

coupling is negligible. $\Delta T_{J1} \approx 75^{\circ}C$

Thus T_{C(Max)} = 175 -75 = 100°C

The total package dissipation in this example is: $P_{DT(AV)} = 2 \times 10 + 2 \times 5.0 = 30$ watts, which must be considered when selecting a heat sink.

FIGURE 11- BASIC CIRCUIT USES FOR BRIDGE RECTIFIERS

3-162

